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1 Introduction

As can be found in [1], model-based diagnosis (MBD) can be considered
a method of diagnosis that uses the notions of structure and behavior of
the device being diagnosed to detect faults from an observed symptom.
Although stated in slightly different terms in [1], in general, MBD can
be divided into three subtasks: Hypothesis Generation at which possi-
ble fault hypotheses are generated, given a symptom;Hypothesis Test-
ing where the fault hypotheses are tested if each of them can account
for the symptom or not, and then those which can not account for the
symptom will be discarded; and Hypothesis Classification where the
fault hypotheses that passed the test will be classified into an expected
order. In each subtask, the problems are: What sorts of knowledge can
be used 7 What kinds of strategies can be applied ?

In this paper, we focus on the subtask hypothesis generation. We
propose an approach to the subtask, providing a {framework at which
crucial sorts of knowledge and strategies for diagnosing faults, struc-
tural faults as well as behavioral faults, are covered.

2 Hypothesis Generation

Our framework for hypothesis generation is shown in Fig. 1. To gen-
erate fault hypotheses {from a given symptom, the {ramework considers
three important information sources for diagnosis: the domain model,
additional domain knowledge, and diagnostic strategy. The domain
model can be regarded as a class of knowledge that is useful for mod-
eling the system being diagnosed. Different from this knowledge class,
the additional domain knowledge is a class of knowledge that is helpful
in diagnosing faults, but the knowledge itself can not be derived from
the system directly. The diagnostic strategy can be considered to be
a set of strategies for diagnosis. In the rest of this section, we explain
the knowledge sorts, strategies, and algorithm in rather detail.

Disguostie Strategles

A premr—

The Hypothesie
-7 Gemeration Algorithm

Additionn)
main Knewledge

oy =
(haive Payoies

Figure 1: Hypothesis Genenation

2.1 Domain Model

For the task of hypothesis generation, the domain model includes the
device model, process model, topological relative position.
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Figure 2: Device Model 1

In principle, the device model represents the structure and behavior
of a component in the device. However, for the purpose of diagnosis,
another information such as the purpose of the component being mod-
eled is usually added into the model. Our device model is represented

in the form of a frame that includes a description of the purpose of
the component, a set of processes that are active when the component
works, a set of components that are connected to the component, a
list of parameters that are used for interaction between the compo-
nent and the other components connected to the component, and a set
of constraints describing the behavior of the component in terms of
qualitative derivative equations.

Therefore, by means of the device model we can model a compressor
in a refrigeration plant as shown by Device Model 1 in Fig. 2.

Besides being able to be represented in terms of structure and behav-
ior, a system can be described in terms of the processes being active in
the system. In the process model, we model processes that are active in
the system under consideration. As in [2], we describe a process in the
form of a frame that is specified by the following four slots: individsals,
a set of objects that participate in the process; initiating conditions,
a set of conditions which must hold for the process to start; sustain-
ing conditions, a set of conditions which must hold f{or the process to
continue; and effects, a set of value parameters which are influenced
by the process. Process Model 1 in Fig. 3 shows a process model for
liquid compression in the compressor.

compression(liquid,compressor)
individuals: liquid, compressor
initiating conditions:  exisi(liquid, compressor)

sustaining condltions: addpress(compressor) = +
effects: press{liquid) = +

Figure 3: Process Model 1

Unlike the two sorts of knowledge above, the topological relative
position presents the information, describing the relations among com.
ponents in the device in terms of space. This kind of information is
useful for controlling combinatorial explosions in generating fault hy-
potheses, particularly structural faults. Topological Relative Position
1 in Fig. 4 shows a very primitive topological relative position for an
outdoor unit:of an air-conditioner.
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Figure 4: Topological Relative Position 1
2.2 Additional Domain Knowledge

In fact, the first task the hypothesis generator has to do is to interpret
the given symptom. Most of approaches to MBD take an assumption
that symptoms can be interpreted directly in terms of parameter values.
However, in fact, not all observed symptoms can be interpreted in terms
of parameter values. Therefore, in order to be able to interpret such
a symptom, at least a certain extent of diagnostic knowledge on the
domain is needed. That is to say, we need heuristics to cope with it.
For instance, the following states that knocking at the compressor can
be caused by liquid compression at the compressor:

Heuristics 1:
knocking(compressor) & compression(liquid, compressor)

Moreover, from the style of reasoning, diagnosis can also be consid-
ered, although not absolutely, postdiction. It means that the task is to
deduce how the state shown by a given symptom might have happened.
To do the task often requires naive physics, which is not available in the
structure and behavior of the device under consideration. We use taz-
onomies as in [3], to formalize naive physics. Naive Physics 1 in Fig.
5 shows the “exist” history of liquid. The element in the left-hand
side (lhs) indicates the concept of “exist” of matter in the liquid state,
while those in the right-hand side (rhs) shows phenomena causing it.
Processes similar to those in the process model are used to charaterize
those phenomena in more detail.
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Don't confuse the naive physics with the heuristics. The former is
our common sense about the everyday physical world, while the latter
is a particular diagnostic knowledge of a domain that is obtained by
experience.

liquid:

exisifliquidX) &= flowing(liquid,Sre,X) V
v

melling(solid,X)
condensation{gas,X)

Figure 5: Naive Physics 1

2.3 Diagnostic Strategy

Two common strategies known widely in the current MBD are the qual-
itative value propagation and the direct path of causality. The former
states that to generate fault hypotheses, particularly behavioral fault
hypotheses, in a device, given an observed symptom, it is important
to interpret the observed symptom which usually can be interpreted
in the level of a parameter value as a qualitative value rather than as
a quantitative (numerical) one, then propagate the qualitative value
through the whole device model of the device. The latter is then ap-
plied in order to reduce the space of searching during the process of
diagnosing. Thus, it is enough to propagate an observed symptom in
the opposite direction of the information flow in the device.

Applying only the two strategies described above, however, we can
not detect the so-called structural fault. This is because the structural
modifications of the device also cause changes to the path of causal-
ity in the device. As a way to solve the problem, we use mainly the
naive physics, the topological relative position, and the device model
to detect the fault from the effect of the fault. The detection can be
explained as follows. First, we use the naive physics to deduce how
the state shown by the symptom might have come about; if necessary,
we use the heuristics. Next, we use information on the corresponding
processes to detect possible faults. Finally, using the topological rel-
ative position of the device we screen the possible faults Lhen localize
possible structural faults with the device model of the device.

2.4 The Hypothesis Generation Algorithm

The mechanism of generating fault hypotheses that exploits the sorts
of knowledge and the strategies described in the previous subseclions
is shown schematically in Fig. 6. )
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Figure 6: The Hypothesis Generation Mech

In order to be able to use the sorts of knowledge directly in gener-
ating fault hypotheses, we classify symptoms into four types, namely,
parameter value symptoms, process symptoms, heuristic symptoms,
and naive physics symptoms. The mechanism consists of four different
symptom analyzers, each of which corresponds to each of analyzers for
the four types of symptoms. Given a symptom, using appropritely the
five sorts of knowledge and the three strategies if needed, the mech-
anism generates fault hypotheses which can be derived directly from
the symptom and then takes the fault hypotheses as new symptoms
to generate further fault hypotheses. This is done repeatedly until all
possible fault hypotheses are generated or a certain number of fault hy-
potheses are achieved. The hypothesis generator (HG) is built based
on the mechanism. The detailed algorithm can be found in [4].

3 Example
Here we show an example of how the above framework diagnoses faults.

Consider a fault case in an air-conditioner as shown in Fig. 7. Assume
that the valve between the expansion valve and conduit 2 drips and the

drip flows into the compressor. This causes liquid compression at the
compressor, which finally results in knocking at the compressor (See
the broken lines in Fig. 7). |

The sequence of the diagnosis of the structural fault can be explained
as follows. (Follow the diagnosis sequence shown in Fig. 8, while
reading the following explanation.)
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First, the HG finds that the symptom is at the level of heuristics.
It coincides with the element in the lhs of Hexristics 1. The HG then
activates the rhs of the corresponding rule, which leads to consider that
Process Model 1 is active.

The HG then sets the process as a new symptom and proceeds
with its postdiction, scanning the slots of the process. In the ini-
tiating conditions, It finds esist(liguid,compressor) and then makes
it to be a new symptom. This will move the focus of attention of
the 11G to the Naive Physics 1, which leads to consider that process
flowing(liquid, Sre,compressor) was active (for simplicity, the other pro-
cesses are ignored). The IIG then again sets the process to be a new
symptom.

The HG then begins scanning the slots of the process and finds that
what is possible to be the Src of the process is a contained-liguid. Next,
by means of Topological Relative Position 1: outdoor-unit and the
device model of conduit2, the HG knows that conduit2 is a contained-
liquid and is possible to be the Src since it is in the same room as
the compressor. This leads the HG to deduce that there is ¢ new
connection as a lignid-flow-path between conduit 2 and the compressor,
which leads us to think that perhaps liguid leaking out of the valve
between the ezpansion valve and conduit 2 flows into the compressor.
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Figure 8: A Diagnosis Sequence

4 'Conclusion and Future Work

In this paper we have shown the importance of the device model, the
process model, and the topological relative position for modeling a
device, and the use of them in diagnosing faults, and pointed out that
the heuristics and naive physics have also to be considered, particularly,
in diagnosing structural faults. We also have indicated, although not
explicitly, that the use of multiple diagnostic strategies in diagnosing
faults enhances the capability of the hypothesis generator.

Besides implementing the current framework, we are also currently
doing research on providing {rameworks for the other two subtasks of
diagnosis, i.e., Hypothesis Testing and Hypothesis Classification, which
finally will be combined with the current {ramework to provide a robust
framework for model-based diagnostic systems.
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