{E AT 2 R 54T CFBL 5 58 2B XS

1-—-95

On Parallelizability of a-Connectivity*

3T-9

Chuzo IWAMOTO and Kazuo IWAMA
Department of Computer Science and Communication Engineering
4 Kyushu University, Fukuoka 812, Japan

1 Introduction

Consider the common algorithm [5] obtaining con-
nected components of undirected graphs. As some
connected component U grows, a nearby vertex v
is absorbed into U if v is connected to U, i.e., if
an edge exists between v and some vertex in U.
An obvious problem in this connectivity is that
it does not reflect the strength of the connection.
This naturally leads us to another graph connec-
tivity which we call a-connectivity. Unlike the
conventional connectivity, a-connectivity requires
that the vertex v should have at least [d(v)-a/n]
neighbors in U, where d(v) denotes the degree of
vertex v. (Suppose for example that n = 100 and
a = 10. Then v can join U only if at least one
tenth of v’s neighbors are included in U.) One
can imagine the force of gravity between a star
and a meteorite and a certain kind of clustering
problems for its application. When a = 1, a-
connectivity is the same as the conventional con-
nectivity.

In this paper, we discuss the parallel com-
plexity of this a-connectivity problem (obtaining
a-connected components). Our result is remark-
able in that the complexity gradually increases
as the value of a grows: (i) a-connectivity is in

NC* when a = ¢(log n)%-2 for positive constants ¢
and t > 2. (ii) The complexity jumps if the
value a becomes a bit larger: It is P-complete
when « is given by two positive constants ¢ and
(any small) € as o = cn®.

In the field of P and NP, “gradually intractable
problems” whose complexity changes from P to
NP-complete are not rare. Most problems pre-
fixed by “k-", such as k-clique, fall into this cate-
gory. However, “gradually unparallelizable prob-
lems” arerare. As the gradually intractable prob-
lems nicely exhibit fundamental differences be-
tween P and NP-complete, a-connectivity is ex-
pected to play the same role inside P.

Obviously, k-connectivity, which is also a gen-
eralization of graph connectivity, is related to our

*This work was done while the first author was visiting
McGill University. This work was in part supported by
Grant in Aid Scientific Research for the Ministry of Edu-
cation, Science and Culture of Japan, No. 1149.

a-connectivity. [2] shows that k-connectivity can
be solved in O(k?logn) time by a polynomial
number of processors. Thus the bound contin-
uously grows with k as a-connectivity, but it is
open whether it finally becomes P-complete. [1]
gives the partial negative answer: Constructing a
maximum s-t flow in a directed graph whose edge
weights are given in unary is in RNC; namely, k-
connectivity for an undirected graphs is in RNC.
Probably, a-connectivity provides the first exam-
ple of gradually increasing complexities from NC
to P-complete.

2 o-Connectivity

Let G'= (V,FE) be a graph of n vertices and m
edges. We denote by d(v) the degree of vertex v.
Let v; be a vertex in V' and V; € V be a vertex
set which does not contain v;. wv; is said to be
a-close to Vy if at least [d(v1) - @/n] edges out
of v1’s edges go to vertices in Vi. A vertex set
V; € V is said to be a-connected if (i) |V;| = 1
or (ii) there are a-connected sets V/ and V such
that V; = V/UV/ and V contains a vertex a-close
to V;”. A vertex set Vx C V is said to be an a-
connected component if (i) Vi is a-connected and
(ii) no vertex outside Vi is a-close to Vi. The
a-connectivity problem requires us to partition V
into a-connected components. Although details
are omitted, we can show that the partition into
a-connected components is unique. Note that the

definition of a-connectivity when o = 1 is the
same as that of graph connectivity because [d(v;)-
a/n] = 1.

Theorem 1. «-connectivity can be solved
in O(a’logn) time by a polynomial number of
CRCW PRAM processors.

It is well known that a problem is in NC**1
if it is solved in time O(log’n) by a polynomial
number of CRCW processors. Therefore:

Corollary 1. a-connectivity is in NC* when
a = c(log n)%—z for positive constants ¢ and t > 2.

Theorem 2. a-connectivity is P-complete
when a is given by two constants ¢ and € as o =
cn®, where ¢ may be any positive value and 0 <
€< 1/2.

Remark 1. Why does the complexity of

1-96

a-connectivity change like this? Suppose that
the value of « is larger than one (more precisely
larger than n/(n —1)). Then, vertices of the com-
plete graph K, cannot be merged at all, since
[d(v)-a/n] > 1. In terms of the space model men-
tioned previously, that means the forces between
the objects are completely balanced (and hence
each cannot join another). In other words, the
joining process of a-connectivity makes full use of
“unbalanced” structure of the graph. If a is large,
the process depends on more unbalanced struc-
ture, which one can imagine finally leads to the
inherent sequentiality causing P-completeness.

3 Parallel Algorithms

For simplicity, we assume that there are no ver-
tices of degree 0. a-connectivity can be solved by
the following parallel algorithm:

(1) Start with n one-vertex sets, Vi = {v},
Vo =A{ve},..., Vo ={vn}.

(2) Assume that there are currently p sets,
V1,Va,...,V,. Construct a graph G’ = (V', E')
such that V' = {V1,V,,...,V,} and (V;,V;) € F
if one of the two sets V; and V; contains a vertex v,
a-close to the other set.

(3) Merge all vertices of every connected com-
ponent of G’ into a single set.

(4) Repeat (2) and (3) until E' = 0.

Using d(v) processors, we can decide whether
Vi (resp. V;) containing v can be merged with
V;- (resp. Vi) in O(logn) time. In step (2), G’
is thus constructed in O(logn) time by 2mn pro-
cessors. In step (3), we use the parallel graph
connectivity algorithm [4] which runs in O(log n)
time using n + 2m processors. Due to space limi-
tations, we omit the proof of the following lemma.

Lemma 1. The number of iterations is O(a?).

4 P-Completeness

Since a-connectivity can be solved by a sequential

version of the algorithm in Section 3, a-connectivity

is in P. In the following, only a brief overview of
the reduction will be presented. We show that
the solvable path system problem (SPS) [3] is log-
space reducible to a-connectivity when a = cn®.
The instance of SPS is @ = (X, R, A), called a
path system, where X is a finite set of sentences,
R is a set of inference rules, A C X is a set of
azioms. If (a,b,c) € R, then a # b, b # ¢, and
¢ # a. Let S be the least subset of X such that
(i) A C S and (ii) if a,b € S and (a,b,¢) € R
then ¢ € S. SPS asks whether § = X.

We reduce Q@ = (X, R,S) to G = (V, F). We
first define a vertex set as Vx = {v,]a € X}. We

then replace all sentences in X by the vertices
in Vx. For each rule (a,b,c) € R, we apply the fol-
lowing reduction. Let m = |R|. Two sets of ver-
tices are introduced as Vi = {zl,,...,z%~1
and V3= {yly., ..,y 7%}, where § = |m{1-o)/¢]
and % is a sufficiently large constant. Then we
connect {vg, vy} With V3 by 2x|V3 | edges. Sim-
ilarly, we connect V% with V% and then connect
V3. with {v.}. By replacing all the inference rules
with the vertices and the edges mentioned above,
we get a graph, say Gj.

Now we add new vertices (divided into four
families Fo through F3) to Gy. Fp includes a single
element, i.e., Fo = {s}. Fy and F; are two (6 —1)-
vertex sets and F3 is a (k§ — 1)-vertex set. We
connect Fy with Fy, F} with Fy, and Fy with F3.
For every axiom d € A, we then connect F3 with
{va}. We denote the resulting graph by Gj.

For some technical reason, we wish to con-
struct G such that the values n and k satisfy
1/ké < en®/n < 2/ké. Our strategy for obtaining
such G is as follows: We first construct a graph G
such that n and k satisfy 2/ké < en®/n. Such G3
can be obtained by constructing G'; whose k is suf-
ficiently large. Then we add a new vertex z; and
edge (s,21) to G3, and then add z; and (21, 22),
and so on, up until the number of vertices satisfies
1/ké < en/n < 2/ké.

Although details are omitted, G can be con-
structed by a log-space program. The proof of the
following lemma is omitted.

Lemma 2. All the vertex of G can be merged
in a single set if and only if all the sentences are
provable.

Acknowledgment. We would like to thank
David Avis for his helpful comments.

References

[1] R. Karp, E. Upfal, and A. Wigderson, “Con-
structing a perfect matching is in Random
NC”, Combinatorica 6 (1) (1986) 35-48.

[2] S. Khuller and B. Schieber, “Efficient paral-
lel algorithms for testing k-connectivity and
finding disjoint s-t paths in graphs”, SIAM
J. Comput. 20 2 (1991) 352-375.

[3] S. Miyano, S. Shiraishi, and T. Shoudai, “A
list of P-complete problems”, Tech. Rept.
RIFIS-TR-CS-17, Research Institute of Fun-
damental Information Science, Kyushu Uni-
versity, 1990.

[4] Y. Shiloach and U. Vishkin, “An O(logn)
parallel connectivity algorithm”, J. Algo-
rithms 3 (1982) 57-67.

[5] R. Tarjan, “Depth-first search and linear
graph algorithms”, SIAM J. Comput. 1
(1972) 146-160.

