{6 MALERF 2 HATE CPRL S £ 0D £ KR4

4 —179

The Structure and Management of Object Data

C—-2
7 Yao Zhuojun

University of Tokyo

1 Introduction

For an object-oriented database(OODB) system, the
object data management is an important issue because
there are two types of data, i.e., attributes and methods
in OODB, rather than only one type of data(attributes)
in traditional database. How to manage object data,
particularly, how to manage methods is an issue of de-
veloping OODB systems.

The methods in OODB have two feature. One is
passive, which is treated like ordinary data. Another
is active, 1.e, the methods are used to compute the
attributes. Around this issue in this paper, we, first,
point out it’s possible to describe three relations among
objects with the link structure, from which some ben-
efits can be gotten. We, then, propose an approach
to describe object behaviors when being treated using
FSM(Finite State Machine) mechanism, and indicate
the relations among objects can be transferred to the
relation of requesting and providing of service. With
this approach, the active feature of methods can be
reflected.

2 The Link Structure

In OODB, depending on the semantic of the rela-
tion among objects or classes which objects belong to,
there are three basic relations(see Fig.1). The first is
reference, e.g., the attribute manager of the object gen-
erated from the class Group refers to the object gen-
erated from the class Person. The Second is aggrega-
tion, which also is reference relation. But for aggrega-
tion an object may refer to some objects which may be-
long to different classes, e.g., the attribute documents
of project object refers to three object-lists(contacts,
plans, manuals). Above two relations can be simply
described with link structure. The third is inheritance.
In this section we present an approach to solve how to
use link structure to describe the relation between two
objects that their classes have the inheritance relation.

If two classes have inheritance relation, there is a
part of data which is the object of the ancestor in all of
the children’s objects. For example, the class Author
inherits from the class Person, so in author objects
there are data of person objects(Fig.2(a)). The part
of data may be taken out from the author objects, and
preserved independently using link structure(see Fig.2

The Structure and Management of Object Data

Yao Zhuojun, University of Tokyo.

Takashi HAMADA, National Center for Science Information
Systems.

Takashi HAMADA

National Center for Science Information Systems

Group Project reference link
. —————e Y
| manager | project—-name o
members [-—" | start—date aggregation ,link
i end—date -
Person ~—- b Darticipents inheritance link
name documents —»-—»-—-—i """""""" 2
4!,

§ - -
Author ~€-—-—" I >~
Person | Manual_«&-—-4 manuals

| -

. title
Tel "
Add I-—{author=list
status reference

Figure 1: An Example of Classes’ Hierarchy

(b)). The link structure is very simple, just one pointer
is used. But we can get some benefits from it.

e To reduce duplicate data. For example, if a per-
son is an author of a manual, the person. ob-
ject data is a part of the author object data.
Concurrently, the same person may be a mem-
ber of a group object. For example, in the case
of general(Fig.2(a)), double of the some person-j
object data is preserved. But in the case of us-
ing link structure(Fig.2(b)), just one is preserved.
The group-k object and the author-i object use
a pointer to link the person-j object, respectively.

¢ When updating the person-j object, in the case
of Fig.2(a) for the consistency, two object data(to
indecate the same person) must be modified si-
multaneously, but in the case of Fig.2(b), just one
object data is need to be modified.

group-k group—k
| manager | i | _manager | author—i
members author—i members

=

Sofmor] [—{rmr]

(@) (b)

Figure 2: Transformation of data Structure

Of course, in the case of Fig.2(b) it is need to record

4 —180

the information of the meaning of link, .1e.
about reference or about inheritance.

which is

3 Objects Implementation

Although the attributes of an object can be sim-
ply preserved because it can be described with integer,
string and so on, the methods cannot because meth-
ods in OODB have two aspects, i.e., entry descriptions
and executive functions. We use a method on which the
entry descriptions of methods are preserved like the at-
tributes and the executive functions of methods are or-
ganized into a function library, which are dynamically
loaded and linked when used. For this constitution in
this section, we discuss how to implement object data
after retrieved, particularly execute methods.

For OODB, the searched targets are objects. For
general consideration, the result of searching can be
described as an object-set like the following.

Retrieve = {O|O € SearchDom}

If the searching is successful, in accordance with
object-oriented concept, the retrieved objects should
be treated using the methods defined in the classes by
designer of the OODB one by one(see Fig.3).

display abstract of
object~set{n]
(loop process)

sélect the ith object

implement the ith object ———3 request service

(recurrent process)
continue the implementation 7
no

Figure 3: Object Implementation Process

An object in implemented has many states. The
behaviors of an object(regarded as small system) are
described by state transition[l]. So we can define these
states an FSM as the following :

FSM =(0,, E, M, 5)

e O,isaset of the object-states which can be viewed
or not to users. For example, while a user is treat-
ing a document object, “showing title”, “changing
page”, and “referring other documents” etc. may
be regarded as the different states. Of course, the
number of states of an object is finite.

o E is a set of events. When treating an object,
the user, perhaps, has some requests, e.g., “let me
see the next page”, “tell me about the authors”

and so on. These requests may be regarded as the
external events when the object is implemented,
and told to system using mouse to select items on
screen for example.

e M is a set of methods mapping from Cartesian
product O, X E to the O,. For every event from the
user’s requests, there are some methods in the rel-
evant class to implement it, that is, Ve; € £ +—
{m,-j | mij Oy xE— Ogj=1,--}.

e S is the first state of the object when it is treated,
say start state(S € O,).

All of the events in the £ and the methods in the
M are defined by the designer of the OODB. After
a request from the user is inputed as an event, the
system action which transfer current object’s state to
next is, really, to call a method prepared in the class in
advance. This is regarded as requesting and providing
relation of service between two states.

If the requesting is from an object to other; there are
two manners of requesting.

Explicit requesting. For this manner, the accessing
functions provided by the system is used to ac-
cess the requested object directly, then the rele-
vant method of the object is called to get service.

Implicit requesting. The requesting side saves cur-
rent state of oneself, transfers controlling right to
the system. Then like ordinary searching, the sys-
tem searches requested object from OODB and the
FSM of the requested side is started. When the
requested object implementation is over, the sys-
tem retrieves the previous state of the requesting
object.

Besides, There are two forms of treating the requesting
of service from an object to other, following the pointer
between the two objects. One may be seen navigation
another non-navigation. They are relevant to implicit
requesting and ezplicit requestiﬁg, respectively.

4 Conclusions

An object is a real-world entity. This is not only
regard as a concept of the object-oriented model, but
also persists in implementation. Above we discussed
how to realize it using link structure, FSM mechanism
and the relation of requesting-providing of service.

References

(1] Derek Coleman, Fiona Hayes, and Stephen Bear,
“Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design”, IEEE Trans-
actions on Software Engineering, Vol. 18, No. 1,
January 1992, pp 9-18

