BB AT CPR 5 F41) 2EAS 5 —219

Data Representation in a System for Understanding Mathematical Expressions
3J—9 BRO7—- 7 XHRELEBHERBIRY X7 4
HAR it BEEE (REBAY WHRIERM) SHESd (RBKY TFHERR)

The researches of understanding mathematical notations by computer have continued more than 30 years
in several fields (programming languages, pattern recognition, document processing, software specification
and interfaces of mathematical software). In recent years, a research upsurge was set off again. Many famous
computer algebra systems changed their text interface into formulary and graphical interfaces.

We can find that all existing systems and prototypes accept necessarily minimal sub-set of mathematical
notations to avoid ambiguities, nevertheless, they sacrifice some powerful representations in mathematics.
They also need big user manuals because of lacking universality.

We develop a general and natural method to represent the structures with meanings of mathematical
expressions on computer. This method will be applied in many fields, such as interfaces of mathematical
software, computer aided education, algorithm representation, document processing and proofreading.

We find that the visual image of a mathematical expression is constructed by characters through several
kinds of geomeric adjacent relations which express certain meaning connection between symbols in spec-
ified locations. These relations are defined as several fundamental structures abstractly. Through these
fundamental structures any mathematical expression can be generated recursively and aptly. Therefore,
mathematical expressions can be understood recursively through these structures and with knowledge of
mathematics.

To make computer understand mathematical expressions, we design data structures to implement these

fundamental structures. We show the mechanism of our scheme through an example e sin o where z is on
the domain of real numbers.

In the first stage, through the fundamental structures, this expression can be input as the following
list-structure recursively in our system.

[<] bt [sin}4[—]

Namely, this expression is constructed by two part: ¢ and sin % Especially, the z on the back superscript
of e in e* is connected with e in meaning, not the sin. The sin is connected with the % Therefore, through
the list-structure, the left part is a superscript structure to express an exponential operation. The right part
is a sinusoidal operation which contains a sub-structure % to express a fraction operation. This list-structure

describes its structures and meanings boundaries correctly and naturally.

In the next stage, the understanding stage, computer translates a mathematical expression into its
equivalent recursive function representation. To make our method be extensible and able to manage by user,
we divide the understanding program into a knowledge base and a parser. The knowledge base contains the
necessary knowledge about the syntax and semantics of mathematical notations. The parser is an algorithm
to accomplish top-down syntactic analysis and bottom-up semantic interpretation in terms of a series of
rules in the knowledge base.

For example, to accept the sinusoidal part of the example above, the parser finds out a rule which

contains the following structure pattern (where the <term> means multiplication of a series of factors) from
the knowledge base.

5 —220

[SlHH <term>]

The parser do matching between the right part of the example and this structure pattern. Then, the
parser matches the fraction part recursively. At the same time, the parser obtains the domain of the %,

i.e., the set of real numbers R. After matching one of the following domain rules in a the same rule in the
knowledge base, the parser can determine a meaning of this part, i.e., the function sin(< term >), and the
domain of this part, i.e., R.

[R] <= sinH{r

Finishing the whole understanding, we can obtain the following recursive function on the domain of real
numbers. It is independent of any applications and can be used by application systems directly.

multiple(exp(variable(x)), sin(frac(number(1), variable(x))))

The wohle scheme of our system is shown in the following Figure.

ocument of Math expression :
Written in Clear Text Meta-file Document of Math expressions
(One-dimensional Text) (Two-dimensional Representation)

rvr——--""-""-""-"-—=-—-—"-"-" T - - T - 1
I) Y
[General Text Editor]

Two-dimensional Editors
for Math notations

i \ Y Knowledge Base
Ster <) i
Other I(.‘_(= Encoder Inner Formal for Mathematical
|S_ysz_c_m_s_' Clear Text Meta-file J~ > Decoder Represontation Notations

Understanding

| 4 Y
Translation into
l Representation inTEX Parser
I
l
l @eta-representatioa
! Y
l) [Post-processors (Application Systems)]
A RN N M S —— e e
\ Y

High-level
Language
Programs

xccutabl Computation cow
Programs Results .

Formal Representation is list-structured data of mathematical expressions. Clear Text Meta-file is

a mechanism for storing and transmitting the formal representation, a readable text which is equivalent to
the formal representation. Knowledge Base is composed of a series of rules. Each rule contains a structure
pattern, a series of domain rules, and a function as the understanding result. Parser is an algorithm
to accomplish top-down structure matching and bottom-up domain reduction according to the knowledge
base. Meta-representation is the understanding result of the formal representation, the one-dimensional
recursive function of the equivalent two-dimensional mathematical expressions. Post-processors are the
application systems using mathematical notations (e.g., for mathematical computation, it contains selection
of data types, selection of algorithms, and translation into programs).

