
Vol. 41 No. 2 Transactions of Information Processing Society of Japan Feb. 2000

Regular Paper

Implementation of Parallel Image Convolution Processing

Based on CORBA

Masayoshi Aritsugi,† Hiroki Fukatsu†,☆

and Yoshinari Kanamori†

To obtain the expected quality of image reproduction in image processing, it is usually
necessary to perform a number of operations on the original image. Thus, it is desirable to
reduce the cost of these operations. This paper discusses implementation of parallel image
convolution processing based on CORBA. Employing CORBA makes it possible to exploit a
cluster of heterogeneous workstations, each of which has a different level of computing power.
The paper also presents an analytical model for the number of workstations appropriate for
efficient image processing, and reports some experimental results.

1. Introduction

In image processing it is usually necessary
to apply a number of operations to the origi-
nal images in order to obtain good results. To
obtain high-quality images, we sometimes need
to apply complex image processing, which may
consist of a sequence of image processing op-
erations, to the original images. Combining
operations to create an appropriate sequence
sometimes involves applying several operations
to images interactively. A typical situation in
which this occurs is when a medical doctor tries
to obtain the most exact areas of X-ray pho-
tographs showing cancer cells in a patient.
Thus, it is desirable to reduce the costs of

image processing operations. The larger the
images we manipulate, the longer we have to
spend processing them. Parallel computing has
been used for realizing efficient image process-
ing2),8),13). In this paper we propose an effi-
cient image processing environment based on
CORBA12), in which digital image convolution
is performed in parallel.
We have thus far studied image manipula-

tion based on CORBA1),5),15). We model im-
ages with abstract objects called generic im-
age objects, each of which has its own im-
age data and operations in image processing,
thereby supporting “version management” of
images. Employing CORBA enables us to im-
plement a cluster of heterogeneous workstations
connected by a network. This paper extends

† Department of Computer Science, Faculty of Engi-
neering, Gunma University

☆ Presently with Fujitsu Terminal Systems Limited

our previous studies to align digital image con-
volution with distributed workstations.
This paper also discusses implementation

methods for the proposed environment. To
the best of our knowledge, there have been
very few studies of parallel processing in a
CORBA environment. We discuss two meth-
ods of setting up parallel image convolution
processing operations: introducing operations
that include inherent parallel processing, and
introducing operations that control existing op-
erations located in distributed heterogeneous
workstations. In fact, we have implemented
both methods, which will be discussed in a later
section of this paper.
In addition, we present an analytical model

for the number of workstations appropriate for
image processing efficiently in a network of het-
erogeneous workstations. In the modern work-
place, an organization, laboratory, or research
group is likely to have the technological capac-
ity to create an environment comprising many
workstations connected by a network. Note
that in such an environment not all worksta-
tions are necessarily running all the time; there-
fore, it is very practical to select appropri-
ate workstations to perform parallel process-
ing, even if the speed-up is not linear. Note
also that such an environment consists of a wide
variety of workstations, from different vendors
and with different levels of computing power.
There have been several studies on realizing
parallel computing for image processing with
parallel architectures2),13), and with a network
of workstations8),14), and we used their parallel
convolution algorithms in this study. However,
to our knowledge, they focused on parallel pro-

488

Vol. 41 No. 2 Parallel Image Convolution Processing Based on CORBA 489

cessing with homogeneous processing elements.
In this paper we analyze the performance of
parallel digital image convolution in a network
of workstations that have different computing
power. We also present some experimental re-
sults to show that the analytical model agrees
with practical situations.
The remainder of this paper is organized as

follows. Section 2 briefly explains the manipu-
lation of images we have proposed for version
management. The discussion in this paper is
based on the manipulation method. In Section
3, two methods of implementation using paral-
lel convolution with CORBA are proposed. A
performance analytical model and experimental
evaluation are shown in Section 4. In Section 5,
our work is compared with that of others, and
conclusions are given in Section 6.

2. Manipulation of Image Objects

In this section we briefly describe the manip-
ulation of image objects in order to develop the
discussion of this paper; more detailed descrip-
tions, including consideration of version man-
agement, can be found elsewhere1),5),15).
Image processing creates a number of versions

of the original images. This is simply because
a desired image can be generally obtained by
the interactive application of a number of image
processing operations to the original image or
images.
We model images with generic image objects

(GIOs), which are abstractions of images—
“versions” of them. GIOs are introduced for
managing all relative versions of an image; ev-
ery version of an image is connected with the
image’s GIO. An operation in image processing
is applied to an image through its GIO, and
the GIO is treated as a certain version of the
original image.
To avoid restrictions on various resources,

such as the underlying operating systems,
the programming languages in which users
can develop image database applications, and
database management systems, we decided to
develop our whole system by using CORBA12).
There are several techniques available for build-
ing distributed systems, such as CORBA and
DCOM (distributed component object model).
Although our system could be implemented
with another technique, we have been using
CORBA mainly because (1) it is the standard
to which a large number of institutions sub-
scribe, and (2) systems implemented in differ-

class ImageProcessing{
public:
CORBA::any* preProcessing(....);
virtual CORBA::any*

executeProcessing(....);
CORBA::any* postProcessing(....);

....
};

class Edge:public ImageProcessing{
public:
CORBA::any* executeProcessing(....);
CORBA::any* edge(....);

};

class Smooth:public ImageProcessing{
public:
CORBA::any* executeProcessing(....);
CORBA::any* smooth(....);

};

Fig. 1 Definitions of the classes ImageProcessing,
Edge, and Smooth.

ent kinds of programming languages can later
be integrated.
Generic image objects are physically com-

posed of two objects: image data objects
(IDOs) and image processing objects (IPOs).
An IDO holds pixel data, while an IPO corre-
sponds to an image processing operation. Users
send a message to a GIO in order to per-
form an image processing operation; this can
be processed by binding the corresponding IDO
and IPO dynamically; thereby we maintain im-
age processing operation codes separately from
pixel data, and, moreover, we can develop new
operations and apply them to existing images
fairly easily.
We develop classes for IPOs by following the

interfaces defined in the OMG Interface Def-
inition Language (IDL). To make the discus-
sion concrete, we use C++ to express classes.
Figure 1 shows the definitions of the classes
ImageProcessing, Edge, and Smooth.
Classes for image processing operations, in-

cluding classes Edge and Smooth, are defined
as subclasses of the class ImageProcessing,
which has two methods, preProcessing and
postProcessing, for processes commonly exe-
cuted on images before or after the execution of
any image processing operation, and a virtual
method, executeProcessing.

Figure 2 depicts how image processing sent
to a GIO is performed in the basic architecture.
1. A user obtains a reference to an IDO that
holds the image to be processed. Assume
that the image is stored in Site b.

2. The user obtains a reference to an IPO that

490 Transactions of Information Processing Society of Japan Feb. 2000

Image DB

Image DB

Image DB Smooth

CORBA environment

1 2,5

3 Edge

4

Site a

Site C

Site B

Site A

Site c

 Site 0

Site b

User

Edge

GIO

Fig. 2 Basic image processing architecture.

corresponds to the operation the user wants
to execute. Assume that the IPO is stored
in Site A. Then, the user sends message
executeProcessing to the IPO with the
IDO.

3. The IPO obtains the information on the
image necessary for image processing, such
as the size, pixels, etc.

4.1.The IPO executes preProcessing on the
IDO.

4.2.The IPO executes the operation on the re-
sult of Step 4.1. In the figure, edge is per-
formed.

4.3.The IPO executes postProcessing on the
result of Step 4.2.

5. The IPO returns the final result to the user.
In the following, we try to perform Step 4.2

in parallel with a network of workstations.

3. Parallel Image Processing

In this section we give a rough overview of
convolution algorithms. A detailed explanation
can be found in several papers including Lee
and Hamdi8). We then propose implementation
methods for setting up parallel algorithms.

3.1 Convolution Algorithms
Parallel convolution has been addressed by

many researchers2),8),13) because convolution is
a general image processing operation; opera-
tions including smoothing, edge detection, and
template matching are categorized under con-
volution; and it is easy to set up parallel con-
volution operations.
To make convolution parallel, an image is

partitioned into the number of workstations
employed. We assume that a workstation can

subimage i

subimage i+1

Kernel

Fig. 3 Kernel overlapping a boundary between
subimages.

subimage i-1

subimage i+1

subimage i

Fig. 4 A part of image divided using the row
partition method with overlap.

calculate one fragment of the image. Let us con-
sider the case where an image of size N ×M is
divided into the number of workstations, with
no overlap when we calculate pixels close to
the boundaries between subimages. Figure 3
shows how the kernel overlaps the boundary be-
tween subimages i and i+1. In this case, when
a workstation calculates the convolution of the
pixels of subimage i, the kernel requires some
pixels in subimage i+1 that are delivered to an-
other workstation, and, consequently, induces
an extra communication overhead.
To avoid the macrocommunication overhead,

we adopt an overlap mapping method (Fig. 4).
Using this method, there is no extra com-
munication among workstations, each worksta-
tion can calculate pixels independently, and no
workstation needs to know which other work-
stations have pixels close to a boundary.
There are several partition methods, such as

row partition, cross partition, and heuristic par-
tition. In this paper, for the sake of simplicity,
we adopt a method of partitioning rows into
square images. In the row partition method, a
given square image is divided horizontally into
n subimages, each of which has the same size,
for n workstations, as shown in Fig. 4. A work-
station receives all the data bounded by the
dotted rectangle, instead of by the thick solid
square.
Since we investigate a network of worksta-

Vol. 41 No. 2 Parallel Image Convolution Processing Based on CORBA 491

tions with various levels of computing power,
we have to consider an additional element of
parallel image processing: how fragments of im-
ages are delivered to the workstations employed
for processing. In this study, we deliver frag-
ments in order of the computing power of all
workstations. We will discuss this in Section 4.
In the rest of this section, we propose two

methods of implementing a parallel image pro-
cessing operation in a network of workstations.
One method introduces IPOs that include par-
allel processing, and the other introduces IPOs
that control existing IPOs distributed among
heterogeneous workstations.

3.2 IPOs That Include Parallel Pro-
cessing

One method we propose in this paper for
parallel convolution is to introduce operations
that include parallel processing. According
to the manipulation of image objects we have
proposed, this method introduces IPOs, which
have the ability to perform image processing
in parallel. Note that the interface of the new
IPOs is the same as that of those shown in
Fig. 1. That is, users can manipulate the new
IPOs just as they do existing IPOs, or IPOs for
sequential image processing operations.
This method can be implemented with par-

allel programming environments such as PVM
(Parallel Virtual Machine)10) and implemen-
tations of MPI (Message Passing Interface)9),
which have been used by many researchers in
writing code for parallel programs. In fact,
we have built some convolution operations with
PVM. Figure 5 shows how an IPO, which we
have built with PVM, performs an image pro-
cessing operation in parallel in a network of
workstations.
Steps 1, 2, 3, and 5 in Fig. 2 are the same in

this case. Let us see in detail how Step 4 in
Fig. 2 is performed in parallel in this method.
4.1.The IPO, which is denoted as Master

in Fig. 5, executes preProcessing on the
IDO.

4.2.The IPO generates slaves in PVM. The
number of slaves is equal to the number of
workstations employed for parallel process-
ing.

4.3.The IPO partitions the image data that the
IDO holds into the number of slaves.

4.4.The IPO delivers fragments of the image to
the slaves.

4.5.Each slave applies the operation in image
processing to the fragment received from

User

Image DB

Image DB

Image DB

CORBA environment

2,5

3

PVM

Master
4

4

Smooth

1

Edge

Site a

Site C

Site B

Site A

Site c

 Site 0

Site b

site A’

site A’’

Slave

Slave
Edge

GIO

Fig. 5 An IPO that includes parallel processing with
PVM.

the IPO, and returns the result to the IPO.
4.6.The IPO generates the final result from the

results of Step 4.5 sent from the slaves.
4.7.The IPO executes postProcessing on the

final result.
Note that the method we have built is based

on CORBA; that is, existing applications that
manipulate conventional IPOs can be applied to
introduced IPOs, and as a result, users can ben-
efit from parallel processing of the IPOs. This is
independent of which parallel programming en-
vironment is employed to implement IPOs that
include parallel processing. While we employ
PVM, IPOs implemented with an implemen-
tation of MPI, for example, can be integrated
without any modification of existing application
programs.
Although we can realize an efficient image

processing environment with this method of
parallel processing, we have to write a set of
code for both master and slave, each with a par-
allel programming environment. Of course, we
need to know not only CORBA programming
but also parallel programming environments in
order to use this method. Note that in convolu-
tion algorithms, processing of a slave program
is the same as that of a program without par-
allel processing. But slave programs coded for
this method can be used only through a master
program.

3.3 IPOs That Control Existing IPOs
As we have seen, although we can realize an

efficient image processing environment by intro-
ducing IPOs that include parallel processing,

492 Transactions of Information Processing Society of Japan Feb. 2000

class Master_Edge:public Edge{
public:
CORBA::any* executeProcessing(....);

};

class Master_Smooth:public Smooth{
public:
CORBA::any* executeProcessing(....);

};

Fig. 6 Definitions of the classes Master Edge and
Master Smooth.

programming costs for implementing this envi-
ronment might become large. Here we propose
another method of parallel processing, by in-
troducing IPOs that control existing IPOs in a
network of workstations. We assume naturally
that workstations employed for parallel process-
ing have already stored IPOs used before par-
allel processing occurs.
We first prepare the master class for each op-

eration in image processing. Figure 6 shows
the interface of the classes Master Edge and
Master Smooth written in IDL, which will con-
trol the existing Edge and Smooth IPOs, respec-
tively, shown in Fig. 1. This is required be-
cause we need to distinguish between conven-
tional IPOs corresponding to each image pro-
cessing operation and new IPOs controlling the
conventional ones. It should be noted, how-
ever, that the interface of each kind of IPO
uses the method executeProcessing, in order
to apply its image processing operation. Con-
sequently, existing application programs using
conventional IPOs can benefit from the intro-
duction of the new IPOs.

Figure 7 depicts how an IPO or Master Edge
in the figure, performs an image processing op-
eration in parallel in a network of workstations.
Similarly, Steps 1, 2, 3, and 5 in Fig. 2 are the
same in this case. Let us see in detail how Step 4
in Fig. 2 is performed in parallel in this method.
4.1.The IPO, Master Edge in the figure, exe-

cutes preProcessing on the IDO.
4.2.The IPO partitions the image data that the

IDO holds into the number of workstations
employed for parallel processing.

4.3.To each slave, the IPO calls the operation
edge in the figure with a fragment gener-
ated in Step 4.2 as the argument.

4.4.Each slave, or IPO with the ability to per-
form the operation sequentially, processes
the fragment received from the IPO and re-
turns the result to the IPO.

4.5.Master Edge generates the final result from
the results of Step 4.4 sent from the slaves.

User

Image DB

Image DB

Image DB

CORBA environment

2,5

3

Master_Edge

Smooth

Edge

Site a

Site C

Site B

Site A

Site c

 Site 0

Site b

1

4

4

Slave

Slave

Edge

GIO

Fig. 7 An IPO that controls existing IPOs.

4.6.The IPO executes postProcessing on the
final result.

In this method of parallel processing, we
make good use of IPOs corresponding to each
operation in image processing that exists in a
network of workstations, and under the condi-
tions of this use we do not need to modify them.
We can thus exploit each IPO when performing
the operation directly, as shown in Fig. 2.

4. Performance Evaluation

The main contribution of our study is toward
a consideration of parallel image processing in
a network of workstations with heterogeneous
computing power. In this section we present
an analytical model for such environments, and
show and investigate some experimental results.

4.1 Performance Model
Advances in computer technology have made

it possible to establish environments comprised
of many powerful workstations connected by a
network. Note that in such a network not all
workstations are always running; in fact, the
majority of workstations may be idle. Note
also that various kinds of workstations are con-
nected by a network. In this study we borrow
the performance prediction model presented by
Lee and Hamdi8) and modify it to take account
of a wide variety of workstations.
We analyze the execution time of parallel im-

age processing with three costs, Ta, Tbi, and Tc,
as shown in Fig. 8, in which Sites 1, 2, and 3
appear.
Ta: The preprocessing cost for parallel image

Vol. 41 No. 2 Parallel Image Convolution Processing Based on CORBA 493

Time

Ta

Tc

Master Site 3Site 1 Site 2

Tb1 Tb2 Tb3

Fig. 8 Three costs of parallel image processing.

processing. This includes obtaining an im-
age from a database, partitioning it into
the number of workstations, and activating
slave processes on distributed workstations.

Tbi: The time period extending from the time
at which the Master in Fig. 8 begins to send
fragments of the image to Site i to the time
at which Site i completes its image process-
ing.

Tc: The communication cost for receiving a
fragment of image processing results from
a Site.

In a network of workstations with different
levels of computing power, performance might
be affected by the way in which fragments of
images are delivered to workstations. Consider,
for example, a case in which two workstations,
say A and B, with different levels of comput-
ing power (say A is more powerful than B) are
used for parallel image processing. It is obvi-
ous that delivering a fragment to A and then to
B takes more time than delivering a fragment
to B and then to A. We can usually determine
the computing power of each workstation in our
laboratory. Hence we deliver fragments in order
of the computing power of all workstations that
we employ. In the following, we assume that all
workstations are free and devote themselves to
image processing after receiving a fragment.
Given an N×M image matrix and n worksta-

tions connected by a network, let us determine
the value of Ta, Tbi, and Tc. In the following,
values expressed with dbsyst and distsyst are
determined by which database system and dis-
tributed system are used, respectively.
Ta: Let Ddbsyst be the time for obtaining an

image from a database, Pardistsyst be the
time for partitioning the image into n frag-
ments, and Actdistsyst be the time for acti-
vating one slave process on a workstation.
Ta is expressed as

Ddbsyst+Pardistsyst + n×Actdistsyst.

(1)
Tbi: Let B and Pidistsyst

be the number of
pixels that can be transmitted through a
network per second and the time for im-
age processing on site i, which has the i-
th highest computing power in a network
of workstations we employ, per pixel (i.e.,
Pidistsyst

≥ Pjdistsyst
where i < j). Neglect-

ing the extra number of pixels for the over-
lap mapping method (Fig. 4), the time, Tbi,
from beginning to send fragments of the im-
age to workstations to the time at which
site i completes its image processing is ap-
proximated by

i× N×M

n
× 1

B
+

N×M

n
×Pidistsyst

.

(2)
Tc: Neglecting the fact that the size of the im-

age processing result is smaller than that
of given image, Tc is approximated by

N ×M

n
× 1

B
. (3)

Using these values, we can calculate the exe-
cution time of the parallel image processing, T ,
as follows:
(1) for i = 1 to n do

ArrayT [i]← Tbi

(2) ArrayC ← sort ArrayT
(3) Tb+c ← N×M

B
(4) for i = 1 to n do

if Tb+c ≤ ArrayC[i] then Tb+c ←
ArrayC[i] + Tc

else Tb+c ← Tb+c + Tc

(5) T ← Ta + Tb+c

Calculating the minimum value of T , we can
obtain the number of workstations that achieve
the minimum execution time of the parallel im-
age processing.

4.2 Experimental Results
We have been developing efficient image pro-

cessing environments with workstations in our
laboratory, whose configuration is shown in Ta-
ble 1. The workstations were connected by
a 10-Mbps Ethernet. We created an image
database with ObjectStore11). We adopted Or-
bix3) as a CORBA environment and OOSA4)

as ODA. As we mentioned before, we have im-
plemented a method introducing IPOs that in-
clude parallel processing with PVM10). In the
following, we call this Method 1, and the other
method introducing IPOs that control existing
IPOs distributed among heterogeneous work-
stations Method 2.

494 Transactions of Information Processing Society of Japan Feb. 2000

Table 1 Testbed configuration.

Site 1 2 3 4
Machine type Sun Ultra 1 Sun Ultra 1 Sun Ultra 1 Sun Ultra 1
CPU clock 143 MHz 167 MHz 167 MHz 167 MHz
Memory size 64 MB 128 MB 128 MB 128 MB
OS Solaris 2.5.1 Solaris 2.5 Solaris 2.5.1 Solaris 2.5
Class D C C C

5 6 7 8 9
Sun Ultra 30 Sun Ultra 30 Sun Ultra 30 Sun Ultra 30 Sun Ultra 30

248 MHz 248 MHz 248 MHz 296 MHz 296 MHz
128 MB 128 MB 256 MB 128 MB 128 MB

Solaris 2.5.1 Solaris 2.6 Solaris 2.6 Solaris 2.6 Solaris 2.5.1
B B B A A

Table 2 Ddbsyst.

Image Size 32× 2520 128× 2520 512× 2520
DObjectStore 0.380796 1.05362 3.76777

Table 3 Pardistsyst.

Image Size 32× 2520 128× 2520 512× 2520
Parmethod1 0.105456 0.105456 0.105456
Parmethod2 0.072035 0.235139 0.89418

Table 4 Actdistsyst.

Actmethod1 0.029110222
Actmethod2 1.02871

In the experiments, we used smoothing as a
convolution-type image operation. Three im-
ages were used for experiments: their respective
sizes were 32×2520, 128×2520, and 512×2520.
Tables 2, 3, and 4 show the values of Ddbsyst,
Pardistsyst, and Actdistsyst, respectively, that
we used for calculating the expected time T .

Table 5 shows the values of Pidistsyst
that

we used for the calculation. As shown in Ta-
ble 1, we used nine workstations and catego-
rized them into four classes, namely, A, B, C,
and D, depending on their computing power.
Images were stored in an object database on
Site 9, which was categorized into class A.
Note that, as shown in Tables 3, 4, and 5,

the cost for image processing in Method 2 was
lower than that in Method 1, while the values
of Pardistsyst and Actdistsyst in Method 2 were
larger than those in Method 1, given the re-
sources we used for the experiments.

Figures 9, 10, and 11 show the execution
times for a smoothing operation with a 7 × 7
kernel on 32×2520, 128×2520, and 512×2520
images, respectively. In the figures, Method 1
and Method 2 are the execution times measured
in the experiments by Methods 1 and 2, respec-
tively, and Expected Method 1 and Expected

Method 2 are those derived from the calcula-
tion with the values shown in Tables 2, 3, 4,
and 5 in Methods 1 and 2, respectively.
During the experiments, neither the worksta-

tions nor the network were dedicated. Thus,
the expected times must have included the cost
of other tasks. In fact, the expected times were
shorter than the measured times except when
processing on Site 9. The reason the expected
times exceeded the measured times when pro-
cessing on Site 9 is that we did not exclude the
data transmission cost from the expected times.
While the time for processing is not large

in comparison with that for data transmission
when small images are processed, the perfor-
mance of parallel processing might be worse.
Figure 9 indicates this situation. Although
Method 1 improved the performance slightly,
parallel processing by Method 2 grew less effec-
tive as the number of workstations rose. This
is because the value of Actdistsyst in Method 2
was large while that in Method 1 was small, in
comparison with the values of Pidistsyst

.
The analytical model worked well for process-

ing a 128×2520 image by Method 2, as shown in
Fig. 10. However, it did not work for Method
1 in the experiments. This might be because
the time spent on other tasks in the analysis
affected the performance beyond our expecta-
tion. We need further analysis to investigate
such a possibility; this is included in our plans
for future work. As in Fig. 9, parallel process-
ing of the 128× 2520 image did little to reduce
the cost of image processing.
Figure 11 shows that, in processing large im-

ages, the analytical model can predict the num-
ber of workstations needed to minimize the exe-
cution time, which suggests that, when the time
required for image processing is large in com-
parison with that required for other tasks in

Vol. 41 No. 2 Parallel Image Convolution Processing Based on CORBA 495

Table 5 Pidistsyst
.

Class A B C D
Method 1 5.279575e-05 5.779048e-05 8.879123e-05 10.04058e-05
Method 2 3.487723e-05 4.101035e-05 6.167813e-05 7.127604e-05

�

�

�

�

�

��

��

� � � � � � 	 �

�������

���������������

�������

���������������

Number of WSs

E
xe

cu
tio

n
tim

e
(s

ec
s)

Fig. 9 A 32× 2520 image with a 7× 7 kernel.

�

�

�

�

�

��

��

��

��

��

��

� � � � � � 	 �

�������

���������������

�������

���������������

E
xe

cu
tio

n
tim

e
(s

ec
s)

Number of WSs

Fig. 10 A 128× 2520 image with a 7× 7 kernel.

such an environment, the analytical model can
work well.
It should be noted that Fig. 11 shows that the

speed-up with parallel processing in a network
of workstations with different levels of comput-
ing power is not as easily effected as in a net-
work of homogeneous workstations. For ex-

ample, in Method 1, the execution time with
five workstations was smaller than that with
six workstations, and the time with eight work-
stations was the smallest. On the other hand,
in Method 2, although the execution time with
seven workstations was smaller than that with
six workstations, image processing with five

496 Transactions of Information Processing Society of Japan Feb. 2000

�

��

��

��

��

��

��

	�

��

� � � � � � 	 �

�������

���������������

�������

���������������
E

xe
cu

tio
n

tim
e

(s
ec

s)

Number of WSs

Fig. 11 A 512× 2520 image with a 7× 7 kernel.

workstations required the smallest cost. To our
knowledge, no previous study has offered such a
model of complex situations and performance.

5. Related Work

Parallel digital image convolution has been
studied by many researchers. This is mainly
because convolution is one of the most general
image processing operations and it is easy to
set up parallel convolution algorithms.
Ranka and Sahni13) developed efficient algo-

rithms for image template matching on MIMD
hypercube multicomputers. Several algorithms
for image processing on SIMD computers can be
found in Cypher and Sanz2). While their stud-
ies used highly parallel architectures, we inves-
tigated parallel image convolution in a network
of workstations.
Lee and Hamdi8) discussed efficient parallel

image convolution algorithms on a network of
workstations, presented a performance predic-
tion model, and reported their experimental re-
sults. The study described in this paper was
motivated by their work. Our study differs from
theirs in the following two respects: (1) We have
studied the implementation of an efficient im-
age processing environment based on CORBA,
the standard for building distributed systems.
(2) We have taken account of a network of
workstations with different levels of computing
power in parallel image processing.
Several parallel processing tools for using a

network of workstations have been proposed.

Squyres, et al.14) showed an implementation
of a cluster-based parallel image processing
toolkit with MPI. Keahey and Gannon6),7) im-
plemented a system called PARDIS, extend-
ing the CORBA object model by introducing
SPMD objects, enabling users to write pro-
grams with data-parallel computations in a dis-
tributed environment with ease. We intend to
design and implement a software tool for devel-
oping parallel image processing by the methods
described in this paper.

6. Conclusions

In this paper we have discussed methods of
implementing parallel image convolution pro-
cessing based on CORBA, and presented an
analytical model. We have also reported some
experimental results obtained with a network
of workstations. Taking account of worksta-
tions with different levels of computing power,
the number of workstations necessary to achieve
the minimum execution time can be calculated
by using the analytical model. Although the
speed-up was not linear, we were able to ob-
tain better performance with workstations in
our laboratory, which are not always busy.
In the study, we evenly partitioned images

into the number of workstations. If we parti-
tion images according to the computing power
of each workstation, we might be able to ob-
tain better performance. This goal is included
in our plans for future work. In the study, we
assumed that all workstations participating in

Vol. 41 No. 2 Parallel Image Convolution Processing Based on CORBA 497

parallel processing were free and devoted them-
selves to image processing after receiving a frag-
ment. However, in the real world this may not
be true. We will extend the analytical model
for application to more general situations.

References

1) Aritsugi, M., Tabata, M., Fukatsu, H.,
Kanamori, Y. and Funyu, Y.: Manipulation
of Image Objects and Their Versions under
CORBA Environment, Proc. Intl. Workshop
on Database and Expert Systems Applications
(DEXA 97), pp.86–91 (1997).

2) Cypher, R. and Sanz, J.: SIMD Architectures
and Algorithms for Image Processing and Com-
puter Vision, IEEE Trans. Acoustics, Speech,
and Signal Processing , Vol.37, No.12, pp.2158–
2174 (1989).

3) IONA Technologies Ltd.: Orbix 2 Program-
ming Guide (1996).

4) IONA Technologies Ltd.: Orbix+ObjectStore
Adapter Programming Guide (1997).

5) Kawashima, S., Tabata, M., Kanamori, Y.
and Masunaga, Y.: Version Modeling for Im-
age Objects, Trans. IEICE, Vol.J79-D-I, No.10,
pp.843–852 (1996). (in Japanese).

6) Keahey, K. and Gannon, D.: PARDIS: A Par-
allel Approach to CORBA, Proc.6th IEEE Intl.
Symposium on High Performance Distributed
Computation (1997).

7) Keahey, K. and Gannon, D.: PARDIS:
CORBA-Based Architecture for Application-
Level Parallel Distributed Computation, SC97
Conference Proceedings (1997). (http://www.
supercomp.org/sc97/proceedings/).

8) Lee, C.-K. and Hamdi, M.: Parallel Image
Processing Applications on a Network of Work-
stations, Parallel Computing, Vol.21, No.1,
pp.137–160 (1995).

9) Message Passing Interface Forum: MPI: A
Message-Passing Interface Standard (1995).

10) The MIT Press: PVM: Parallel Virtual Ma-
chine: A User’s Guide and Tutorial for Net-
worked Parallel Computing (1994).

11) Object Design, Inc.: ObjectStore C++ API
Reference Release 5.0 (1997).

12) Object Management Group, Inc.: The Com-
mon Object Request Broker: Architecture and
Specification, Revision 2.1 (1997).

13) Ranka, S. and Sahni, S.: Image Template

Matching on MIMD Hypercube Multicomput-
ers, Journal of Parallel and Distributed Com-
puting, Vol.10, No.1, pp.79–84 (1990).

14) Squyres, J., Lumsdaine, A. and Stevenson,
R.: A Cluster-Based Parallel Image Process-
ing Toolkit, Technical Report TR 95-1, De-
partment of Computer Science and Engineer-
ing, University of Notre Dame, IN (1995).

15) Tabata, M., Aritsugi, M. and Kanamori,
Y.: Implementing Version Management Mech-
anism for Image Objects under Distributed
Environment, IPSJ Trans. Databases, Vol.40,
No.SIG 5 (TOD 2), pp.79–90 (1999). (in
Japanese).

(Received June 4, 1999)
(Accepted November 4, 1999)

MasayoshiAritsugireceived
his B.E. and D.E. degrees in
computer science and communi-
cation engineering from Kyushu
University in 1991 and 1996, re-
spectively. Since 1996, he has
been a research associate at the

Faculty of Engineering, Gunma University. His
research interests include object-oriented pro-
gramming languages/databases in parallel and
distributed computing environments. He is a
member of IPSJ and IEICE.

Hiroki Fukatsu received his
B.E. and M.E. degrees in Com-
puter Science from Gunma Uni-
versity in 1997 and 1999, re-
spectively. He is presently with
Fujitsu Terminal Systems Lim-
ited.

Yoshinari Kanamori re-
ceived his D.E. degree from To-
hoku University in 1975. Since
1991, he has been a Profes-
sor at the Department of Com-
puter Science, Gunma Univer-
sity. His research interests in-

clude database systems and image processing.
He is a member of IPSJ, IEICE, ACM, and
IEEE-CS.

