Vol. 40 No. 12

Regular Paper

Transactions of Information Processing Society of Japan

Dec. 1999

Cellular Automata on Groups with Asymptotic Boundary Conditions

SHOUICHI YUKITA?

Cellular automata on groups with asymptotic boundary conditions are studied. The main
results are non-Euclidean extensions of Maruoka and Kimura’s results on injectivity and
surjectivity. They introduced the notions of weak injectivity /surjectivity and strong injec-
tivity /surjectivity, and showed a hierarchical structure among these properties. The Garden
of Eden (GOE) property and the periodic construction technique are used to extend their
results. Groups that are residually finite and of non-exponential growth are shown to form a
good class for non-Euclidean extensions of classical results.

1. Introduction

Cellular automata on Euclidean cell spaces
have been -investigated by many researchers.
A successful attempt at non-Euclidean exten-
sion was made by Machi and Mignosi®). They
proved the Garden of Eden (GOE) theorem,
an extension of Moore-Myhill’s theorem, where
cell spaces are taken from Cayley graphs of
groups with non-exponential growth. An alter-
native proof of the GOE theorem was given by
the author; though limited to the Heisenberg
groups, it has the advantage of explicitly con-
structing Moore-Myhill pseudo-tilings1%). Re-
cent progress and classical results including
Maruoka and Kimura’s results mentioned below
are concisely summarized in Garzon’s book ?.

This paper is another attempt at non-
Euclidean extension. We first briefly review the
classical results that we will focus on.

In the 1960s and 1970s, injectivity and surjec-
tivity of parallel maps were investigated in con-
nection with Moore-Myhill’s theorem 1):12):13)
known as the GOE theorem, which established
the equivalence of surjectivity and local injec-
tivity (the non-existence of mutually erasable
patterns).  Following these earlier studies,
Maruoka and Kimura introduced variants of the
notions of injectivity and surjectivity—the no-
tions of weak injectivity /surjectivity and strong
injectivity/surjectivity—and showed various re-
lations among these properties?). Maruoka and
Kimura !9 finally obtained a remarkable result
concerning the hierarchy among properties of
injectivity and surjectivity, which we will call
Maruokae-Kimura’s hierarchy, or the M-K hier-
archy for short. See Fig. 1, where (1) crossed
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arrows mean there exists a counterexample that
disproves the implication, (2) properties en-
closed in the same square are all equivalent,
and (3) the terms totally injective/surjective are
used to contrast the usual surjectivity and injec-
tivity with their other versions. All the above
studies deepened our understanding of injectiv-
ity and surjectivity of parallel maps.

Can we reproduce the beautiful hierarchy in a
non-Euclidean framework? Attempts must face
the following problem. Maruoka and Kimura’s
discussions %1% depend heavily on the notions
of balancedness and hardness of parallel maps
and the following characterizations®:

(1) A parallel map is surjective if and only if
it is balanced.

(2) A parallel map is injective if and only if
it is hard.

Balancedness and hardness are determined by

counting the number of pre-images of local con-

figurations on the squares. While the notion

of hardness and the characterization of injec-

tivity can be easily extended to non-Euclidean

cellular automata, an appropriate definition of
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Fig.1 The M-K hierarchy.
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balancedness for them has not been found yet.

Because of this deficiency, we have to aban-
don any attempts at a complete reproduction
of their results in a non-Euclidean framework.
The goal of this paper is to show modified hier-
archies, where some conditions are imposed on
the group that generates the tessellation. The
GOE property, residual finiteness, and their
combination are considered.

The organization of this paper is as follows.
The main results are formulated and proved
in Sections 4, 6, and 8. In Section 2, we de-
scribe the topology of the configuration spaces
of cellular automata on Cayley graphs and
define the group actions on the configuration
spaces. In Section 3, we describe basic notions
in Maruoka-Kimura’s theory in a form adapted
for our purpose. In Section 4, we state and
prove the first main theorem on the M-K hierar-
chy under a general condition. In Section 5, we
collect definitions and results on the GOE prop-
erty. In Section 6, we state and prove the sec-
ond main theorem on the M-K hierarchy with
the GOE property. In Section 7, we briefly
review the periodic construction technique re-
cently introduced by the author. In Section 8,
we state the third main theorem on the M-K
hierarchy with residual finiteness.
is based on the periodic construction. In Sec-
tion 9, assuming both the GOE property and
residual finiteness, we show the fourth main
theorem, which nearly reproduces the original
M-K hierarchy.

2. Cellular Automata on Groups

In this section, we summarize the basic def-
initions and properties of cellular automata on
groups:

Let G be a group. The Cayley graph of G with
respect to a subset N' of G is a directed graph
with vertex set G and edge set E = Gx N, and
incidence functions ¢(g, h) = g, 7(g, h) = gh for
all (g,h) € G x N'. We denote this graph by
I'(G, N'). To attain meaningful results, we as-
sume throughout this paper that G is a finitely
generated infinite group and N’ is a finite set
of generators. -

Let G be as above. We can define a metric p
on G derived from the path metric on the Cay-
ley graph I'(G, N'). We denote by e the identity
element in G and by B, a ball of radius n with
center e, namely B, = {g € G | p(g,e) <n}.

Let @ be a finite set that we call the set of
states. A local map is a map o : QN — Q,

The proof -
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where N is a finite subset of G. We call N the
support of o. We always assume that e € N
and N1 = N. An element of Q, that is,
a map G — Q is called a configuration. In-
stead of Q€ we write C for short. We define
the shift sq : C — C induced by g € G as fol-
lows. For any x € C, we define sy(z) € C by
[s¢()](h) = z(g71h) for all h € G. We define
the parallel map T, : C — C induced by o as
(Ts())(9) = o(s; ! (z)|n) forallz € C, g € G,
where N is the support of 0. The pair (C,T,)
is a discrete dynamical system and is called a
cellular automaton.
Remark 1. If we enumerate the elements of
N with indices as h1, ha, ..., h,, we may write
a local map o as a function of n variables
o(q1,42,---,qn). Then, the above definition of
the parallel map is rewritten as

(T5(x))(9) = o(z(gh1), x(gh2), . . ., z(ghn))

foralz € C, g€ G.

Furthermore, if G is Abelian, it is common to
adopt the additive notation “g + h.” Then
we obtain a familiar expression (T,(z))(g) =
o(z{g+hi1),...,2(g+hy)) for Euclidean tessel-
lation automata. These formulations are intu-
itive, but they have the disadvantage that the
local map and the enumeration of the neighbor-
hood cells must be separately specified.

An element of Q4, that is, a map A — Q,
is called a local configuration over A, where
A C G. We write Q4 as C(A). We define the
local shift sg : C(A) — C(gA) induced by g € G
as follows. For any z € C(A), we define s4(z) €
C(gA) by [s¢(z)}(h) = z(g~'h) forallh €
gA. Since there can be no confusion, we use
the same notation for the shift C — € and for
the local shift C(A) — C(gA). Further, we say
simply “shift” instead of “local shift.”

Let A and B be two subsets of the group G.
We denote by AB the subset of G defined by
{abe G|a€c A, be B}.

Let N be the support of a local function o.
If AN C B, we can define the local paral-
lel map Ty, : C(B) — C(A) in an obvi-
ous way: (T,,p,4(x))(9) = (s, (x)|n) for all
zeC(B), ge A ~

Let A and B be two disjoint subsets of G and
let z € C(A) and y € C(B). We define the con-
catenation of z and y as a local configuration
on AU B such that its restriction on A coincides
with & and its restriction on B coincides with y,
and denote it by z Lly € C(AU B). The condi-
tion above may be written as (zUy)|4 = z and
(zxUy)|p =y. Let {Ax | k € K} be a mutually
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disjoint family of subsets of G. Let z € C(Ag).
We denote and define the concatenation of local
configurations x’s by Ugexzr € C(UkerAk)
where (Ugeki)|a, =z forall k € K.

We give the product topology to the space
C = QF, where Q is endowed with discrete
topology. To be more specific, we introduce
cylinder sets as follows. Let A be a finite sub-
set of G and K C C(A). We define the cylinder
set of K as {x € C | z|a € K} and denote
it by Cyl[K]. If K consists of only one ele-
ment y € C(A), then we write Cyl[y] instead
of Cyl{{y}], for brevity. The set of all such
cylinders forms the basis of the product topol-
ogy. The well-known Tichonov’s theorem en-
sures that C is compact. It is clear that for any
g € G the shift map s; : C — C is a homeo-
morphism and for any local map o the parallel
map 7, is continuous.

We say that a map p : C — C is cellular
if there exists a set N C G and a local map
o : QN — Q@ such that p = T,. The follow-
ing lemma is due to Richardson!®. See also
Garzon’s book 2.

Lemma 1. A map p: C — C is cellular if and
only if it is continuous and commutes with all
the shifts s, (9 € G). '

The following lemma can be found in any
standard textbook of general topology .
Lemma 2. If X and Y are compact spaces and
f: X — Y is a surjective continuous map, then
f is an open map, namely, it maps every open
set in X onto an open set in Y. Especially when
f is bijective, f~! is continuous.

3. Asymptotic Boundary Conditions

The notions of strong/weak injectivity and
strong/weak surjectivity were introduced by
Maruoka and Kimura®. With these notions,
they found various intermediate properties of
parallel maps that come between surjectivity
and injectivity.

An equivalence relation < in C is defined as
follows. Let x and y be two configurations. We
say that z and y are asymptotically equivalent
and write z < y if z(g) = y(g) for all but a
finite number of g € G. We denote by C, the
equivalence class that contains z. The equiva-
lence class C; may be seen as the set of con-
figurations with a given asymptotic boundary
condition at “infinity.” We denote by C/x the
quotient space, that is, the set of all asymptotic
equivalence classes. For any z < y, we have
Ty(z) =< T,(y). This means that T, maps C,
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into Cr, (5 for any « € C and thereby induces
the quotient map T, /=< : C/x< — C/=.

The following lemma is obvious:

Lemma 3. For each x € C, C,, is dense in C.
Definition 1. We say that T, is strongly injec-
tive if Tplc, : Co — Cr,(4) is injective for all
x € C. We say that T, is strongly surjective if
Tyle, : Cr — Cr,(z) is surjective for all z € C.
We say that T, is weakly injective if there exists
z € C such that Ty|¢, : C; — Cr, (z) is injec-
tive. We say that T, is weakly surjective if there
exists € C such that T,|c, : Cz — Cr, (g is
surjective. We say that T, is residually injec-
tive if T, /< : C/< — C/x is injective. We
say that T, is residually surjective if T,/= :
C/x — C/x is surjective.

When we want to contrast the usual surjec-
tivity and injectivity with their other versions,
we say that T, is totally injective/surjective if
T, : C — C is injective/surjective.

4. The M-K Hierarchy in General

We state and prove the first main theorem
concerning the M-K hierarchy in general. As
mentioned earlier, G is assumed throughout
this paper to be a finitely generated infinite
group.

Theorem 1. For any local map o, relations
among properties of T, are summarized in the
diagrams in Fig. 2.

Figure 2 consists of three disconnected com-
ponents separated by dashed lines. Notice that
residual injectivity is isolated. Though such a
component could be omitted, we leave it among
other components for ease of comparison with
Fig. 1.

First, we prove the component of Fig. 2 that
relates the three versions of injectivity.

The lemma below directly follows from the
definitions.
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Fig.2 The M-K hierarchy in general.
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Lemma 4. (i) If a parallel map T, is totally
injective, then it is strongly injective.

(ii) If a parallel map T, is strongly injective,
then it is weakly injective.

Remark 2. An example of a parallel map that

is strongly injective and not totally injective

will be obtained from either Remark 3 or Re-

mark 4.

The non-trivial part of the component is the

equivalence of strong injectivity and weak injec-
tivity. This is established by the next lemma.
Lemma 5. If a parallel map T, is weakly in-
jective, then it is strongly injective.
Proof. ~We assume that Tp|c,, : Cxz —
Cr,(z,) is injective and that there exist two
configurations z; and x2 such that z1 # x2,
T1 X T2, and Ty(z1) = T,(2z2). Namely, we
assume T,,lcml : Czy — Cr(g,) is not in-
jective. We can find an integer n such that
T1le-B, = Z2|e—B, and 11|, # T2|B,. Let
y1 and yo be two configurations defined by

Y1 = To|lG—Bni2 UT1|Byas
Y2 = To|lG-B,n i, U 1’.2|Bn+27

as in Fig. 3. Then, y; and y, are different con-
figurations in Cy, and yet we can show that
Ty (y1) = T, (y2) as follows:
(i) To(y1)le-Bas = To(y2)la-Bosr
since y1|g—B, = Y2lG-B.
and (G — B,41)N C G — B,,.
(i) To(y1)|Bass = To(¥2)Bosss
since Y1|B,,s = %1|B, s>
Y2|Bpin = Z2|Boya
Byy1N = By,
and Ty, B, ,,N,Bnii (Z1|Boyi V)
=T5,B,41N,Bus1 (T2| By 1 N)-
Thus, we see T, (y1) = T, (y2). This contradicts
the assumption that Ty|c,, is injective. Now
we can conclude that weak injectivity implies

strong injectivity. ]
G — Bny2 B, G — Bpy2
| L1 | | | L1 I
Y1 =92 [

y1 =z1and y2 = T,

Fig.3 y:1 and yo2.
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Next, we prove the rightmost component in
Fig. 2 that relates the four versions of surjectiv-
ity. The proof consists of two lemmas.

The following lemma is trivial from the defi-
nition.

Lemma 6. (i) If a parallel map T, is strongly
surjective, then it is weakly surjective.

(ii) If a parallel map T, is totally surjective,
then it is residually surjective.

Remark 3. Maruoka and Kimura gave an ex-

ample of a parallel map that is weakly surjec-

tive but not strongly surjective (in the proof of

Theorem 229)).

The next lemma is purely topological.

Lemma 7. If a parallel map T, is weakly sur-
jective, then it is totally surjective.
Proof. Assume that T,|c, : C; — Cr,(q)
is surjective for some z € C. We will prove
the surjectivity of T, : C — C by deriving the
equation chain

Ta(C) = Ta(C_w) =15(Cs) = CT,(x) =0,

where X means the closure of a set X in C.
The first and the last equalities follow from
the fact that C, and Cr, (,) are dense in C,
that is, C, = Cr,(z) = C. The third equality
follows from the assumption T,(C;) = Cr, (s)-
The second equality is derived from the follow-
ing argument. Since T is continuous, we have
T,(Cy) C T,(Cy). To show the inverse inclu-
sion, recall that C is compact. In general, any
continuous map on a compact space is closed,
that is, the image of a closed set is also closed.

Thus we have T,(C;) = T,(C;). We also have

an obvious inclusion T,(C;) C T,(C;). This
establishes the second equality and completes
the proof. , O

Remark 4. Maruoka and Kimura gave an ex-
ample of a parallel map that is strongly injec-
tive but not weakly surjective, (in the proof of
Theorem 219). In their context, the example
was also shown to be totally surjective. There-
fore, total surjectivity does not imply weak sur-
jectivity.
Remark 5. Let f : X — Y be a continuous
map. For any compact set U C X, the image
f(U) is also compact. If X is a compact space,
any closed set is compact. Applying these two
facts to our case, we know that T, : C — C
is a closed map (see any standard textbook on
general topology ).

Lemmas 4-7 complete the proof of Theo-
rem 1.
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5. The GOE Theorem

We introduce Machi and Mignosi’s Garden of
Eden (GOE) theorem, which will be used as an
essential element in the lemmas that lead to the
second main theorem in Section 6.

Let G be a finitely generated group with a
set of generators N'. Recall that we can define
a metric on G derived from the path metric on
the Cayley graph I'(G, N'), and let B,, be a ball
of radius n with center e. The growth function
of a finitely generated group G is defined by
7(n) = |By|. Ifliminf y(n)/v(n—1) = 1, we say
G is of non-exponential growth. This property
does not depend on the choice of a generator
set, which justifies the above definition V).

Whenevér a local map o is fixed in the con-
text, the ball B, is to be defined by the met-
ric on G derived from the path metric on
T'(G,N — {e}) as above, where N is the sup-
port of o.

Let o be a local map and N be its support.
Since we assumed that e € N, we have N? =
NN D N. We say that x and y are mutually
erasable and that T, is erasing if there exist a
finite set A C G and two local configurations
z,y € C(AN?) such that

T|an2—4 = Ylan2-a,
and

Ty, an2,an(2) = To,an2,an (Y)-
Notice that the existence of mutually erasable
local configurations implies that T, is not in-
jective.
Definition 2. We say that a group G has the
GOE property if the following condition is sat-
isfied:
Condition: A parallel map T, is surjective if
and only if it is not erasing.
Lemma 8 (The Garden of Eden Theo-
rem?). If G is a group of non-exponential
growth, then it has the GOE property.
Remark 6. Machi and Mignosi®) gave an ex-
ample of exponential growth that does not have
the GOE property. Examples of groups of non-
exponential growth are given in the author’s re-
cent paper 1%,

Combining Lemmas 1 and 8, we obtain the
following:

Lemma 9. Assume that G has the GOE prop-
erty. If a parallel map T, is injective, then it is
also surjective and T, ! is cellular.

Proof. Injectivity of T, implies that T, is
not erasing. Therefore, by the GOE property,
any injective parallel map T, is bijective. Re-

z|a # yla,
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call that the configuration space C is compact.
From Lemma 2, the inverse map T, is contin-
uous. Since T;;! commutes with all the shifts,
we conclude that T3, ! is cellular. O

6. The M-K Hierarchy with the GOE
Property

We state and prove the second main theorem
concerning the M-K hierarchy with the GOE
property.

Theorem 2. Assume that G has the GOE
property. For any local map o, relations among
properties of Tj; are summarized as in Fig. 4.

The diagram in Fig.4 is obtained from the
diagram in Fig.2 by adding two unidirectional
and one bidirectional arrows. Since Theorem 1
was already proved under the more general con-
dition, we only discuss the additional arrows.
Lemma 10. Assume that G has the GOE
property. If a parallel map T, is totally injec-
tive, then T, is strongly surjective.

Proof. If T, is totally injective, then by
Lemma 9, T, ! exists and is cellular. Let z € C
be an arbitrary configuration. We must show
that T,|c, : Co — Cr, (s) is surjective. Let y be
any element in Cr, (5. Since T, ! ig cellular, we
have T, 1(y) < T,;Y(T,(z)) = x, which means
that T (y) € C,. Thus, we know that Tg|c,
is surjective. Since z was taken arbitrarily, we
conclude that T, is strongly surjective. O

Lemma 11. Assume that G has the GOE
property. If a parallel map T, is totally sur-
jective, then it is strongly injective.

Proof. We prove the contrapositive. Assume
that T,|c, is not injective for some x € C. Let
27 and x5 be two distinct configurations in Cy

residually totally strongly
injective injective surjective
weakly
surjective
strongly
injective

- ta?ally - resifiua?ly
surjective surjective

Fig.4 The M-K hierarchy with the GOE property.

weakly
injective
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such that T, (z1) = Ty (z2). We can find a finite
subset B C G such that

Z1lg-B = %2|lg-B = Tle-B
and

z1|B # %2|B-
This means that z1|py2 and z2|py2 are mu-
tually erasable. From the GOE property, we
deduce that T, in not totally surjective. O

Lemma 12. Assume that G has the GOE
property. If a parallel map T, is weakly in-
jective, then it is totally surjective.

Proof. We prove the contrapositive. Assume
that T, is not totally surjective. From the GOE
property, there are mutually erasable local con-
figurations z1, z2 € C(BN?), where B is a finite
subset of G. Let z € C be an arbitrary config-
uration. If we extend x1 and z2 in such a way
that xllG—BN’ = $2|G—BN2 = $|G_BN2, then
we see that T |¢_ is not injective as in the proof
of Lemma 5. Since x was taken arbitrarily, T,
cannot be weakly injective.

Lemma 13. Assume that G has the GOE
property. If a parallel map T, is totally injec-
tive, then T, is residually injective.

Proof. Let us assume that T, is totally
injective. Then, by the GOE property and
Lemma 9, T, is bijective and T} ! is cellular.
Let z1 and z5 be two configurations such that
T,(z1) < T,(x2). Since T, ! is cellular, we have
T;Y(T,(21)) < T, Y (Ty(x2)) and consequently
T3 X 2. This shows that T, /x is injective. O

Lemmas 10-13 together with Theorem 1 com-
plete the proof of Theorem 2.

7. Periodic Constructions

A periodic construction out of a local con-
figuration over a finite set is conceptually de-
picted in Fig. 5, where the shaded region rep-
resents the given local configuration. We will
use later such a construction in non-Euclidean
cell spaces.

However, periodic constructions are not pos-
sible for all groups. Residually finite groups are
shown to have good properties for the study
of T, /=< in Section 8. We give definitions and
state some useful properties for later use.

We say that a group G is residually finite if
the intersection of all normal subgroups with
finite index is the trivial subgroup {e}. The
following lemma is directly deduced from the
definition. See chapter 2 of Magnus, Karrass,
and Solitar’s book ®.
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Fig.5 Periodic construction.

Lemma 14. (i) A group G is residually finite
if and only if for every g € G — {e} there is
a subgroup H of finite index with g ¢ H.

(ii) A group G is residually finite if and only if
for every finite subset B of G—{e} thereisa
subgroup H of finite index with HNB = (.

Note that, in the statements above, we may
replace “subgroup” by “normal subgroup.”

It can be easily seen that lattices in Eu-
clidean spaces are residually finite. Free groups,
Fuchsian groups are known to be residually fi-
nite. Further, in general, finitely generated sub-
groups of general linear groups GL(n, R), where
R is any commutative field, are residually fi-
nite 7).

Let = be a configuration. The period of x is a
subgroup of G defined by {g € G | s4(z) = z}.
We denote it by w(z). If w(z) is of finite index,
we say that x is periodic or cofinite.

Let H be a subgroup of G. We denote by
H\G the right coset decomposition. A funda-
mental transversal A of H is a complete set
of representatives of H\G, that is, a subset of
G such that HA = G and Ha; # Has for
any distinct a;,a2 € A. We have the natural
projection 7 : G — H\G. If we identify the
fundamental transversal A with H\G, we have
a projection mg 4 : G — A. Let z € C(A).
The pullback 7} 4 : C(A) — C is defined by
(mf ax)(ha) = z(a) for all h € H, a € A.
The pullback can also be written as 7} 4 =
Unersn(z). Notice that w(my 42) > H, where
X > Y means that Y is a subgroup of X.

We have the following lemma:

Lemma 15. Assume that G is residually fi-
nite. Given a local configuration x over a finite
set B, we can construct a periodic configuration
Z such that Z|g = z.
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Proof. Since G is residually finite, there is a
subgroup H of finite index such that H N (B U
BB~!) = {e}. This means that we can choose
a fundamental transversal A that contains B.
By using the same notation as above, we find
that ¥ = 7 47 is a periodic configuration with
the desired property. O

Remark 7. In the above proof, the condition
HN(BUBB™!') = {e} cannot be replaced with a
simpler condition HNB = {e}. Under the latter
condition, we cannot eliminate the possibility
that Hby = Hb, for bl,b2 € B with by % bs.

8. The M-K Hierarchy with Residual
Finiteness

In this section, we state and prove the third
main theorem concerning the M-K hierarchy
with residual finiteness.

Theorem 3. Assume that G is residually fi-
nite. For any local map o, relations among the
properties of T, are summarized as in Fig. 6.

The following two lemmas together with The-
orem 1 complete the proof of Theorem 3.
Lemma 16. Assume that G is residually fi-
nite. If a parallel map T}, is residually injective,
then T, is totally injective.

Proof. Let us assume that T, is not injective
while T, /= is injective.
configurations, 1 # z3, and a ball B, C G,
such that T,(z1) = T(z2) and zi|lg-B, =
Z2|g-B,. Since G is residually finite, from
Lemma 15, there are periodic configurations
E =y, A(zI]A) and Iy = TFHA(.’L'zlA) where
H is a subgroup of G with finite index and
a fundamental transversal A O B,is. From
these constructions we have Z1(ha) = z1(a) and
Za(ha) = zo(a) for h € H, a € A. Thus we can
clearly see that £; % #2. We will show that
T,(%1) = T,(&2), which contradicts the injec-

|
|
totally | !
injective : surjective
|
|
A
|
strongly : weakly
injective | 1 | surjective
|
1
]|
l
|
[
|

residually strongly

injective

b4

totally gy residually
surjective

weakly
injective

surjective

|
Fig.6 The M-K hierarchy with residual finiteness.

Then, there are two
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tivity of T, /<.
First, we prove that
To(ZF)|HBn 1 = To(Z2)|HB 4
by deriving the equations

(T5(21))(ha) = (T5(z1))(a)
= (To(22))(a) = (T5(%2))(ha)

for h € H, a € Bpti1. The second equal-
ity follows from the assumption that T, (z;) =
Ty (z2). The first and the third equalities follow
from the condition that B, 1N = B, 2 C A.

Next, we prove that

To(Z1)|H(A-Boy1) = To(Z2)|H(A-Bay)-

Let g € H(A — Bpt1). If we notice that
p(g,HB,) > 2, we have p(¢N,HB,) > 1,
which indicates that H(A — B,y1)N C G —
HB,. Since Z1|g-uB, = Z2l¢-HuB,, we have
Z1lH(A-Bn1)N = T2|H(A-B.,1)N, and conse-
quently 7o (Z1)|H(a-Bov1) = To(Z2)|H(A-Bot)-

To sum up, we have Z; % Zp and T,(Z;) =
T,(%Z2), which means that T,/x< is non-
injective. Now, we conclude that if T, /x is
injective then T, is injective.

Lemma 17. Assume that G is residually fi-
nite. If a parallel map 7, is residually surjec-
tive, then T, is totally surjective.

Proof. Assume that T, /x is surjective. Let
Ko C Ky C K- be an ascending sequence
of finite subsets in G with U;»0K; = G. Let
y € C be arbitrarily given. We define P; to be
a subset of C’ as

)
={$€CIT( Ok, = vl }-

Since T, is continuous and any cylinder sets
are closed, we see that P;’s are all closed. We
immediately see that Pp D P, D Py D

If we are able to show that all P;’s are non-
empty, then, from the compactness of C, we
have N;>oP; # @, from which we can deduce
that T I(y) # 0. Since y was taken arbitrarily,
this shows the surjectivity of T,.

Now, it remains to show that all P;’s are non-
empty. Since G is residually finite, we have
a subgroup H; with finite index such that K;
is included in a fundamental transversal A; of
H\G. Let y be an arbitrary configuration, as
above. Let y; = 7§, 4,(yla,) = Unen.sn(yla;)-
Then, from the surjectivity of T, /<, there ex-
ists a configuration z; such that y; < Tp(z),
namely, yilg-p = Ty(2)|g-p for some fi-
nite subset B’ C G. Clearly, there exist in-
finitely many h € H for which we have y;|pa, =
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residually totally strongly
injective injective surjective
weakly
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strongly
injective
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surjective surjective

weakly
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Fig.7 The M-K hierarchy with GOE and residual
finiteness.

sn(yla,) = To(zi)|lha;. By a shift, we have
yla, = To(sh-12:)| a,, and consequently y|x, =
Ty (sp-12;)|k,. This means that P; # 0. O

9. Conclusions

Modified Maruoka and Kimura’s hierarchies

were given for the classes of non-Euclidean cel-
lular automata of GOE type and residually fi-
nite type. If these two properties are both satis-
fied, we have a hierarchy that is approximately
the same as Maruoka and Kimura’s original hi-
erarchy. We summarize it here as the fourth
main theorem. ;
Theorem 4. Assume that G has the GOE
property and is residually finite. For any lo-
cal map o, relations among properties of 7, are
summarized as in Fig. 7.

At present, we do not have an answer to the
question whether total injectivity is equivalent
to strong surjectivity.
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