
Vol. 41 No. 3 Transactions of Information Processing Society of Japan Mar. 2000

Regular Paper

Aspect-centered Design of Object-oriented Frameworks

Shin Nakajima†

This paper reports experience in developing object-oriented frameworks for an implemen-
tation of the OMG trading object service. To bridge the gap between the real world complex
problem and existing object-oriented methods, the trading function is first analyzed to iden-
tify a set of aspects, each introducing a subproblem. The subproblem is heterogeneous in the
sense that it is associated with a particular specification technique to reach a solution. All
the resultant solutions form a whole design artifact that is the input to the object-oriented
design phase. The phase produces a homogeneous object solution by using existing object-
oriented design methods such as collaboration-based design and design patterns. The paper
also identifies two further research topics, (1) aspect discovery, and (2) checking integrity of
all the aspect solutions.

1. Introduction

Object-oriented framework is a promising so-
lution technology for improving reusability of
software, where a framework is a reusable de-
sign of a program or a part of a program
expressed as a set of classes 6),9). Having
recognized the importance of object-oriented
framework, many methodologists propose de-
sign methods focusing on framework devel-
opment. The methods include collaboration-
based design 4),5),13), role-based design 16) and
design patterns 7),9),15). However, desiging well-
organized frameworks is still an art.
Jackson points out two important issues on

method and problem in general 8); (1) meth-
ods cannot be panaceas (medicines that cure
all diseases), and (2) very few problems can be
decomposed into homogeneous structures. Be-
cause real world system is complex, the problem
is decomposed into a set of subproblems. The
subproblem is heterogeneous in the sense that
it needs a different problem frame (a kind of
structural pattern to solve the subproblem). In
addition, methods should be related to a par-
ticular class of problem and thus give a sharply
focused help in reaching a solution.
In developing object-oriented frameworks for

a real world complex system, a new design
method is necessary. The method bridges the
gap between the complex problem and exist-
ing object-oriented methods; the problem is one
such that is decomposed into a set of hetero-
geneous subproblems, and the object-oriented
methods can handle only homogeneous world of

† NEC C&C Media Research Laboratories

objects. The new design method focuses on de-
composing the whole problem into a set of sim-
ple subproblems. Each subproblem needs not to
be object-oriented, but is associated with spec-
ification technique best fitted for the intrinsic
nature of the subproblem. The design process
continues to produce homogeneous object so-
lution by using existing object-oriented design
methods.
This paper reports experience in developing

object-oriented frameworks for an implementa-
tion of the OMG trading object service 1). Be-
fore using the known techniques of developing
object-oriented frameworks, the trading func-
tion is first analyzed in order to identify a set
of distinct aspects☆. Then, the subproblem as-
sociated with each aspect is refined and elabo-
rated by using the specification technique fitted
for the subproblem. Although each technique is
not new, the main contribution of the paper is
(1) to propose that the idea of aspect is a way
to bridge the gap, and (2) to show that the pro-
posed method is effective in developing frame-
works to implement the OMG trading server (a
non-trivial distributed service).

2. Aspect-Centered Design Method

Existing design methods for developing
object-oriented frameworks, such as the
collaboration-based design 4),5),13) and design
pattern 7),9),15), are effective in general. How-
ever, the methods have several drawbacks. (1)
The design methods have their basis on the

☆ The terminology, aspect, is borrowed from Kiczales,
et al.10) because viewing a software system consist-
ing of many aspects is the common idea.

758

Vol. 41 No. 3 Aspect-centered Design of Object-oriented Frameworks 759

Requirements
on Server

Aspect Design

OOD
Documents

Java
Programs

JDK/JavaIDL

The Problem

OMG Trader
Document

Fig. 1 Design process.

object-orientation, and explicitly assume that
object is sole constituent of the system. (2)
The methods provide only general guidelines of
decomposing a whole problem into constituent
objects, and mention no concrete hint for the
decomposition. (3) The design pattern is a cat-
alog of useful design idioms, but most of them
are at a programming level and are thus not
suitable for use at an early stage of the devel-
opment.
Real world software such as the OMG trader

server is a complex system. As will be discussed
in Section 3, the target problem has various as-
pects that are not amenable to homogeneous
object-oriented modeling. Analyzing the target
problem and decomposing it into a set of sub-
problems is the most important task.

Figure 1 summarizes the design process
adapted in the present approach. The first step
of the process (the aspect design phase) is iden-
tifying a set of distinct aspects in the problem
to obtain a semi-formal description. The phase
starts with analyzing both the OMG document
and the system requirement. Using a specifica-
tion technique best fitted for the characteristics
of each aspect reaches aspect solutions. The so-
lutions form a whole design artifact that is the
input to the next phase. The phase (object-
oriented design) makes use of existing meth-
ods such as collaboration-based design or de-
sign patterns. In the course of preparing the
design document, some part of the framework
is implemented incrementally in Java 3).
The following two characteristics of the as-

pect design seems well-known common practice;
(1) decomposing a large complex problem into
a set of manageable subpoblems to solve indi-
vidually, and (2) seeing a target system from
various viewpoints. For example, a top-down
functional design approach deals with decom-
position into procedures or processes. Its de-
composition is homogeneous and hierarchical.
OMT provides three models (object, dynamic,

and functional), and promotes a method to de-
scribe the system behavior by using the three
different models 17). The model, however, rep-
resents a different viewpoint of a same entitiy,
object.
On the other hand, the important charac-

teristics of the aspect-centered design method
is heterogeneity. Aspect is related to a sub-
problem that is further refined and elaborated
to reach solution description individually. The
subproblem needs not to be object-oriented,
but is heterogeneous in the sense that each sub-
problem is associated with specification tech-
nique best fitted for its intrinsic nature.
A simple example on Composite pattern 7)

may illustrate the above discussion. Compos-
ite pattern is a design pattern to represent tree
structures. When a target system has an aspect
of language processing such as a kind of query
language, Composite pattern together with Vis-
itor pattern is quite useful in implementing lan-
guage processing subsystem☆. However, BNF is
a better notation to discuss the grammatical as-
pects of the problem such as abstract syntax of
the language. BNF is more concise than class
diagrams representing the abstract syntax tree.
Usually BNF is used in comparing various de-
signs, and then the patterns are employed to
instantiate appropriate classes. Because other
part of the given problem may use notation dif-
ferent from BNF, the problem can be said to
be decomposed into a set of heterogeneous sub-
problems. And, the resultant classes are homo-
geneous representations.
Since identifying aspects in the target prob-

lem is not a well-established methodology, the
present paper relies on a case study. The pre-
sented result may not be generally applicable,
but provides a useful insight on the applica-
tion of the method because the case study talks
about the problem in a concrete manner. The
rest of the paper presents experience of a case
study in applying the aspect design method to
the development of object-oriented frameworks
to implement the OMG trading server and dis-
cusses the pros and cons of the proposed ap-
proach.

☆ Section 4.5 illustrates how to use Composite and
Visitor patterns in implementing an aspect of the
trading server.

760 Transactions of Information Processing Society of Japan Mar. 2000

3. Trading Object Service

3.1 Trading Functions
Figure 2 shows a trader and participants

in a trading scenario 1),18). The service server
(Exporter) exports a service offer. The service
client (Importer) imports the service offer and
then invokes the service. The Trader mediates
between the two by using the exported service
offers stored in its repository that is ready for
import requests. The Service Type provides
information necessary to define service offers,
and holds the interface type of the object be-
ing advertised and a list of property definitions.
Because importing is the most complex and in-
teresting function, this paper focuses on the im-
porting action.
The OMG trading service comprises five ma-

jor functional interfaces; Lookup, Register,
Admin, Link, and Proxy. The OMG stan-
dard also specifies six different conformance
classes of trading object service implementa-
tion. A simple trader supports the Lookup and
Register interfaces, and a linked trader adds
the Admin and Link interfaces to the simple
trader. The following IDL fragment shows a
portion of a query operation in the Lookup in-
terface☆.
typedef Istring ServiceTypeName;
typedef Istring Constraint;
typedef Istring Preference;

void query(
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
...
out OfferSeq offers,
out OfferIterator offer_itr,
...

) raises (...)
The first parameter type specifies the service
type name of requested offers. The parame-
ter constr denotes a condition that the offers
should satisfy and is an expression of a con-
straint language, a means to specify the condi-
tion in a concise manner. The expression de-
scribes semantically a set of property values of
service offers that the client tries to import.
The trader searches its repository to find ser-
vice offers whose property values match the im-
porter’s request. The parameter pref is prefer-

☆ Parameters not relevant here are omitted for brevity.

Exporter Importer

Service Type

Trader
1. export 2. import

3. service interaction

Fig. 2 Trading scenario.

starting trader

T1

T2

T3

T4

T5

T6

Fig. 3 Federated trader group.

ence information specifying that the matched
offers are sorted according to the preference
rule. The sorted offers are returned to the
importer in the out parameters (offers and
offer_itr). Additionally, the original specifi-
cation defines a set of scoping policies to de-
fine upper bounds (cardinalities) of offers to be
searched. The values of the cardinalities are de-
termined by a combination of importer’s poli-
cies and trader’s policies.
In order to achieve scalability, the OMG trad-

ing object service defines the specification for
interworking or federation of traders. A feder-
ated trader group can partition a large number
of service offers into a set of smaller ones of
manageable size. One trader is responsible for
each partition and works with the other traders
when necessary. Figure 3 is an example of
a federated trader group. The traders, T1 to
T6, are linked as indicated by the curved ar-
rows. When a query is issued, for example, on
T1 as a starting trader and federated search is
requested, other traders (T2 to T6) also initi-
ate local search respectively. All the matched
offers are collected and returned to the client
importer.
The federation process uses a set of policies

for controlling the graph traversal. A simple
one is the request_id that cuts unnecessary

Vol. 41 No. 3 Aspect-centered Design of Object-oriented Frameworks 761

visits to the same trader more than once, and
the hop_count restricts the depth of traders to
be visited. A set of policies called the FollowOp-
tion controls the traversal semantically. A link
marked with if_no_local, for example, is fol-
lowed only if no matched offer is found locally
in a trader at the source of the link.
Although the OMG standard describes the

query algorithm and the role of each scoping
policy by using illustrative figures, it is not easy
to grasp the whole picture. The reason is that
the descriptions are informal and scattered over
several pages of the document 1).

3.2 Architectural Considerations
The OMG trading service consists of five ma-

jor functional interfaces and some of their spe-
cific combinations correspond to different con-
formance classes. In order to develop in future
a series of traders that belong to a different con-
formance class, subsystems each implementing
a particular functional interface are desirable to
be separated to form a well-organized architec-
ture.
In addition to satisfying what the OMG doc-

ument specifies, developing a server to imple-
ment the trading function requires designing
control architecture. The server should be re-
sponsible for handling multiple client requests
in order to improve availability of the trading
service. Figure 4 presents an abstract view of
the trader, which focuses on subsystems con-
cerning both local and federated query process-
ing. The trader should have a resource man-
agement mechanism because some repository
objects storing ServiceType or ServiceOffer

Search Select

Federation

TraderState

(Linked)
Trader

Client
Importer

Target Trader

ServiceOffer

ServiceType

query

query

result (out)

result (out)

Invoke Final

Fig. 4 Subsystem structure.

become shared resources. Such control aspects
is desirable to be decoupled from the rest of the
trader functionalities.

4. Design and Implementation

4.1 Overview of Identified Aspects
Table 1 summarizes the identified aspects

together with the accompanying specification
techniques. Of the entries in Table 1, the
common concepts such as ServiceType and
PropertyDefinition are easily translated into
class definitions since these are modeled as ab-
stract datatypes. Both the architecture and
functional objects are refined and elaborated by
using collaboration-based design methods 4),13);
collaboration diagrams or message sequence
charts are used to analyze their interaction pat-
terns so that the responsibility of each partic-
ipant object is well defined. However, model-
ing the control aspects of the resouce manage-
ment requires detailed knowledge of the mid-
dleware solution used and the execution mecha-
nism that the implementation language/library
provides, Java 3) and JavaIDL 11) in this case.
The succeeding subsections will discuss the

other important aspects including language,
policy and algorithm (see Table 1).

4.2 Query Algorithm and Policy
The policy of the trading service is just a pa-

rameter that modifies behavior of both local
and federated query algorithm. It is hard to
understand the meaning of policies without re-
ferring to basic algorithm. In addition, in order
to grasp the algorithm at a glance, a concise no-
tation is needed. The notation adapted is the
one borrowed from a functional programming
language StandardML 12) augmented with some
symbols to describe and handle set-like collec-
tions of data. Another important decision here
is a choice of a stream-style functional program-
ming for the query algorithm. This viewpoint
is in accordance with the informal presentation
in the OMG document 1).
The following subsections will explain in de-

tail the descriptions that actually appear in the
appendix of the paper. Each function is refered

Table 1 Aspects and specification techniques.

Aspect Specification Technique
language denotational semantics
policy functional programming
algorithm stream-style programming
common concept abstract datatype
architecture collaboration-based design
functional object collaboration-based design

762 Transactions of Information Processing Society of Japan Mar. 2000

Constraint

Standard
Planner

Standard
Parser

Standard
Checker

Search Match

Standard
Evaluator

ServiceType
Repository

OfferRepositoryImporterPolicy Extent

TypeDescriptor

1.1 parse 1.2 check

2. gather

3. match

2.1 extent

3.1 filter

3.1.1 start

0. search

1.4 reorder

1.4.1 prop-def

1.3 types

Offer

3.1.1.1 get

Fig. 5 Constraint language processing framework.

to by an index number such as (�1).
4.3 Local Query
This subsection deals with the query algo-

rithm that is executed locally in a trader.
The top-level function IDLquery(T,I) (�1),

which is invoked as an IDL request takes the
form below. All the function definitions are
supposed to come in the lexical context (as fun
· · ·) of the IDLquery(T,I). The functions can
use T and I freely as global constants, where T
refers to the trader state or trader’s policy and
I denotes the importer’s request and policy.
fun IDLquery(T,I) =
fun query() = if valid-trader()
then if valid id() then
(select ◦ federation ◦ search)(T.offers)
else φ

else IDLquery(remote trader(T),I)
fun · · ·
in
query()

end
First, it checks whether the request is on the
trader itself. Then, it invokes the body of
the query function, which is described as a
stream-style processing consisting of search,
federation, and select.
The function search (�2) is responsible for

collecting candidate offers. The candidate
space is then truncated by appropriate policies
on cardinality. The search uses two such car-
dinality filters.
The function gather (�3) collects offers that

have the specified service type. If the importer
policy has a false I.exact_type_match, offers
of all the subtypes of the specified one should
be collected (�4). In the definition of (�5), the
content of TypeRepository is a directed acyclic

graph (G) whose node (n) is a service type and
edge is a service subtype relationship (≺).
The function match returns offers that satisfy

the importer’s requirement expressed as a con-
straint language expression. Its representation
will be discussed in Section 4.5.
The next two functions (�6 and �7) implement

filtering on cardinality mentioned above. Both
use the truncate function to filter out unneces-
sary offers. The two functions represent how to
compute each cardinality in a concise manner.
The role of the policy concerning the cardinal-
ity is thus clear.
When a federated query is not in use, the

function invoked after the search is the select
(�8). With a help of order (�9), it uses the im-
porter’s preference expression to make the col-
lected offers into a sequence, the sequence of
which reflects the preference order.
At this point, analyzing all the behavior of

local query is completed. Next, an object-
oriented framework, based on the description
of the algorithm, is elaborated. Translating
the description into design of object-oriented
framework is not difficult because the stream-
style description can be considered as an ab-
stract representation of collaboration. The
stream-style description becomes the input
specification of the frozen spots of the frame-
work and is a good starting point for identifying
hot spots.
A main design activity is decomposing the

whole behavior into a set of participant classes.
As shown in Fig. 5, the main function of
the algorithm is distributed over Search,
Match, and StandardEvaluator classes. The
stream-style processing sequence is translated
into the internal flow of control that the

Vol. 41 No. 3 Aspect-centered Design of Object-oriented Frameworks 763

Federation

Delegate Accumulate

Edge

FollowPolicy

LinkPolicy

ImporterPolicy

TraderPolicy

(Linked)
Trader

0.

1.

2. 2.1

2.2 query 2.3

(2.3.1 iterator)

Fig. 6 Federation framework.

framework encapsulates. Some objects such
as ServiceTypeRepository, ImporterPolicy
and OfferRepository provide necessary data
for the processing.

4.4 Federated Query
This subsection deals with the federated

query algorithm that involves more than one
trader.
The function federation(R) (�11) is respon-

sible for controling a federated query. It first
checks whether further IDL query requests are
necessary to linked traders by consulting the
trader’s policy on hop_count. The auxiliary
function new_hop_count() (�12) demonstrates
the role of policies involved in the federation
control.
The function traversal (�13) is invoked with

a modified importer policy (J) and the of-
fers obtained locally (R). It controls invoca-
tions on the target trader located at the far
end of the specified link. The control again
requires a scoping policy calculation, which in-
volves the link policies as well as the trader’s
policies and the importer’s. The two functions
new_importer_follow_rule(L,J) (�14) and
current_link_follow_rule(L,J) (�15) show
the definitions of FollowOption rule. The func-
tion dispatch (�16) concisely gives specifica-
tions of the use of the FollowOption rule of
the specified link; the rule defines three cases,
local_only, if_no_local, and always. How
to construct the final offers differs in each case.

Figure 6 shows the framework that im-
plements the federation process. Some of
the important decisions include encapsulat-
ing FollowOption calculation functions in class
FollowPolicy and separating functionality
among Federation and Delegate. Class
Delegate corresponds to the body of the func-
tion traversal(J,R) and thus implements de-
tails of the algorithm. Class Federation is re-

CExp ::= Pred
Pred ::= L

| Exp == Exp
| exist L
| not Pred
| Pred and Pred
| Pred or Pred
| ...

Fig. 7 Abstract syntax (a part).

sponsible for controlling the whole federation
process and plays a role of Façade 7). It de-
couples the federation subsystem from the rest,
and thus makes it easy for testing.

4.5 Constraint Language Processing
This subsection deals with the aspect of the

constraint language processing. The accompa-
nying specification technique is a denotational
style of language definition.
Two functions (order_on_preference and

match) used in the main algorithm in Sec-
tion 4.3 involve evaluation of a constraint ex-
pression and a preference expression. Each
function is defined to call an evaluation func-
tion (either CE or PE).
fun match(R) = CE [[I.constraint]] R
fun order on preference(R,X) = PE [[X]] R

The specification technique follows a standard
way of rigorous language definition. First, the
abstract syntax of the language is introduced.
A portion is shown in Fig. 7. Second, a valu-
ation function is defined for each syntax cate-
gory; CE is an example function for constraint
expressions (CExp) and it further calls LE of
the valuation function for predicates (Pred). R
stands for a set of offers and O is an offer.
CE : CExp → R → R
LE : Pred → O → Bool

Then, the specifications of the constraint lan-
guage interpreter or evaluator are best seen by
the definitions of the valuation function. The
definitions can be formulated systematically by

764 Transactions of Information Processing Society of Japan Mar. 2000

studying the meaning of each abstract syntax
construct.
CE [[E]] R = { O ∈ R | LE [[E]] O }
LE [[L]] O = prop-val(O,L)↓Bool

LE [[E1 == E2]] O =
AE [[E1]] O == AE [[E2]] O

. . .
Designing the framework for constraint lan-

guage processing from the above language def-
inition is straightforward. The design activ-
ity makes use of design patterns 7): Compos-
ite pattern for representing the abstract syntax
tree (AST) and Visitor pattern for represent-
ing the tree walkers such as a light semantic
checker (StandarcChecker), a filtering condi-
tion reorder planner (StandardPlanner), and
an interpreter (StandardEvaluator).
In implementing the constraint language pro-

cessor, two offline support tools are used to en-
hance productivity; JavaCC 2)(a public domain
Java-based parser generator) and ASTG (an in-
house visitor skeleton generator). ASTG ac-
cepts annotated BNF descriptions of abstract
syntax and generates Java class definitions im-
plementing the AST node objects and also
skeleton codes for tree walking. The skeleton
code follows a convention of a Visitor pattern.
Since the program code fragments that need to
be written in body part of the skeleton corre-
sponds to the clauses of the valuation functions,
completing the program is not difficult.

5. Discussions

The complexity of the OMG trading object
service and the architectural considerations mo-
tivated us first to identify a set of distinct as-
pects of the target problem. Of six identi-
fied aspects in Table 1, the meaning of poli-
cies and the query functions are described in
terms of the stream-style functional program-
ming model, and the constraint language is de-
fined and elaborated by means of standard tech-
nique for defining language semantics. The as-
pect solutions form a clear input specification
to the framework design phase where existing
methods such as collaboration-base design and
design patterns are effective.
The aspect solution description is concise and

thus expected to ease future maintenance☆. For
example, the sixteen functions in the appendix
☆ The size is not constant because we maintain and

update the program code periodically. The infor-
mation here is only meant to illustrate the system
size.

abstractly describes the design of about 30 Java
classes, and about thirty lines of the denota-
tional style language description becomes more
than 4K lines of Java codes including AST
classes and visitor skeletons that ASTG auto-
matically generated. The current prototype im-
plementation of the trading service server con-
sists of some 380 Java classes, and its code size
is about 25K lines☆☆.
The aspect solution shows clear relationships

between the design descriptions at the differ-
ent levels. First, the stream-style description
does not have a large gap with the OMG doc-
ument, and, thus, both descriptions are quite
traceable. It is easy to perform conformance
checking during the design phase. Second, col-
laboration, which is the most important view of
frameworks, is basically a set of global interac-
tion patterns and requires a concise notation for
grasping the global flow of control. Algorithm
description using the functional programming
style is a good candidate for such a representa-
tion.
The actual development process consisted

of three steps, the aspect design, the object-
oriented design, and the coding and testing
(Fig. 1). The aspect design step started from
formalizing the system requirements and ended
with the semi-formal descriptions of aspect so-
lutions. The object-oriented design step em-
ployed collaboration-based object-oriented de-
sign method and design pattern to produce de-
sign documents describing Java classes. It was
followed by the usual coding and testing step.
One person (this author) was responsible for
the aspect design and two engineers for the cod-
ing and testing. All the three persons worked
together to produce the design documents at
the intermediate step. The phase helped the
engineers to deepen their understanding of the
system design. The engineers first resisted the
mostly functional style description of the aspect
design. The engineers were not familiar with
the collaboration-based object-oriented design
method and required “on the job” style training
in the course of the system development. The
object-oriented design step involved technology
transfer, and took periods of time far longer
than initially planned. However, the coding and
testing was short compared with the program

☆☆ The current prototype implements a linked trader
which consists of Lookup, Register, Admin, and Link
interfaces. It omits the Proxy interface.

Vol. 41 No. 3 Aspect-centered Design of Object-oriented Frameworks 765

size.
Two research areas can be identified relating

to the aspect-centered design method; (1) as-
pect discovery, and (2) checking integrity of all
the aspect solutions.
The hard part of the aspect-centered design

method is lack of systematic methodology to
discover appropriate aspects in a given prob-
lem. Since each aspect is accompanied with a
specific specification technique, knowing speci-
fication techniques as many as possible is help-
ful in identifying aspect in the problem. Accu-
mulating various specification techniques and
experience with their application to system de-
velopment is one of the future directions.
The idea of aspect-centered design is essen-

tially decomposing a whole problem into a set
of manageable subproblems to solve individu-
ally. Each aspect has its own notation such
as functional-style descriptions or message se-
quence charts, and is amenable to validate sep-
arately. On the other hand, the design of the
overall system requires to integrate all the so-
lution descriptions, and this is difficult when
each aspect solution uses a different notation.
Therefore, currently the integration is done
only through manual reviews during the design
phase of object-oriented framework (Fig. 1).
Concerning the issue on the notation, two

approach would be possible; (a) establishing
relationship between different notations, and
(b) providing a homogeneous notation. An ex-
ample of the first approach is recent activi-
ties on assigning rigorous semantics to various
UML diagrams. UML, however, is based on
the object-orientation and also not adequate for
compact algorithm descriptions. For the sec-
ond approach, formal notation such as algebraic
specification language would be a candidate. It
is because the language is powerful enough to
cover aspect solution descriptions, from func-
tional programming descriptions and abstract
datatypes to message sequence charts 13),14).
Further research is necessary to show the ef-
fectiveness.

6. Summary

This paper presented experience in devel-
oping object-oriented frameworks for an im-
plementation of the OMG trading object ser-
vice by using Java and JavaIDL. In order to
bridge the gap between the real world complex
problem and existing object-oriented modeling
methods, the trading function was analyzed to

identify a set of distinct aspects. Subproblem
associating with each aspect was refined and
elaborated by using specification technique fit-
ted for the subproblem. Then, the design pro-
cess continued to produce homogeneous object
solution by using existing object-oriented de-
sign methods such collaboration-based design
and design patterens. Last, the discussion in-
cluded the pros and cons of the proposed ap-
proach and identified two future research issues.

References

1) OMG: CORBA services, Trading Object Ser-
vice Specification (1997).

2) Sun Microsystems: JavaCC Documentation
(http://www.suntest.com/JavaCC/).

3) Arnold, K. and Gosling, J.: The JavaTM Pro-
gramming Language, Addison-Wesley (1996).

4) Beck, K. and Cunningham, W.: A Laboratory
for Teaching Object-Oriented Thinking, Proc.
OOPSLA’89, pp.1–6 (1989).

5) Carroll, J.M. (Ed.): Scenario-Based Design,
John Wiley & Sons (1995).

6) Deutsch, L.P.: Design Reuse and Frameworks
in the Smalltalk-80 Programming System, Big-
gerstaff and Perlis (Eds.), Software Reusability,
Vol.2, pp.55–71, ACM Press (1989).

7) Gamma, E., Helm, R., Johnson, R. and
Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley (1994).

8) Jackson, M.: Software Requirements & Speci-
fications, Addison-Wesley (1995).

9) Johnson, R.: Documenting Frameworks using
Patterns, Proc. OOPSLA’92, pp.63–76 (1992).

10) Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C., Loingtier, J.-M. and
Irwin, J.: Aspect-Oriented Programming, Proc.
ECOOP’97, pp.220–242 (1997).

11) Lewis, G., Barber, S. and Siegel, E.: Pro-
gramming with Java IDL, John Wiley & Sons
(1998).

12) Milner, R., Tofte, M., Harper, R. and
MacQueen, D.: The Definition of Standard ML
(revised), MIT Press (1997).

13) Nakajima, S. and Futatsugi, K.: An Object-
Oriented Modeling Method for Algebraic Spec-
ifications in CafeOBJ, Proc. ICSE’97, pp.34–44
(1997).

14) Nakajima, S.: Using Algebraic Specifica-
tion Techniques in Development of Object-
Oriented Frameworks, Proc. FM’99, pp.1664–
1683 (1999).

15) Pree, W.: Meta Patterns – A Means for
Capturing the Essentials of Reusable Object-
Oriented Design, Proc. ECOOP’94, pp.150–

766 Transactions of Information Processing Society of Japan Mar. 2000

Appendix: Functional Programming Style Descriptions

(�2) fun search(R)
= (match cardinality filter ◦ match ◦ search cardinality filter ◦ gather)(R)

(�3) fun gather(R) = { s ∈ R | s.ServiceType ∈ requested types() }
(�4) fun requested types()

= if I.exact type match then { type(I.ServiceTypeName) }
else collect subtypes(T.TypeRepository,type(I.ServiceTypeName))

(�5) fun collect subtypes(G,N) = { n ∈ node(G) | n
∗≺ N }

(�6) fun search cardinality filter(R)
= truncate((if exist(I.search card) then min(I.search card, T.max search card)

else T.def search card), R)
(�7) fun match cardinality filter(R)

= truncate((if exist(I.match card) then min(I.match card, T.max match card)
else T.def match card), R)

(�8) fun select(R) = (return cardinality filter ◦ order)(R)
(�9) fun order(R) = order on preference(R,I.preference)
(�10) fun return cardinality filter(Q)

= truncate((if exist(I.return card) then min(I.return card, T.max return card)
else T.def return card), R)

(�11) fun federation(R)
= let val new count = new hop count()

in
if new count ≥ 0 t̄hen traversal((I with new count),R) else R

end
(�12) fun new hop count()

= (if exist(I.hop count)
then min(I.hop count, T.max hop count) else T.def hop count) - 1

(�13) fun traversal(J,R)
=

⋃
∀L∈T.links

dispatch on(current link follow rule(L,J), L,

(I with new importer follow rule(L,J)),R)
(�14) fun new importer follow rule(L,J)

= if exist(J.link follow rule)
then min(J.link follow rule, L.limiting follow rule, T.max follow policy)
else min(L.def pass on follow rule, T.max follow policy)

(�15) fun current link follow rule(L,J)
= if exist(J.link follow rule)

then min(J.link follow rule, L.limiting follow rule, T.max follow policy)
else min(L.limiting follow rule, T.max follow policy, T.def follow policy)

(�16) fun dispatch on(local only,L,J,R) = R
| dispatch on(if no local,L,J,R) = if empty(R) then follow(L,J) else R
| dispatch on(always,L,J,R) = follow(L,J) ∪ R

(�17) fun follow(L,J) = IDLquery(L.trader,J)

162 (1994).
16) Riehle, D. and Gross, T.: Role Model Based

Framework Design and Integration, Proc.
OOPSLA’98, pp.117–133 (1998).

17) Rumbaugh, J., Blaha, M., Premeriani, W.,
Eddy, F. and Lorensen, W.: Object-Oriented
Modeling and Design, Prentice-Hall (1991).

18) Vogel, A. and Duddy, K.: JavaTM Program-
ming with CORBA (2ed.), John Wiley & Sons
(1998).

(Received February 12, 1999)
(Accepted December 2, 1999)

Shin Nakajima is affiliated
with C&C Media Research Lab-
oratories, NEC Corporation. He
received B.A. and M.Sc. degrees
in physics from the University
of Tokyo in 1979 and 1981 re-
spectively. During 1988–89 aca-

demic year, he was a visiting researcher with
the University of Oregon. His research inter-
est includes distributed software engineering,
algebraic specifications, and meta-level archi-
tecture. He is also a visiting lecturer at Tokyo
Metropolitan University since 1992.

