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1. INTRODUCTION '

Although the subject of system identification is
well developed for linear systems, the same is not
true for the nonlinear case. Since multilayer neural
networks (MNNs) can be seen as very versatile
feedforward blocks with great mapping capability
and leaming ability, their use for system identifica-
tion has been the subject of several recent studies [1-
2]. This paper presents two neuro-identifiers for
general systems and compares their main character-
istics. Numerical comparison based on simulation
will be presented at the conference. '

2. PROBLEM STATEMENT

Consider a P-input-Q-output discrete-time, un-
known control plant with input vector u(t) and out-
put vector y(t), where t is a discrete index. Given a
sequence of vector pairs {u(t), y(t)} fort=0,1, ...,
T, the identification problem is to devise a P-input-
Q-output mathematical model which, when excited
with the sequence {u()}, t=1, 2, ..., T, will pro-

duce an output sequence {’y\(t)(t)}, t=1,2, .., T,
in such a way that the total identification error, gen-
erally defined by the norm
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is minimized. Furthermore, in most practical appli-
cations the identifier should be able to perform good
generalization for inputs not included in the training
set.

3. REGRESSIVE MODEL NEURO-IDENTIFIER

In this case, the output of plant at a given time is
simply viewed as a function of the previous plant in-
put and output vectors [1]. In other words, for any
discrete-time control plant there would be suitable
positive integers o and p and a multidimensional
mapping f(.) in such a way that the plant output at a
given instant could be approximated by

y(t+1) = f [y(®, y(t-1), ..., y(t-0),

u(t), u(t-1), ..., u(t-B)J. 3]

Such a model has been called series-parallel identi-

fication model [1] due to its block pictorial represen-

tation. An obvious counterpart is obtained by replac-

ing the true plant output by the corresponding esti-

mates produced by the model itself, resulting in the
parallel model [1}:

y(+1) = f [y(®), y(t-1), ..., y(t-01), |
u(t), u(te=1), ..., u(t-8)J. 3)
In both cases, the identification model can be
thought of as a multidimensional function
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A single MNN with [(o+1)Q+(8+1)P]-dimension
input, Q-dimension output, and appropriate number
of nonlinear nodes can be used to emulate f(.),
constituting a simple neuro-identifier. Training of
such network can be easily accomplished via pattern
or batch leaming in order to minimize the identifica-
tion error. Since such an error is directly based on
the MNN output, it is easy to compute the gradient
of the error function with respect to the outputs of
the MNN, enabling learming by backpropagation
(BP). This regressive-model neuro-identifier is illus-
trated in Fig. 1, where z represents the time-lead
operator. If all the traced rectangle illustrated in Fig.
1 is considered as a single network with built-in time
delays, the identifier can be viewed as a simple time-

delay neural network (TDNN).
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Fig. 1. Neuro-1dentifier based on the regressive
approach to plant representation.

4. STATE VARIABLE NEURO-IDENTIFIER
The neurocontrol structure of the previous section
was an immediate consequence of using a regressive
model for the control plant. Other representation
models may lead to different neurocontrol structures.
A novel neurocontrol structure has been derived for
the case in which the plant is modeled by a general-
ized form of the state variable representation [2]. By
using this approach, any system can be represented
by a set of first order differential (continuous case)
or difference (discrete case) equations. For a MIMO
discrete-time linear plant with P-dimensional input
vector u(t) and Q-dimensional output y(t), the plant

can is described by
x(t+1) = Ax(t) + Bu(t)

5
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where x(t) is the N-dimensional plant state vector at
instant t, and A, B, and C are real matrices of di-
mension NxN, NxP, and QxN, respectively, often
dubbed state, input, and output matrices. In the
nonlinear case, such a representation can be ex-
tended by replacing the matrices (linear transforma-
tions) by nonlinear mappings of properly defined
dimensions. In the general case, the system equa-
tions in (5) can be rewritten as

x(t+1) = v [x (), u(v)] ©
y(® = ¢ [x )]
where two nonlinear mapping were defined as
w(): RNPo ®N
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Since the two nonlinear mappings in (7) are essen-

tially feedforward ones, it is somehow straightfor-

ward to imagine that two MNNSs properly structured

could be trained to emulate y(.) and ¢(.). This idea is

depicted in Fig. 2, where the same symbol was de-

liberately used for each mapping and the MNN de-

signed to emulate it, in such a way that the resulting
neuro-identifier can be described by:

x(t) =y [w¥(), x(t-1), ut-1)] ®8)
YO = o [w?@®, x()]. ©
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Fig. 2. Neuro-1dentifier conceived from the state-
variable plant representation.

5. COMPARATIVE DISCUSSION

Generality: Both approaches are very general in
the sense that no constraints were imposed upon the
system to be identified. In other words, with appro-
priate parameters, both approaches shall be able to
identify virtually any system in the sense of (1).

Necessary Parameters: While in the regressive
approach one must specify a and B in order to de-
fine the input-output of the MNN, in the state-vari-
able case the parameter N (order of the state vector)
suffices for defining both MNNS. In both cases, the
internal structure of the networks (number of nodes,
layers, connections, etc.) must be specified by the
user.

Dimensions of Networks: A glance at the block
diagrams of both neuro-identifiers suggests that a
single, large MNN for the regressive case was re-
placed by two smaller MNNs in the state-variable
case. Since high dimensions imply high number of
weights and, consequently, difficult training and un-
reliable generalization ability, low order of the net-
works is a desirable property.

Robustness to errors in the system order: While
small errors in o and P (usually chosen experimen-
tally) can lead to large variation in the total number
of weights of the neuro-identifier, the same does not
happen in the state-variable case.

Customization: The regressive neuro-identifier of-
fers many possibilities for embedding a priori
knowledge about the system to be identified. For
instance, if some of the components of the output
vector are known to be independent of the others,
the identifier could be divided into smaller MNNs,
easing training and increasing reliability. The struc-
ture of the state-variable identifier is more rigid and
virtually does not allow customization.

Training: The regressive identifier is a simple
feedforward MNN that can be easily trained via BP.
In the state variable case, however, training must be
accomplished in two steps. This happens because
the effects of the weights and outputs of the nodes
of the MNN v at a given instant will only affect the
identification error at the following instant. More-
over, since training of y is performed by backprop-
agating the identification error through ¢, as if both
were part of the same MNN.

Applicabiliry; While both identifiers perform es-
sentially the same identification task, the state-
variable neuro-identifier has the advantage of
producing a state vector as a by-product. Such a
state vector has large applicability in the synthesis of
controllers [2].

6. CONCLUDING REMARKS

This paper presented two configurations for sys-
tem identifiers based on MNNs, and drafted a com-
parison between them. In general, while the
regressive-model neuro-identifier is easier to train,
the state-variable identifier results in smaller
networks, is more robust to errors in the order
specification, and has great potential applicability in
the control field, due to the fact that the system state
results as a by-product of the identification process.
Currently computer simulation is being performed,
and results shall be presented during the conference.
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