Vol. 40 No. 11

Transactions of Information Processing Society of Japan

Regular Paper

Possession System: Middleware for Adaptive Collaborative Applications

MASAHIRO MOCHIZUKI' and HIDEYUKI TOKUDA® 1t

In this paper, we describe the design and implementation of a middleware system named
Possession System. The system is designed based on Possession Model which provides users
with a consistent view of application components, networked sensors, and distributed devices
by introducing two separated abstractions: Body and Soul. Possession System realizes a
simple framework to deal with adaptation of distributed collaborative applications by changing
relationship among Bodies and Souls. Furthermore, it enables users to interact with system
components with a simple operation named possession. Distributed collaborative applications
built on top of our middleware realize adaptive behavior, which is achieved by a mechanism
combining system events with various behavioral changes of application components including
the migration of components. The middleware is applicable to adaptive systems in mobile
and ubiquitous computing environment where unpredictable changes in available computing
resources, device configuration, and geographic location frequently occur. We describe how

Nov. 1999

collaborative applications using our middleware adaptively behave.

1. Introduction

With the maturation of a mobile computing
environment and a forthcoming wearable com-
puting environment, the usage of collaborative
applications is diversified. We have focused
on a particular type of application, which can
dynamically change functionality and services
according to the contextual changes of activ-
ities among individuals and groups. Adapta-
tion mechanisms for applications are required
for this purpose, and we extend the concept
of adaptation from the application-aware adap-
tation 1), which is achieved by the cooperation
between system- and application-level mecha-
nisms, to the multiuser-aware adaptation so as
to accommodate the characteristics of an adap-
tive collaborative application.

An example scenario can be introduced as
follows. Group members in a distributed en-
vironment use video conferencing applications,
and send video data captured at each location.
Some of the members might move to the same
meeting room, and stop sending video data to
each other’s hosts, while keep sending to the
distant hosts. One member might want to check
the geographic location of all the members by
displaying the area map, and some other mem-
bers might want to share the map information.
Distant members might use a shared text edi-
tor for realtime text communication, while the

} Graduate School of Media and Governance, Keio
University
t1 Faculty of Environmental Information, Keio Univer-
sity

4000

members in the same room might prefer to pass
around a virtual memo object. The example
indicates that the long-term use of collabora-
tive applications in a mobile computing envi-
ronment causes frequent and successive changes
in types and ways of services suitable for a cer-
tain situation. Moreover, one service can be
performed in relation to other services.

Therefore, adaptation mechanisms are re-
quired not only to guarantee the continuity of
services provided by legacy applications but to
satisfy requests from novel applications which
actively use information on contextual changes
to provide advanced services. The contextual
information includes the changes of group mem-
bers, proximity of people, location, and sched-
ules, and a part of them was formerly addressed
in the pioneering research?. The adaptation
mechanisms are realized and reinforced by the
advent of networked sensors and devices that
provide information on the internal state of
computing devices, physical environment sur-
rounding users, and context of human activi-
ties. From the above-mentioned point, adaptive
collaborative applications should be developed
based on a common adaptation framework to
achieve flexibility and extendibility.

In our research, we developed new middle-
ware named Possession System, which con-
tribute to the easy development of adaptive col-
laborative applications built of a collection of
distributed components in Java. Adaptation
supported in the middleware is briefly described
as the automatic adjustment of system state
and configuration responsive to dynamic envi-

Vol. 40 No. 11

ronmental changes. The system characteristics
can be described as follows; (1) it adopts an ab-
straction for transparent access to distributed
devices, sensors, and application components,
(2) it provides a framework to relate system-
level environmental event management mecha-
nisms with application-level adaptive behavior,
and (3) it enables dynamic placement and re-
configuration of distributed application compo-
nents with a simple operation partially deploy-
ing object migration facilities.

The rest of this paper is organized as follows:
Section 2 explains our research approach on dis-
tributed adaptive applications. Section 3 de-
scribes the Possession Model which provides ba-
sic abstraction to our middleware, and Section
4 explains the system architecture and proto-
type implementation. Then Section 5 describes
several applications implemented on top of the
prototype system, and Section 6 discusses over-
all consideration. Finally, Section 7 addresses
related works, followed by the final section with
conclusion.

2. Adaptation in Collaborative Appli-
cations

The concept of adaptation in computer sci-
ence is wide-ranging and covers a variety of ar-
eas such as operating systems, computer net-
works (including mobile networks), user inter-
faces, applications, etc. The characteristics of
our research can be explained in the aspect of
adaptation policies and distributed communi-
cation paradigms.

2.1 Adaptation Policies

Adaptation policies can be viewed from the
following aspects:

(1) System-level vs. Application-level
System-level adaptation is usually self-contained
and hidden from application-levels. On the
other hand, in application-level approach, ap-
plication programmers need to design and im-
plement adaptation mechanisms individually
for themselves. System- and Application-level
approaches do not inherently conflict with each
other.

(2) Hidden vs. Perceivable

The process or result of adaptation can be
hidden from applications or users to provide
transparency in different environments (e.g., a
stationary environment and a mobile environ-
ment). On the other hand, perceivable adap-
tation is needed to develop software supporting
human collaborative activities because it is nec-

Possession System: Middleware for Adaptive Collaborative Applications 4001

essary to take human perception and response
into account due to reflect them as system feed-
back for further adaptation process.

(3) Coarse-grained vs. Fine-grained
This aspect is related to the minimum unit of
adaptation. Command or process execution ap-
propriate for a certain context is an example of
coarse-grained adaptation. Fine-grained adap-
tation is performed within an application pro-
cess without restarting the process.

(4) Symmetric vs. Asymmetric

In the symmetric adaptation approach, updates
resulting from the adaptation of a collabora-
tive application at one host occur in the same
manner in other applications at other hosts ir-
respective to the difference of each computing
environment. In the latter approach, adapta-
tion occurs in a variety of ways at each col-
laborative application in distributed hosts re-
flecting the differences of each environment.
This implies that a process of adaptation ad-
vances through both environment-independent
and environment-dependent stages.

In our research, adaptation is enhanced by
providing a framework for the cooperation be-
tween system- and application-level. Moreover,
multiuser-aware adaptation is supported in the
framework by incorporating the Perceivable as-
pect. At the same time, the Fine-grained and
Asymmetric adaptation approaches are appro-
priate for our system because users can flexi-
bly specify that a certain service is sharable or
non-sharable, while it is not only easy to cus-
tomize and personalize adaptive applications
but suited to relocate the application compo-
nents in a distributed environment.

2.2 Distributed Communication Para-

digms

Our main concern is in the placement policies
and access methods to distributed resources,
therefore an abstraction methodology for mo-
bile code paradigm presented in Ref. 3) is suit-
able for this purpose. In the methodology,
distributed applications are decomposed into
four basic elements. The elements are Re-
source components (code, data, or physical de-
vices), Computational components (flow of con-
trol such as process and thread), Interactions
(event and information passing between two
or more components), and Sites (execution en-
vironment). According to the differences of
relationships among the basic elements, mo-
bile code paradigms of distributed applications
are classified into the following 5 types which

4002 Transactions of Information Processing Society of Japan

consist of original four paradigms presented
in Ref. 3) and one additional type provided in
Ref. 4):

e Client/Server (CS): The code, data, and
execution remain fixed at the server site
Sp. Component A at Site A sends data
to Component B at Site B. Execution is
performed at Sg.

e Remote Execution (REV): Component A
at Site A sends code and data to Compo-
nent B at Site B.

e Code on Demand (COD): Inversion of
REV. Component A requests code and
data from Component B.

e Remote Code Execution (RCE): Union of
REV and COD.

e Mobile Agent (MA): Computational com-
ponents can migrate together with code
and data from Site A to Site B.

In the Possession System, COD, REV, and
MA paradigms are adopted for the purpose
of run-time system management; download-
ing/uploading of Resource and Computational
components from/to repositories or other hosts,
distributed placement and configuration of the
components, and update of each component.
Communication among application components
are based on CS paradigm. MA paradigm
is usually applied to task-oriented processing,
which means that a task is allocated to an agent
and the agent itself is terminated soon after
the task has completed. In the Possession Sys-
tem, however, multiple processing entities can
be related to a single target task. Furthermore,
the system can dynamically select whether a
processing entity should migrate and perform a
task at a remote site or the entity should stay
and start the remote execution of the task at a
local site.

3. Possession System

Possession System is designed and imple-
mented by a component model named Posses-
ston Model. We will briefly explain the concept
of the model and then move on to the system
implementation details.

3.1 Design Goals

We have the following design goals:
Describability: This feature is achieved by
the separation between the description of com-
ponent’s procession and composition. Appli-
cations can be composed by the description of
simple configuration script.

Reusability: Components (Bodies and Souls)

Nov. 1999

can be shared and reused in a distributed envi-
ronment. Body instances used in one applica-
tion service can be reused in other application
services without reinstantiation.

Flexibility: An application made of Souls and
Bodies can be dynamically and easily reconfig-
ured to brand new application serving to differ-
ent purposes.

Extendibility: Application functionalities can
be upgraded on a per component basis. Each
component can be replaced with a new version
through the RCE paradigm.

Adaptability: Reconfiguration of applications
can be automatically performed in accordance
with various environmental events.

Mobility: Soul component can migrate to re-
mote sites in order to dispatch the execution.
MA paradigm is incorporated in the Possession
System by this feature.

In the existing component-based middleware,
the characteristics of reusability, flexibility, and
extendibility are not integrated with the adapt-
ability and mobility features in terms of the
long-term execution of applications with succes-
sive environmental changes enough to facilitate
the adaptive collaborative application develop-
ment. In order to address the issue, middleware
need to provide application programmers with
a unified framework.

3.2 Possession Model

Possession Model is designed to give an ab-
stractive view on the relationships of system
components. It is based on an analogy that
a soul “possesses” a body. Hence, the model
provides a simple framework to see collabora-
tive multimedia applications as a collection of
components named Souls and Bodies. The sep-
aration between Souls and Bodies corresponds
to the decomposition of components into Com-
putational and Resource components.

Body Component: Body is designed as a
static entity in the Possession Model, and it is
activated by Soul’s possession operation. Body
can be classified into the following four cate-
gories:

(1) Core Bodies: System components which
provide fundamental features including compo-
nent instance management and communication
facilities.

(2) Graphics Bodies: GUI components and
drawing areas (e.g., window and animation
sprite objects).

(3) Device Bodies: Wrapper objects for vari-
ous sensors and devices (e.g., video capture de-

Vol. 40 No. 11

£7' PossessionWare Demonstration

MPEG1 Viewer Body :!

'— Video Viewer Body

GPS Map Viewer Body
Fig.1 Some examples of Bodies.

vice, GPS device, audio device, and information
appliances).

(4) Filter Bodies: Two types of filter Bod-
ies exist; one is used for simple filtering pur-
poses (e.g., compression/decompression, en-
cryption/decryption, text and image format
conversion, etc.), the other is used for intel-
ligent processing (e.g., image recognition and
voice recognition).

Body is modeled as a Java object and its basic

functions are defined in BodyComponent class.
If users would like to create a new Body, they
need to define a remote interface at first and the
new Body has to inherit BodyComponent class
and implement a remote interface. Figure 1
shows sample implementations of Bodies at the
time of writing.
Soul Component: Soul is an active entity in
the Possession Model, and it knows how to con-
trol a Body (interface) and what to do while
it is executed (thread of execution). Soul is
written in Java and its basic functions are pro-
vided in SoulComponent class. When users cre-
ate a new Soul, SoulComponent class has to be
inherited and Body remote interface must be
implemented so as to control the Body. If a
Soul would like to control several different types
of Bodies, the Soul must implement all corre-
sponding Body remote interfaces.

Soul has two main roles; one is to describe
contents of its execution and the other is to
branch off its method invocation. As for the
former role, since Body instance only provides
functionality of the entity the Body is repre-
senting and its method implementation, the de-
scription of control flow has to be defined as a
Soul at compile time. The latter role works
when multiple Bodies are registered in a Soul.
When the Soul executes its thread and invokes

Possession System: Middleware for Adaptive Collaborative Applications 4003

its methods, the invocation is branched off and
methods of multiple Bodies are called. For this
purpose, Soul and multiple Bodies need to im-
plement the same remote interface. For homo-
geneous multiple Bodies, Soul has to implement
a common remote interface, and for heteroge-
neous multiple Bodies, Soul has to implement
multiple remote interfaces enough to control all
types of Bodies.

Soul has an ability to migrate among dis-

tributed hosts. This ability enables it to in-
corporate the MA paradigm to the Possession
System. The Soul’s migration facilities basi-
cally provide a simple method to change a place
to process Soul’s execution. However, it can be
used for other purposes by connecting the Soul
with various types of Bodies.
Possession Operation: Possession operation
is performed by Souls to select and regis-
ter target Bodies to be controlled. In other
words, it creates a dynamic binding between
Resource components and Computational com-
ponents. Since several different types of Bodies
exist, we can consider the following possession
patterns; a Soul possessing a Body (Soul-to-
Body), multiple homogeneous Bodies (Soul-to-
homogeneous Bodies), multiple heterogeneous
Bodies (Soul-to-heterogeneous Bodies), and
multiple Souls possessing a single Body (ho-
mogeneous/heterogeneous Souls-to-Body). In
addition to a normal possession pattern where
Souls possess Bodies, a Soul can also possess
another Soul.

When a possession operation is called, class
type checking and access control is internally
performed. In the current implementation,
Java reflection API is used for this purpose.
Access control mechanism is introduced to en-
sure ownership of both Souls and Bodies, and
achieved by an access control list mechanism.

3.3 System Architecture

The major components of the Possession Sys-
tem, other than Souls and Bodies, are Field,
Mediums, and Possession Shell. Each compo-
nent can be described as follows:

Field: Field exists on each host and provides
a basic communication mechanism to send and
receive system management information among
remote Fields. Moreover, it accommodates
name registration and lookup facilities.

Medium: Medium is a logical management
unit and gives Bodies distinct name space.
Bodies created in a current Medium are acti-
vated, and active groups of Bodies are switched

4004 Transactions of Information Processing Society of Japan

Possession| | . s
Shell Medium Li@«

Field Vacl/JPython Field

Medium ‘ Medium |

Java VM Java VM

JavaVM | |

Operating System

Operating System
I ' I

()

I [

Directory Component
Server Repository

Fig.2 Possession system architecture.

according to the selection of current Medium
by users.

Possession Shell: Users can manually con-
trol the system by the Possession shell. A
notable feature here is that the shell itself is
implemented as a Body. Possession shell can
therefore be possessed and controlled by a Soul,
and appropriate script is evaluated according
to event notification from Device Bodies or an
event management Body in order to perform
adaptation behavior of applications composed
by multiple Bodies.

Entire system architecture is depicted in
Fig. 2. It shows Possession Systems running on
both Host A and Host B. A collaborative mul-
timedia application is composed as the collec-
tion of distributed Bodies and Souls. Commu-
nication between system components are based
on Java Remote Method Invocation (RMI).
Users access system components with a Posses-
sion shell which is implemented with Jacl® or
JPython®.

3.4 Adaptation Support Mechanism

Adaptation in the Possession System is
achieved by the following methods: (1) By
downloading a new component from a network
and replacing an old one with it, (2) By letting
Soul change the attributes of possessing Body,
and (3) By changing the configuration of appli-
cation components. Any of the preceding meth-
ods or combination of the methods are required
to be selected and applied with the analysis of
information obtained from devices and sensors
or system-providing environmental event man-
ager such as Ref. 7). Adaptation support mech-
anisms, therefore, should be designed to fulfill
those requirements. A typical adaptation sup-
port mechanism is shown in Fig. 3. Inside the
oval shows the mechanism supporting adapta-
tion of collaborative multimedia applications by

Nov. 1999

Perform
Adaptation

| Database |)
@

{ Sensors
Application
Components
Fig.3 Adaptation support mechanism.

1 cmd.cm()

2 cmd. cs(’ comp.SoulScc’)

3: bl = cmd.cb(m, ’comp.BodyScc’)

4: b2 = cmd.cb(m, ’comp.BodyVideoUI’)
5

6

7

m
: s
b

: s.possessIn(bl)
¢ s.possessOut (b2)
: s.start()

Fig.4 Configuration script (vidviewer.py).

the method (3).

SgE works as a sort of environment man-
ager. It collects information from Bg which
represents Bodies as sensors, and decides an
adaptation policy. An adaptation policy is de-
scribed as a script or a set of scripts stored in a
Database (Bpg). Sg downloads an appropriate
script from Bpp and executes it by interacting
with B; which represents a script interpreter.
The cloud part denotes an application which
consists of a Soul and multiple Bodies. The
configuration of the application components is
changed gradually or drastically by the evalu-
ation of adaptation scripts in a network trans-
parent manner.

A simple example of the configuration script
written in JPython scripting languages is pre-
sented in Fig.4. The example shows the con-
figuration of a video viewer application. Each
number shown at left-side denotes a line num-
ber. From line number 1 to 4, Medium, Soul,
video capture Body, and video viewer Body are
respectively created. At line 5, the Soul pos-
sesses the video capture Body for input and also
possesses the video viewer Body for output at
line 6. Then Soul starts processing at line 7.

The example is rather iterative and straight-
forward. The scripting language itself, however,
has expressive power enough to describe condi-
tional behavior and time-driven behavior.

Figure 5 shows a code fragment of a simple
event server. When events such as TimerEvent
and LocationEvent are notified from Body
Components, the server’s event listener method

Vol. 40 No. 11 Possession System: Middleware for Adaptive Collaborative Applications 4005
public void eventPosted(EventObject event) {
if (event.toString().equals("TimerEvent")) {
Vector v = (Vector)htScripts.get("timer");
for (int i=0; i<v.size(); ++i) {
String scriptname = (String)v.elementAt(i);

execScript(script);
v.removeElementAt (i) ;

}

-

htScript.put("timer", v);

1:

2

3

4

5:

6: String script = loadScript(scriptname);
7¢

8

9

0

1 } else if (event.toString().equals("LocationEvent")) {

Fig.5 A code fragment for event handling.

(eventPosted) is called. Then, the server
checks if any configuration script is registered in
relation to the notified events. If it is registered,
the corresponding configuration script is re-
trieved from a database (loadScript at line 6)
and executed at an interpreter (execScript at
line 7). For instance, a video viewer application
configured by the vidviewer.py script will be
cleaned up and a new text editor program will
be launched by the execution of pre-registered
cleanup.py and texteditor.py scripts respec-
tively at a certain time specified using a sched-
uler application. This example presents typi-
cal integration between the adaptation support
and generic event handling mechanisms. Al-
though the adaptation example is performed by
the script evaluation, it can be achieved by the
simple replacement of components based on the
interactive command execution between Souls
and interpreter Bodies.

4. Applications

We have implemented several applications
based on Possession Model including video
viewer application, video conferencing applica-
tion, and an example of application configura-
tion change triggered by PC card replacement.
Each of them consists of several Souls and Bod-
ies and have ability to adapt events notified
from Bodies wrapping devices.

4.1 YVideo Viewer Application

As an example of Possession system, we show
a simple video viewer application. Figure 6
shows the configuration of video viewer appli-
cation on the host A. In the application, a Soul
possesses two Bodies; one is a wrapper for a
video capture device and the other works as a
video viewer. The Soul (S) reads video data
from B¢ and draws video frames onto By. Ar-
rows in the figure show the direction of data
flow. Components on the host B is not related

Host B

))

Fig.6 A video viewer application on the host A.

J

Fig.7 Soul possessing multiple video viewer bodies.

to the application at this point.

By letting the Soul possess By on the host B,
we can duplicate the video data flow. Figure 7
shows the configuration that the S possesses
By on both the host A and host B. We can
deliver the video data to multiple viewers on
distributed hosts in the same way.

Since Souls have ability to migrate from one
Field to another, the Soul possessing the video
capture device Body on the host A can migrate
to the host B maintaining the connection be-
tween the Soul and the Bodies.

When a Soul migrates from one host to an-
other, the hash table in the Field is looked
up with the Soul’s identifier and object in-
stance is obtained. The identifier consists of
initial hostname, field identifier, and integer
value, and is assigned at the creation time

4006 Transactions of Information Processing Society of Japan

and immutable during the component’s life-
time. Since the hostname part includes the hi-
erarchical domain name of Internet DNS (Do-
main Name System), the identifier’s unique-
ness is guaranteed. You can specify the Soul
in the host A with the following URL conven-
tion; rmi://hostA/hostA.field0.soul0. The
“rmi://hostA/” part can be omitted when you
address local components.

The obtained object instance is serialized to
byte codes and transmitted to the destination
host, as well as the name and remote reference
pair is deleted from the name service at the
source host. After the byte code transmission,
the Soul component is reinstantiated with the
byte code, while the identifier and instance is
stored in the Field’s hash table and the compo-
nent’s name and remote reference pair is reg-
istered to the name service at the destination
host. At this point, the migrated Soul compo-
nent on the host B can be specified in this way;
rmi://hostB/hostA.field0.soul0.

The Soul holds remote references to the pos-
sessing Bodies even after the migration, and
keeps connection to the Body representing the
video capture device on the host A and receive
video data from the Body. Users can select
whether the Soul should continue to reference
the original Body (B¢ on the host A) or it
should unpossess the old Body and possess a
one on the host B. The application configura-
tion change before and after the Soul’s migra-
tion is shown in Fig.8. This selection should
be made according to the context under which
the application is used, but it is important to
provide versatile options in order to increase the
system flexibility.

4.2 Video Conferencing Application

By configuring a few additional Souls and
Bodies to the video viewer application, we can
realize a video conferencing application on top
of Possession System. Figure 9 shows a screen-
shot of the video conferencing application and
the structure is presented in Fig. 10.

There are two Souls and 5 Bodies in each
host. Sy 4 in the host A works as a video trans-
mitter, and it captures video data from a Body
(Bca) which represents video capture device
and passes the data to Bodies (By 4 and By g)
which work as video viewers. This configura-
tion is the same as the example explained in
the previous section. The other Soul in host
A (St4a) works as a text capturer. It possesses
two Bodies representing text areas (Br4 on the

Nov. 1999

Host A Host B

N A Mmigration

Soul can choose
which video capture device
to possess.

Fig.8 Soul migration and Body selection.

AoBE. FHSOHTFRVERTT Hellol How are youq

»

Fig.9 Screen-shot of a video conferencing
application.

host A and Br4 on the host B) and capture
and transmit text data when users input text
information on the Bodies. Moreover, users can
add Bodies so as to share a variety of informa-
tion with conference participants such as im-
ages, files, screen-shot of other applications, etc.

In this application, users can choose whether
data should be sharable or non-sharable on a
per. Body basis. For example, if a user on
the host A (user A) would not like to show
a particular text information to a user on the
host B (user B), user A simply let St4 unpos-
sess Br4 on the host B, and prohibit user B
from accessing to Bpa on the host A by setting

Vol. 40 No. 11

kHost A Host B

Fig.10 Configuration of a video conferencing
application.

proper ACL parameters. We can also add a
video recording feature by letting a Soul draw-
ing video data possess a newly created Body as
a video data storage. When you would like to
playback recorded video data, you can change
a video source from a Body as a video capture
device to the Body as a video data storage by
possession operations.

In addition to ordinary video conferenc-
ing functionality, simple adaptation can be
achieved in coordination with a Body provid-
ing locational information. For instance, when
a Body as a window is shown in a large dis-
play device installed in a laboratory, the Body
adapt its size according to the relative distance
between users and the display device. When
a user comes close to or becomes distant from
the display, the Body adjust its size, smaller or
larger, so as to be appropriate for the user to
see the contents at the location.

4.3 Adaptation to PC Card Replace-

ment

As an example of integration between
system-level event handling mechanism and
application-level adaptation mechanism, we
prepared a wrapper Body that communicates
with a FreeBSD standard PC card manage-
ment daemon named pccardd. The wrapper
Body receives the notification of insertion and
removal events sent from pccardd, and the
Body enables Souls to access the information
of device configuration changes. Figure 11
shows an application realizing the automatic
configuration of Bodies which works as com-
pression/decompression filters according to the
exchange of network interface PC cards from a
10 Mbits Ethernet card to a 2 Mbits WaveLAN
card.

5. Consideration

We evaluated basic performance of the video
conferencing application. Two machines are

Possession System: Middleware for Adaptive Collaborative Applications 4007

, Event
Notification

Insertion/Removal Compressed

PC-cards

A\

FreeBSD
PC-card
Management
Daemon

Fig.11 Component selection based on the PC card
replacement.

used for the measurement (Toshiba DynaBook
SS-R590 with a 90 MHz Pentium processor and
40 MB RAM). Both are connected via 10 Mbps
3Com 3C589 Ethernet PC-cards. Captured
video frame size is 160x120 and the color
depth is 16 bpp. In the current implementation,
drawing a frame with RMI costs 80.93 msec
(12.36fps). Moreover, it takes 91.19 msec to
draw a frame (10.97 fps) from the remote host
after Soul’s migration. To compare local
and remote execution, we implemented a nor-
mal video viewer application using Java na-
tive method. it takes 65.71msec per frame
(15.22fps). The results indicates that drawing
with RMI takes about twice as much time as
drawing without RMI.

We also investigated the execution time of a
possession shell command. We implemented a
Tcl null command and measured its execution
time. It costs 140.15msec for the overall ex-
ecution, and about 20% of the execution time
(28.00 msec) is consumed by the internal invo-
cation of Soul’s null Java method and about
36% of Soul’s method invocation (9.95 msec) is
consumed by Body’s null method invocation.

In the multiuser-aware adaptation, the noti-
fication on the process of adaptation through
the state changes of GUI and device compo-
nents is important so as to let users know and
share the changes of social context and envi-
ronment. Support for intellectual processing
considered to be useful due to enhance sys-
tem ability to deal with the contextual informa-
tion including human activities. Although our
middleware currently does not directly support
the processing, it is possible to accommodate
this by means of simple system configuration
changes. For instance, you can replace a normal
database with a knowledge base and substitute
an interpreter Body for an inference engine, and
we can incorporate Al technologies within our
system framework.

As for the implementation detail of the mi-
gration scheme, we adopt the object serializa-

4008 Transactions of Information Processing Society of Japan

tion and dynamic class loading facilities pro-
vided by the Java language. It is a stan-
dard technique used in various Java-based mo-
bile object and agent systems®~!?) where a
thread migration technique to keep the running
thread’s state is not deployed because of the re-
quirement for native code libraries which could
reduce the advantages of interoperability.

With regard to the distribution of resource
components, it is difficult to predict the device
configuration and available resources of mobile
hosts a priori. This issue is relevant to a mul-
tiuser application support because each host
has to equip resource components such as GUI
components, audio device, and video capture
device to some extent. Therefore, the mech-
anism to find closest resource repository and
targeted component is required with the help
of mechanisms such as Service Location Proto-
col 13). Furthermore, different types of compo-
nents with the same interface definition make it
easy to incorporate multi-modality in a system,
and it increases interoperability between hosts
with different device configuration.

As a consequence of adopting Java RMI as
basic communication facilities, a few drawbacks
exist in communication performance and sys-
tem scalability. For possible solutions to the
problems, we should improve group communi-
cation performance in RMI by adopting IP mul-
ticast.

6. Related Work

Possession System has benefited from numer-
ous prior researches in the area of distributed
systems, one of which is extensive research re-
sults of process and object migration14)15),
In those researches, migration mechanisms are
provided in both kernel- and user-level. In the
kernel-level approaches19~19) coarse-grained
process migration mechanisms are provided,
while mechanisms for the fine-grained mobility
of language object are provided in the user-level
language and system approaches 20)~24)

Process migration is originally intended to
be used for load-balancing, fault-tolerance, and
locality of resource reference, where migration
itself is invisible to users and migrating pro-
cesses. From this aspect, Soul’s migration func-
tionality is incorporated and used in a more
explicit manner in terms of the location-aware
resource access for the continuous computation
and location-specific services in a heterogeneous
network environment. Under the environment,

Nov. 1999

mobile and wearable computers tend to be con-
nected/disconnected to/from the network and
PDAs and information appliances could more
frequently be turned on/off than ordinary com-
puters. Therefore the requirement for the mi-
gration functionality is potentially high, al-
though the invisibility provided in the kernel-
level approaches is not necessarily required.

The user-level language and system approach
realizes finer-grained object migration indepen-
dent of the kernel-level process migration mech-
anism. It provides sufficient support for creat-
ing mobile and distributed applications, though
it is rather complex to construct applications
from scratch. For instance, Obliq 24, an object-
oriented scripting language with distributed
scope, provides language primitives enough to
create mobile agents. Application program-
mers, however, need to write programs us-
ing low-level language primitives being fully
aware of the distributed scoping. On the con-
trary, Possession System provides higher-level
abstraction and its own semantics based on ab-
straction by Soul and Body, thus application
programmers need not care of the lower-level
language semantics. Moreover, the Possession
Model itself is independent of a specific lan-
guage, and it is possible to implement a system
with the equivalent functionality in the afore-
mentioned languages.

StratOSphere? provides a framework to
unify distributed objects and mobile code ap-
plications. The design is based on a layered
architecture, where various types of communi-
cation paradigms, CS, REV, COD, RCE, and
MA, are supported at different layers. Further-
more, run-time object adaptation is achieved by
the dynamic loading of new method implemen-
tations, though the method invocation syntax
is not fully merged in that of Java language.
Therefore it imposes additional programming
efforts on application programmers.

From a conceptual viewpoint, the object
model in the StratOSphere is designed mainly
to encapsulate the geographical map data
stored in a digital library, which is inherently
suitable for MA type task-oriented procession.
The object methods are a set of operations ap-
plied to modify the map data contents, and
those are defined in terms of the place to de-
liver the map data in a certain order and the
type of computation to perform at the place.
On the other hand, Soul’s behavior and service
interface is determined in terms of what kind

Vol. 40 No. 11

of applications and services a certain group of
Souls and Bodies provide. Therefore, the dis-
tribution, selection, and integration of appro-
priate components are our main concerns. The
role of MA paradigm in our system is rather
equivalent to other communication paradigms
than in the StratOSphere.

With regard to the security issues related
to the object mobility, our current prototype
prohibits direct access to the system resources
by separating components into Body and Soul
and doing access control at the time of the
possession method invocation, as well as pro-
tecting the resources by the code verification
and security manager mechanisms provided in
Java25):26) These mechanisms mainly deal
with host integrity issues, while we have been
developing the successive implementation on
the Java 2 platform to cover the mobile code in-
tegrity issues by incorporating the security en-
hancements for a secure object 27)28).

In the researches of adaptive applications
in a mobile computing environment 7):29):30),
system-level resource management mechanisms
and event delivery mechanisms are their ma-
jor research concerns. In the researches, QOS
adaptation of applications are mainly treated
as examples of application-aware adaptation to
demonstrate the system-level mechanisms. Al-
though our research is not directly focused on a
system-level resource management mechanism,
we provide adaptation mechanisms at the appli-
cation layer and application framework to relate
the system-level mechanisms with application-
level adaptive behavior.

VNC (Virtual Network Computing) for-
merly known as Teleporting System, supports
application-level adaptation of mobile applica-
tions in the way that applications migrate ac-
cording to locational information and the mi-
grated applications adapt themselves accord-
ing to the characteristics of computing environ-
ments such as display resolution, display size,
supported devices, etc. The mobility of appli-
cations is achieved by the transmission of re-
mote frame buffer data rather than the actual
code mobility, thus the migration and adap-
tation are on a per-desktop basis and remain
coarse-grained. In Refs. 31)-33), services equiv-
alent to the Teleporting system is provided in
a different way that an application is composed
of a collection of mobile active objects and its
migration can be performed on a per-object ba-
sis. However, they place mobile agents on their

Possession System: Middleware for Adaptive Collaborative Applications 4009

center of application coordination, therefore ap-
plications are not beyond the scope of the ones
targeted in the current MA paradigm.

Although several application scenarios are
presented in the related researches, what kind
of services users actually require and how they
apply developed technologies are usually be-
yond researchers expectations. With the rapid
evolution and proliferation of Java and dis-
tributed object technologies, worldwide com-
puting infrastructure for practical experiments
has been improved, and our further develop-
ment of practical applications remain to be
done.

7. Conclusion

We have designed and developed new middle-
ware named Possession System, which supports
the adaptation of adaptive collaborative appli-
cations described in Java.

e It provided an unified framework to ac-
cess distributed resource components (applica-
tion components, devices, and sensors) based
on an abstraction by Soul and Body.

o It presented a method to relate system-level
environmental information with application-
level adaptation behavior. The adaptation is
achieved by the following 3 methods; (1) the
definition of individual Soul’s behavior, (2) the
dynamic reconfiguration of relationships among
components through by switching multiple con-
figuration scripts based on event notifications,
and (3) the replacement of each component im-
plementation by RCE paradigm.

e It realized a simple method for the recon-
figuration of distributed multiuser applications
by means of (1) remote interface sharing and
dynamic remote referencing between Soul and
Body, (2) object composition support by script-
ing, and (3) dynamic distributed placement of
Computational Resources enhanced by object
mobility.

Besides the issues we have already described
in the preceding sections, the issue of imple-
menting components enough to construct a va-
riety of actual applications is left for the future
work. In addition, we are currently working
on the system extension so as to apply it to
the actual target domain of information appli-
ances and conduct a further evaluation. It will
include the support for the construction of Vir-
tual Network Appliances (in short, VNA) which
can be assembled by borrowing the partial func-
tionality of ubiquitous physical information ap-

4010 Transactions of Information Processing Society of Japan

pliances in an ad hoc and context-aware man-
ner.

Acknowledgments The authors would
like to thank the members of KMSF and SMAF
Project for valuable discussions and comments.
We also thank the anonymous reviewers for
proofreading and feedback.

References

1) Noble, B.D., Satyanarayanan, M., Narayanan,
D., Tilton, J.E., Flinn, J. and Walker, K.R.:
Agile Application-Aware Adaptation for Mo-
bility, Proc. 16th ACM Symposium on Operat-
ing System Principles (1997).

2) Schilit, B., Adams, N. and Want, R.: Context-
Aware Computing Applications, IEEE Work-
shop on Mobile Computing (1994).

3) Carzaniga, A., Picco, G. and Vigna, G.:
Designing Distributed Applications with Mo-
bile Code Paradigms, Proc. 19th International
Conference on Software Engineering, pp.22-32
(1997).

4) Wu, D., Agrawal, D. and Abbadi, A.E.
StratOSphere: Mobile Processing of Dis-
tributed Objects in Java, Proc. MOBICOM’98
(1998).

5) Lam, L.K. and Smith, B.: Jacl: A Tcl Im-
plementation in Java, Proc. 5th Anual Tel/Tk
Workshop 1997 (1997).

6) Hugunin, J.: Python and Java — The Best of
Both Worlds, Proc. 6th International Python
Conference (1997).

7) Nakajima, T., Aizu, H., Kobayashi, M. and
Shimamoto, K.: Environment Server: A Sys-
tem Support for Adaptive Distributed Appli-
cations, Worldwide Computing and Its Appli-
cations (WWCA’98) (1998).

8) Lange, D.B., Oshima, M. and Kosaka, K.:
Aglets: Programming Mobile Agents in Java,
Proc. WWCA’97 (1997).

9) Tripathi, A.R., Karnik, N.M., Vora, M.K,,
Ahmed, T. and Singh, R.D.: Mobile Agent
Programming in Ajanta, IEEE International
Conference on Distributed Computing Systems
(ICDCS’99) (1999).

10) Johansen, D., van Renesse, R. and Schneider,
F.B.: An Introduction to the TACOMA Dis-
tributed System Version 1.0, Technical Report
95-23, Department of Computer Science, Uni-
versity of Tromsg, Norway (1995).

11) Baumann, J., Hohl, F., Rothermel, K. and
StrafBer, M.: Mole-Concepts of a Mobile Agent
System, World Wide Web, Vol.1, No.3, pp.123-
137 (1998).

12) Cugola, G., Ghezzi, C., Picco, G. and Vigna,
G.: Analyzing Mobile Code Languages, Mobile
Object Systems: Towards the Programmable

Nov. 1999

Internet, Vitek, J. and Tschudin, C. (Eds.),
LNCS, Vol.1222, pp.93-111, Springer (1997).

13) Veizades, J., Guttman, E., Perkins, C. and
Kaplan, S.: Service Location Protocol, RFC
2165, Internet Engineering Task Force, Net-
work Working Group (1997).

14) Smith, J.M.: A Survey of Process Migration
Mechanisms, ACM Operating Systems Review,
Vol.22, No.3, pp.28-40 (1988).

15) Miloji¢i¢, D., Douglis, F., Paindaveine, Y. and
Wheeler, R.: Process Migration, Technical Re-
port HPL-1999-21, Hewlett-Packard Laborato-
ries (1999).

16) Powell, M.L. and Miller, B.P.: Process Migra-
tion in DEMOS/MP, Proc. 9th ACM Sympo-
sium on Operating Systems Principles, pp.110—
119 (1983).

17) Almes, G.T., Black, A.P., Lazowska, E.D.
and Noe, J.D.: The Eden System: A Technical
Review, IEEE Trans. Softw. Eng., Vol.SE-11,
pp-43-59 (1985).

18) Black, A.P.: Supporting Distributed Applica-
tions: Experience with Eden, Proc. Tenth ACM
Symposium on Operating Systems Principles,
pp.181-193 (1985).

19) Cheriton: The V Distributed System, Comm.
ACM, Vol.31, No.3, pp.314-333 (1988).

20) Jul, E., Levy, H., Hutchinson, N. and Black,
A.: Fine-Grained Mobility in the Emerald Sys-
tem, ACM Trans. Computer Systems, Vol.6,
No.1, pp.109-133 (1988).

21) Shapiro, M. and Gautron, P.: Persistence and
Migration for C++ Objects, Proc. Furopean
Conference on Object-Oriented Programming
(ECOOP’89) (1989).

22) Lea, R., Jacquemot, C. and Pillevesse, E.:
COOL: system support for distributed pro-
gramming, Comm. ACM, Vol.36, No.9, pp.37-
46 (1993).

23) Achauer, B.: The DOWL distributed object-
oriented language, Comm. ACM, Vol.36, No.9,
pp-48-55 (1993).

24) Cardelli, L.: A language with distributed
scope, Computing Systems, Vol.8, No.1, pp.27—
59 (1995).

25) Gong, L.: Secure Java Class Loading, IEEE
Internet Computing, Nov/Dec (1998).

26) Rubin, A.D. and Geer, D.E.: Mobile Code Se-
curity, IEEE Internet Computing (1998).

27) Gong, L., Mueller, M., Prafullchandra, H. and
Schemers, R.: Going Beyond the Sandbox: An
Overview of the New Security Architecture in
the Java Development Kit 1.2, Proc. USENIX
Symposium on Internet Technologies and Sys-
tems, pp.103-112 (1997).

28) Gong, L. and Schemers, R.: Signing, Sealing,
and Guarding Java Objects, Lecture Notes in

Vol. 40 No. 11

Computer Science (LNCS), Vol.1419, Springer-
Verlag (1998).

29) Inouye, J., Cen, S., Pu, C. and Walpole, J.:
System Support for Mobile Multimedia Ap-
plications, Proc. 7th International Workshop
on Network and Operating System Support
for Digital Audio and Video (NOSSDAV’97)
(1997).

30) Welling, G. and Badrinath, B.R.: A Frame-
work for Environment Aware Mobile Appli-
cations, IEEE International Conference on
Distributed Computing Systems (ICDCS’97)
(1997).

31) Bates, J., Halls, D. and Bacon, J.: A Frame-
work to Support Mobile Users of Multimedia
Applications, ACM Mobile Networks and No-
madic Applications (1992).

32) Bates, J., Halls, D. and Bacon, J.: Middleware
Support for Mobile Multimedia Applications,
ICL Systems Journal, Vol.11, No.4 (1997).

33) Bacon, J. and Halls, D.: Mobile Applica-
tions for Ubiquitous Environments, /CL Sys-
tems Journal, Vol.11, No.4 (1997).

(Received March 31, 1999)
(Accepted October 7, 1999)

Possession System: Middleware for Adaptive Collaborative Applications 4011

Masahiro Mochizuki re-
ceived his B.A. degree in Policy
Management from Keio Univer-
sity in 1994. He received M.A.
degree in Media and Governance
from Keio University in 1996.
He is a Ph.D. candidate at grad-
uate school of Media and Governance, Keio
University. He is currently studying mobile and
adaptive middleware and applications. He is a
member of ACM and JSSST.

- @ Hideyuki Tokuda received
his B.S. and M.S. degrees in
electrical engineering from Keio
University in 1975 and 1977, re-
spectively; a Ph.D. degree in
computer science from the Uni-
versity of Waterloo in 1983. He
joined the School of Computer Science at
Carnegie Mellon University in 1983, and is an
Adjunct Associate Professor from 1994. He
joined the Faculty of Environmental Informa-
tion at Keio University in 1990, and is cur-
rently an Executive Vice President and a Pro-
fessor in the Faculty of Environmental Informa-
tion, Keio University. His current interests in-
clude distributed real-time systems, multimedia
systems, mobile systems, communication pro-
tocols, massively parallel/distributed systems,
and embedded systems.

