
Vol. 41 No. 5 IPSJ Journal May 2000

Regular Paper

Parallel Selection Algorithms for CGM and BSP Models

with Application to Sorting∗

Akihiro Fujiwara,† Michiko Inoue††

and Toshimitsu Masuzawa††

In this paper, we present two deterministic selection algorithms with application to sorting
for the CGM and BSP models. The first is a parallel algorithm whose computation time is cost
optimal, which runs with O(n

p
) computation time and O(min(log p, log log n)) communication

rounds for n
p
≥ pε and ε > 0. The second is a parallel algorithm whose number of communica-

tion rounds is optimal, which runs with O(n
p

log p) computation time and a constant number

of communication rounds for n
p

≥ pε and ε > 0. In addition, we apply the second selection

algorithm to sorting. The sorting algorithm runs with O(n
p

log n) computation time and a

constant number of communication rounds, where n
p
≥ pε and ε ≥ 2.

1. Introduction

The selection problem is to find the kth-
smallest element in a given totally ordered set of
n elements for a given parameter k (1 ≤ k ≤ n).
(In the case of k = �n

2 �, the element is called
the median.) Since the selection problem is a
basic one that plays an important role in com-
puter science, many selection algorithms have
been proposed. For sequential computing, an
optimal selection algorithm, whose time com-
plexity is O(n), was proposed by Blum, et al.4).
Many parallel algorithms have also been pro-
posed for the problem, mainly in PRAMmodels
or network-dependent models (e.g., the mesh
model and the hypercube model).
However, the architectures of recent parallel

computers are quite different from the above
models. A typical parallel computer now con-
sists of a set of processor modules that run asyn-
chronously. Each module has the latest pro-
cessor and a local memory which is consider-
ably larger than O(1). The modules are con-
nected by some fast interconnection network,
but the cost of one communication (send or re-
ceive) is considerably larger than the cost of one
internal computation. On the other hand, the
PRAM and network-dependent models assume
synchronous processing and a small amount
memory of per processor. In addition, com-
munication costs are not evaluated precisely in
the models. Thus the above models are not

† Department of Computer Science and Electronics,
Kyushu Institute of Technology

†† Graduate School of Information Science, Nara Insti-
tute of Science and Technology

suited for recent parallel computers, and in
many cases, their algorithms are not efficient
on parallel computers.
For practical purposes, some parallel com-

putation models have been proposed for the
recent parallel computers. Among them, the
Bulk-Synchronous Parallel (BSP) model, which
was proposed by Valiant12), has received con-
siderable attention. The Coarse Grained Mul-
ticomputer (CGM) model, which was proposed
by Dehne, et al.5), is essentially the same as
the BSP model except for the following points.
In the BSP model, communication issues are
abstracted by using two parameters, L and g,
which denote the latency of the network and the
communication throughput ratio, respectively.
In the CGM model, on the other hand, commu-
nication costs are determined by the number of
communication rounds.
In this paper, we consider selection algo-

rithms for these models. For the BSP model,
some randomized selection algorithms have
been proposed. Gerbessiotis, et al.6) pro-
posed a randomized algorithm that runs in
O(n

p + Tppf (p)) time with high probability,
where Tppf (p) is the time required for a par-
allel prefix operation of p processors. Bäumker,
et al.3) proposed another randomized algo-
rithm. If n = Ω(p log4 n) holds, the algorithm
runs in O(n

p + L log p) computation time and

O(g
B

√
n
p + (L + g) log p) communication time

* Research supported in part by the Scientific Re-
search Grant-in-Aid from Ministry of Education,
Science, Sports and Culture of Japan (Scientific Re-
search of Priority Area(B)10205218).

1500

Vol. 41 No. 5 Parallel Selection Algorithms for CGM and BSP Models 1501

for B ≤
√

n
p with high probability☆. In addi-

tion, some deterministic and randomized selec-
tion algorithms1),2) have also been proposed for
BSP-like models. These two algorithms have
been used experimentally on real parallel ma-
chines.
Recently, two deterministic selection algo-

rithms were proposed for the above two mod-
els. Saukas and Song11) proposed a determin-
istic CGM algorithm for the selection problem.
Their algorithm runs with O(n

p log p) computa-
tion time and O(log p) communication rounds
for n

p ≥ p in the CGM model. Ishimizu, et
al.9) proposed parallel selection algorithms on
the BSP and BSP* models. The complexities of
their BSP algorithm are O(n

p+d log p log logn+
L log p log log n

log d) for the computation time and
O(g n

p+(gd+L)
log p log log n

log d) for the communica-
tion time. Although their BSP algorithm is cost
optimal in some cases, it needs O(log p log logn)
communication rounds, whose number depends
on the input size n; that is, the number of com-
munication rounds grows with respect to n.
Finding an optimal algorithm on BSP and

CGM models is equivalent to minimizing the
number of communication rounds so as to be
independent of the input size, as well as mini-
mizing its computation time. In this paper, we
first propose two selection algorithms in which
the number of communication rounds is inde-
pendent of n, and next apply one of these algo-
rithms to sorting. According to a definition of
the CGM model, the complexities of the algo-
rithms are evaluated according to two param-
eters, the computation time and the number of
communication rounds☆☆. We assume that h-
relation, with h = O(n

p), is permitted in each
communication round; that is, each processor
can send O(n

p) data and receive O(
n
p) data in a

round.
Our first selection algorithm runs with O(n

p)
computation time and O(min(log p, log logn))
communication rounds in the CGMmodel. The
algorithm achieves cost optimality with respect
to the computation time. In the algorithm, we
assume that n

p ≥ pε and ε > 0. Notice that
this assumption holds for almost all real par-

☆ Their algorithm assumes the use of the BSP* model,
which is an extended version of the BSP model.

☆☆ We characterize the algorithm in the BSP model
by these two complexities and the BSP parameters.
The method is described in Section 2.

allel computers. According to a definition of
the BSP model, the algorithm runs in O(n

p +
(L+g n

p)×min(log p, log logn)) time in the BSP
model. Previous deterministic BSP/CGM al-
gorithms for the selection problem need com-
munication rounds whose number depends on
n, or O(log p) communication rounds and O(n

p)
computation time per round, to our knowledge.
Thus, our algorithm is the first deterministic
selection algorithm that achieves a total com-
putation time of O(n

p) with a number of com-
munication rounds that is independent of n.
In the second selection algorithm, we aim to

optimize the number of communication rounds.
Using Goodrich’s sorting algorithm8), we can
solve the selection with O(n

p log p) computa-
tion time and a constant number of commu-
nication rounds in the case of n = pε and
ε > 0. Our second selection algorithm runs with
the same complexity for n

p ≥ p2. By combin-
ing Goodrich’s sorting algorithm and our algo-
rithm, we can solve the selection problem with
the above complexity for n

p ≥ pε and ε > 0 in
the CGM model. Since the number of proces-
sors on parallel machines is usually fixed, the
second algorithm may be faster than the first
in some situations. In the BSP model, the al-
gorithm runs in O(n

p log p+ L+ g
n
p) time.

Furthermore, we created a sorting algorithm
by modifying the second selection algorithm.
The algorithm sorts n elements with O(n

p log n)
computation time and a constant number of
communication rounds in the CGM model and
with O(n

p log n+L+g
n
p) time in the BSP model,

for n
p ≥ p2. Compared with Goodrich’s sorting

algorithm8), the number of processors used by
our algorithm is restricted to no more than n

1
3

and the other complexities are the same. How-
ever, our algorithm is simple and seems to be
faster in some situations.
This paper is organized as follows. In Section

2, we give brief descriptions of the models and
primitive operations. In Section 3, we present
our cost optimal selection algorithm. In Section
4, we present the second selection algorithm,
whose number of communication rounds is op-
timal, and describe its application to sorting.
Section 5 concludes the paper.

2. Preliminaries

2.1 Models
The rank of an element in a totally ordered

set is the number of elements smaller than or

1502 IPSJ Journal May 2000

equal to the element. The selection problem is
the problem of finding an element whose rank
is k in a given set of n elements for a given
parameter k (1 ≤ k ≤ n). For simplicity, we as-
sume that all elements are distinct. For CGM
and BSP models, we assume that the input el-
ements are evenly distributed on p processors
P0, P1, . . . Pp−1, that is, each processor stores
�n

p � or �n
p �− 1 input elements at the beginning

of an algorithm.
Both CGM and BSP models consist of three

parts: a set of processor modules, a communi-
cation network for module-to-module communi-
cation and a synchronizer that synchronizes all
or a subset of processors in barrier style. In this
paper, we assume that a computation on these
models consists of a sequence of supersteps. In
each superstep, each processor executes a local
computation round followed by a communica-
tion round. In a local computation round, each
processor computes without any communica-
tion with other processors. On the other hand,
each processor sends and receives data only in a
communication round. Therefore data received
in a communication round cannot be used in
a local computation round in the same super-
step. After all processors have completed their
supersteps, the synchronizer makes all proces-
sors start the next superstep.
The complexities of algorithms for the CGM

model are measured according to two parame-
ters, the computation time and the number of
communication rounds. Let S be the number
of supersteps of a computation. The number of
communication rounds Tcomm of the algorithm
is equal to the number of supersteps of the com-
putation; that is, Tcomm = S. Let compi be
the maximum computation time among all lo-
cal computation rounds in a superstep i, and let
commi be the maximum number of data sent
or received by one processor among all commu-
nication rounds in a superstep i. We define the
computation time Tcomp as the sum of compi

and commi for all supersteps; that is,

Tcomp =
S∑

i=1

(compi + commi).☆

We also assume that each processor can send
O(n

p) elements and receive O(n
p) elements in

☆ Although in many papers the computation time is

defined as Tcomp =
∑S

i=1
compi, we assume that

the cost of one sending or receiving operation is not
less than the cost of one internal operation.

each superstep. Although a “packing require-
ment”☆☆ is assumed in some papers for CGM
algorithms, we do not use such an assumption
in this paper, because doing so increases the
power of the model.
In the BSP model, two parameters, g and L,

are used to denote communication costs. The
parameter g denotes the ratio of the compu-
tation to the communication throughput, and
L denotes the minimal time taken to perform
a synchronization. The running time of an al-
gorithm in the BSP model is easily obtained
from these two parameters and complexities in
the CGM model: The running time of the algo-
rithms is O(Tcomp+(L+g× n

p)×Tcomm), where
Tcomp and Tcomm denote the computation time
and the number of communication rounds in
the CGM model, respectively.

2.2 Primitive Operations
In the following, we describe three primitive

operations used in this paper.
1. Broadcast: Broadcast is an operation to

send one element stored in a processor to
all of the other processors.

2. Prefix operation: Let ⊕ be a binary as-
sociative operator. Given a sequence of el-
ements (a0, a1, . . . , ap−1) such that each el-
ement ai is stored in a processor Pi, the
prefix operation computes the value si =
a0 ⊕ a1 ⊕ · · ·⊕ ai for each processor Pi. (In
this paper, we only use prefix sums.)

3. Load balancing: Let A be a set of u el-
ements that is partitioned into p subsets
A0, A1, . . . , Ap−1. We assume that each
processor Pi stores a subset Ai and ui =
|Ai|. Load balancing is an operation to dis-
tribute all elements in A evenly among all
processors; that is, after the load balanc-
ing operation, each processor stores �u

p � or
�u

p �− 1 elements of A and every element is
stored in exactly one processor.

We can execute the load balancing operation
by using the prefix sums as follows.
(1) Each processor Pi computes ui.
(2) Compute the prefix sums of ui (0 ≤ i ≤

p − 1) by using all processors. Let PSi be
the result for a processor Pi.

(3) Let Ai = {ai
0, a

i
1, . . . , a

i
ui−1}. Each pro-

cessor Pi sends each element ai
j to a pro-

☆☆ The “packing requirement” means that all data sent
from a given processor to the same processor in a
communication round are packed into one long mes-
sage.

Vol. 41 No. 5 Parallel Selection Algorithms for CGM and BSP Models 1503

cessor P�(PSi−ui+j+1)/ u
p �−1.

Since each processor sends at most O(ui) el-
ements and receives at most O(u

p) elements ex-
cept for prefix sums computation in the above
three steps, we obtain the following lemma:

Lemma 1 The load balancing of u elements
can be performed in O(max(u0, u1, . . . , up−1)
+u

p+T
comp
ppf (p)) computation time and T comm

ppf (p)
communication rounds, using p processors in
the CGM and BSP models, where T comp

ppf (p) and
T comm

ppf (p) are the computation time and the
number of communication rounds of the prefix
operation, respectively.

3. Cost Optimal Selection Algorithm

3.1 Basic Idea
Our first selection algorithm is based on a

well-known strategy, “median of medians.” In
the strategy, the median, whose rank is �m

2 �
among m elements, is used as a pivot to split
elements. The strategy was proposed as a se-
quential algorithm by Blum, et al.4), and have
been utilized in some parallel algorithms1),2).
The following algorithm has a similar structure
to these algorithms; however, the above algo-
rithms are considered only for p << n, and are
not cost optimal even for n

p = p.
The following is an overview of our algorithm.

In the description, we find the kth-smallest el-
ement.

Selection algorithm based on strategy
“median of medians”
Step 1: Set s = 1, ms = n, ks = k, and

repeat the following phase until ms ≤
max(n

p ,
n

log n).
(mi denotes the number of remaining ele-
ments in a phase i.)

(1) On each processor, find the median of all
elements on the processor.

(2) Select the median of the medians. (De-
tails of this substep are described in the
following subsection.) Let MM be the me-
dian of the medians.

(3) Broadcast MM to all processors.
(4) Split the elements on each processor Pi

into two subsets, Li and Ui. The subset
Li contains elements that are smaller than
MM , and the subset Ui contains elements
that are larger than MM .

(5) Compute SUML =
∑p−1

i=0 |Li| by using
all processors. According to the following
three conditions, discard elements on each

processor Pi and set ks+1 or end the algo-
rithm.

(5-a) Discard elements contained in Ui ∪
{MM} and set ks+1 = ks.

(If ks ≤ SUML)
(5-b) Output MM and end the algorithm.

(If ks = SUML + 1)
(5-c) Discard elements contained in Li ∪

{MM} and set ks+1 = ks − (SUML + 1).
(If ks > SUML + 1)

(6) Execute the load balancing operation for
remaining elements on all processors. Com-
pute the number ms+1 of the remaining el-
ements. Finally, set s = s+ 1.

Step 2: If n
p ≤ n

log n , sort all elements by us-
ing all processors and find the ksth-smallest
element. Otherwise, gather all elements on
one processor and execute a sequential se-
lection algorithm on the processor.

The key point of this strategy is to ensure
that ms+1 ≤ 1

δms for a constant δ > 1. If
this condition is satisfied, ms+1 ≤ (1

δ)
sn holds

for each phase s in Step 1. Consequently
the number of remaining elements becomes less
than max(n

p ,
n

log n) after O(min(log p, log logn))
phases. We prove this in the following subsec-
tion.
We can perform (1) and (4) of Step 1 in

O(ms

p) time on each processor. Therefore we
can perform Step 1 inO(

∑min(log p,log log n)
s=1 �ms

p �)
= O(n

p + min(log p, log log n)) computation
time and a constant number of communication
rounds except for the broadcast, prefix sums,
and pivot computation in (2). The computa-
tion time O(n

p + min(log p, log logn)) is equal
to O(n

p) for
n
p ≥ pε and ε > 0.

We can perform Step 2 in O(n
p) computation

time and a constant number of communication
rounds, for the following reasons. If n

log n el-
ements remain, we use Goodrich’s sorting al-
gorithm8). The algorithm sorts m elements in
O(m log m

p) computation time and a constant
number of communication rounds for m

p ≥ pε

and ε > 0. Therefore, we can sort the remain-
ing elements in O(

n
log n log n

log n

p) = O(n
p) compu-

tation time and a constant number of commu-
nication rounds. If n

p elements remain, we can
find a result with the same complexity by using
the optimal sequential algorithm4).
Consequently, we can perform the algorithm

in O(n
p) computation time and

O(min(log p, log logn)) communication rounds

1504 IPSJ Journal May 2000

if three operations—the broadcast, prefix sums,
and pivot computation in (2)—can be per-
formed in O(�ms

p �) computation time and O(1)
communication rounds in each phase s. In the
following, we describe first the details of the
broadcast and prefix sums, and finally the de-
tails of the pivot computation.

3.2 Broadcast and Prefix Sums
In this subsection, we show that the broad-

cast and prefix sums can be executed in
O(n

p log n) computation time. Since
n

p log n ≤ ms

p
holds for every phase s, we can perform these
operations in O(ms

p) computation time for each
phase.
We use a d-ary tree proposed by Gerbessiotis

and Valiant7). The d-ary tree is an undirected
tree that satisfies the following conditions:
• Each non-leaf node has exactly d children.
• All leaves are at level � log p

log d�.
Using the d-ary tree, we can perform the

broadcast and prefix sums in O(d × log p
log d)

computation time and O(log p
log d) communication

rounds10). To perform these operations with
the complexity described above, we set d =
� n

p log n�, and prove that log p
log d = O(1).

log p
log� n

p log n�
≤ log p
log n

p log n

≤ logn
1

1+ε

log n

n
1

1+ε log n

(
from

n

p
≥ pε

)

=
(

1
1 + ε

)
logn

log n
ε

1+ε

log n

<
logn

c logn− log logn

(
c =

ε

1 + ε

)
= O(1)

Therefore we can perform the broadcast and
prefix sums of each phase in O(n

p log n) compu-
tation time and O(1) communication rounds.

3.3 The Median of Medians Computa-
tion

We compute the median of medians (MM)
by using the d-ary tree (d = � n

p log n�) from
leaves to the root. In the following, we describe
the computation ofMM . Before this computa-
tion, each processor stores one median, and we
set d = � n

p log n�.

Algorithm for computing MM
Set g = 1, lg = p and repeat the following

phase until lg = 1. (lg denotes the number of
remaining medians in a phase g.)
After all phases are complete, setMM to the

remained median.
Step 1: Gather the medians on

⌊
lg
d

⌋
proces-

sors so that the number of elements on the
processors differs by at most 1. To com-
plete this step, we execute the following two
operations:

(1) Each processor Pi sends its median to pro-
cessor Pj such that j =

⌊
i
d

⌋
.

(2) A processor P� lg
d �+1

, which stores d−1 or
fewer medians, sends the gathered medians
to P0, P1, . . . , P� lg

d � evenly.
Step 2: On each processor where the gath-

ered medians are stored, find a median of
the medians on the processor by using a
sequential selection algorithm, and discard
all medians on the processor except for the
obtained median of the medians. Compute
the number lg of the remaining medians by
using all processors and set g = g + 1 on
each processor.

We can prove that the above computation
requires O(n

p log n) computation time and O(1)
communication rounds in a similar manner to
our proof of the broadcast and prefix sums.
The remaining task is to prove that the ob-

tained MM ensures that ms+1 ≤ 1
δms for a

constant δ > 1 in every phase s of the algo-
rithm. (Remember that ms denotes the num-
ber of remaining elements at the beginning of
phase s in the selection algorithm.) In our se-
lection algorithm, we splitms elements into two
subsets,

⋃p−1
i=0 Li and

⋃p−1
i=0 Ui, and set ms+1 to

one of
∑p−1

i=0 |Li| and
∑p−1

i=0 |Ui|, in each phase
s. In the following, we prove that

∑p−1
i=0 |Li| ≤

(1− 1
2r+1)ms holds forms+1 =

∑p−1
i=0 |Li|, where

r is a constant which denotes the number of
communication rounds of the MM computa-
tion.

(Proof) Let lr denote the number of remaining
medians at the beginning of the final phase of
the computation. Since lj ≤ lj+1×d and l1 = p,
lr × dr−1 ≥ p holds. (Note that we use a d-ary
tree such that d = � n

p log n�.)
Let EUg be the number of remaining medians

that are not less thanMM , at the beginning of
phase g of the pivot computation. From the def-
inition of the median, EUr = � lr

2 � holds. Since

Vol. 41 No. 5 Parallel Selection Algorithms for CGM and BSP Models 1505

EUg = EUg+1 × �d
2�,

EU1 =
⌈
lr
2

⌉
×
⌈
d

2

⌉r−1

≥ lr
2
×
(
d

2

)r−1

=
1
2r

× (lr × dr−1
)

≥ 1
2r

× p
Therefore, there exist at least 1

2r p processors
on which medians contained in Ui ∪{MM} are
stored at the beginning of the computation of
MM . On each processor which has a median
contained in Ui ∪ {MM}, the number of el-
ements that are not less than MM is

⌈ ms
p

2

⌉
.

Consequently,(
p−1∑
i=0

|Ui|
)
+ 1 ≥ EU1 ×

⌈
ms

p

2

⌉

=
1

2r+1
ms.

Since ms+1 =
∑p−1

i=0 |Li| = (
∑p−1

i=0 |Ui|) + 1
from the partition in the algorithm, ms+1 ≤(
1− 1

2r+1

)
ms holds for each s. ✷

We can also prove that ms+1 ≤ 1
δms in the

case of ms+1 =
∑p−1

i=0 |Ui| in the same manner.
In consequence, we obtain the following theo-
rem.

Theorem 1 We can solve the selection with
O(n

p) computation time and
O(min(log p, log logn)) communication rounds
by using p processors in CGM and BSP models
for n

p > p
ε and ε > 0.

4. Algorithm with Constant Commu-
nication Rounds

4.1 Selection Algorithm
We now give the second selection algo-

rithm that runs with O(n
p log p) computation

time and a constant number of communication
rounds for n

p ≥ p2.
The basic idea of our second algorithm is as

follows. In the algorithm, we reduce the number
of input elements from n to n

p with a constant
number of communication rounds. To achieve
the reduction, we use p2 pivots. (We use only
one pivot in each phase of the previous algo-
rithm.) We select p pivots from each processor,
and merge the pivots into one sorted sequence.
By computing the ranks of the pivots for all
input elements, we can find a pair of neighbor-

ing pivots such that the kth element is between
them. Once the neighboring pivots have been
discovered, we discard input elements that are
not between them. Since the number of remain-
ing elements becomes at most � n

p2 � on each pro-
cessor, we can gather all remaining elements in
one processor and execute the optimal sequen-
tial selection algorithm in O(p×

⌈
n
p2

⌉
) = O(n

p)
computation time and a constant number of
communication rounds.
In the following, we give an overview of the

algorithm.

Selection algorithm with constant com-
munication rounds
Step 1: On each processor Pi, compute a

sorted sequence PVi = (pvi
0, pv

i
1, . . . , pv

i
p−1)

such that pvi
j is the element whose rank is

�j × n
p2 � in a set of elements on Pi.

Step 2: Compute a sorted sequence PV =
(pv0, pv1, . . . , pvp2−1) whose elements are
PV0 ∪ PV1 ∪ . . . ∪ PVp−1. (We compute
PV so that every processor stores a copy
of PV .)

Step 3: For each pivot in PV , compute the
rank of the pivot among all input elements.
(We assume that the results are stored in
a sequence R = (r0, r1, . . . , rp2−1), and we
compute R so that every processor stores a
copy of R.)

Step 4: On each processor Pi, execute the fol-
lowing steps. First, find a pair of neigh-
boring pivots such that the kth element is
between them; that is, find a pair of pivots
(pvj−1, pvj) such that rj−1 ≤ k ≤ rj . After
finding the pair, compute the rank of pvj−1

in elements on the processor, and set Li to
the rank minus 1. (Li denotes the number
of elements that are smaller than pvj−1 on
the processor Pi.) Discard elements that
are not between the pair of pivots.

Step 5: Gather all remaining elements and
L0, L1, . . . , Lp−1 on one processor, and find
an element whose rank is k −∑p−1

i=0 Li by
using a sequential selection algorithm.

The details of the algorithm are as follows.
We can perform Step 1 in O(n

p log p) time by
computing the selection recursively: First we
find two pivots whose ranks are �� p

2�× n
p2 � and

(�� p
2�+ 1)× n

p2 �. According to the two pivots,
we split the elements into three subsets: The
first subset is a set of elements that are smaller
than the lower pivot, the second subset is a set

1506 IPSJ Journal May 2000

of elements that are larger than the upper pivot,
and the third subset is a set of the remaining el-
ements. We compute the two pivots recursively
for the first and second subsets.
In Step 2, each processor Pi broadcasts all

elements in PVi. We can perform the broad-
cast in O(p × p) = O(p2) = O(n

p) time and
one communication round because each pro-
cessor sends p × p = p2 ≤ n

p pivots and
receives the same number of pivots. After
the broadcast, each processor stores sequences
PV0, PV1, . . . , PVp−1. On each processor, we
can compute the sorted sequence PV by merg-
ing the sequences, using an optimal sequential
sorting algorithm. Since both the number of
sorted sequences and the size of each sequence
are p, we can sort in O(p2 log p) = O(n

p log p)
time on each processor.
In Step 3, we first compute ranks of the pivots

in PV for elements on each processor. To com-
pute the ranks, we execute the following steps
on each processor Pi. First we find a pair of
neighboring pivots for each element on the pro-
cessor such that the element is between them,
by the binary search. We can find the pair of
pivots in O(log p) time for each element since
the size of PV is p2. After finding the pairs
for all elements on the processor, we compute,
for each pair of neighboring pivots, the num-
ber of elements between the two pivots. Let
Ei = (ei0, e

i
1, . . . , e

i
p2−1) be a sequence such that

eij is the number of elements on a processor Pi

between pvj−1 and pvj , except for ei0, which de-
notes the number of elements smaller than pv0.
By computing the prefix sums of Ei, we can
compute Ri = (ri

0, r
i
1, . . . , r

i
p2−1), which are the

ranks of the pivots for elements on Pi. We set
ri
j =

∑j
g=0 eg for each j on each processor Pi.

Next we compute ranks R = (r0, r1, . . . ,
rp2−1) such that r0 =

∑p−1
i=0 r

i
0, r1 =

∑p−1
i=0 r

i
1,

. . ., rp2−1 =
∑p−1

i=0 r
i
p2−1. To compute these

sums evenly on each processor, each proces-
sor Pi sends ranks ri

j×p, r
i
j×p+1, . . . , r

i
j×p+p−1

to a processor Pj . From the received ranks,
Pj can compute rj×p, rj×p+1, . . . , rj×p+p−1. Af-
ter computing a subset of R on each proces-
sor, all subsets are broadcast and thus each
processor can compute R by merging the re-
ceived subsets. We can perform all of the above
computations of R in O(n

p log p) computation
time and a constant number of communication
rounds, because each processor sends and re-
ceives p2 ≤ n

p elements and computes locally in

O(p2+ n
p log p) = O(

n
p log p) computation time.

We can perform Step 4 in O(n
p) computation

time, because |R| = p2 ≤ n
p . Since the number

of the remaining elements on each processor is
at most � n

p2 � after Step 4, we can perform Step
5 in O(p+ n

p2 × p) = O(n
p) time and a constant

number of communication rounds.
Consequently, we can solve the selection in

O(n
p log p) computation time and the constant

number of communication rounds for n
p ≥ p2.

Since Goodrich’s sorting algorithm8) can sortm
elements in O(m

p logm) computation time and
a constant number of communication round for
m
p ≥ pε and ε > 0, the computation time of
Goodrich’s algorithm is O(m

p log p) in the case
of m

p = pε and ε > 0. Therefore we obtain the
following theorem by combining our selection
algorithm and Goodrich’s sorting algorithm.

Theorem 2 We can solve the selection with
O(n

p log p) computation time and a constant
number of communication rounds by using p
processors in CGM and BSP models for n

p ≥ pε

and ε > 0.
4.2 Application to Sorting
In the following, we present a sorting algo-

rithm that is an extension of the second selec-
tion algorithm. We assume that the inputs and
outputs of the sorting are evenly distributed
among a set of p processors P0, P1, . . . , Pp−1;
that is, each processor has �n

p � or �n
p � − 1 el-

ements at the beginning and at the end of the
algorithm.
An overview of the sorting algorithm is as

follows.

Sorting algorithm based on selection
Step A: Find p − 1 elements T = (t0, t1, . . . ,

tp−2) whose ranks are
(
�n

p �, �2× n
p �, . . . ,

�(p− 1)× n
p �
)
, respectively. To find these

elements, an extension of the second selec-
tion algorithm is used.
(We compute T = (t0, t1, . . . , tp−2) so that
every processor stores a copy of T .)

Step B: Each processor sends elements on
the processor so that the processor P0 re-
ceives elements smaller than t0, the proces-
sor Pp−1 receives elements larger than tp−2,
and the other processors Pi (1 ≤ i ≤ p− 2)
receive elements between ti−1 and ti.

Step C: Sort elements on each processor.
To execute Step A, we use the second se-

Vol. 41 No. 5 Parallel Selection Algorithms for CGM and BSP Models 1507

lection algorithm with Steps 4 and 5 mod-
ified as follows. In the description, we
use T = (t0, t1, . . . , tp−2), which is used
in the above sorting algorithm, and two
sets, PV = (pv0, pv1, . . . , pvp2−1) and R =
(r0, r1, . . . , rp2−1), which are obtained in Steps
2 and 3 of the second selection algorithm.

Extension of the second selection algo-
rithm for sorting
Step 4: On each processor Pi, execute the fol-

lowings:
(i) For each j (0 ≤ j ≤ p − 2), find

a pair of neighboring pivots in PV ,
(pvxj−1, pvxj

), such that tj is between
them; that is, compute xj that satisfies
rxj−1 ≤ �j × n

p � ≤ rxj
.

(ii) Make p− 1 subsets of elements TEi
0,

TEi
1, . . . , TE

i
p−2 so that each TE

i
j con-

tains all elements on the processor Pi

between pvxj−1 and pvxj
.

(iii) Compute the ranks of pvx0−1,
pvx1−1, . . ., pvxp−2−1 in elements on
each processor, and set lji to the rank of
pvxj−1 minus 1. (lij denotes the num-
ber of elements that are smaller than
pvxj−1 on each processor Pi.)

Step 5: Each processor Pi sends (TEi
0, l

i
0),

(TEi
1, l

i
1), . . ., (TE

i
p−2, l

i
p−2), to processors

P0, P1, . . ., Pp−2, respectively. After re-
ceiving all data, each processor Pi (0 ≤ i ≤
p − 2) finds an element ti whose rank is
�(i+1)× n

p �−
∑p−1

g=0 l
g
i in

⋃p−1
g=0 TE

g
i on the

processor. Finally, all ti (0 ≤ i ≤ p−2) are
broadcast so that every processor stores a
copy of T .

In Steps 4 and 5, the broadcast, prefix sums,
and sequential sorting are used, and at most
p2 ≤ n

p elements are sent and received. There-
fore, we can perform these steps in O(n

p log
n
p +

p2) = O(n
p logn) computation time and a con-

stant number of communication rounds.
We can perform Step B by sorting elements

on each processor, computing the ranks of
the elements among R, and sending and re-
ceiving at most �n

p � elements. Therefore, we
can perform Step B in O(n

p log n) computation
time and a constant number of communication
rounds. Step C can obviously be performed in
the same complexity.
In consequence, we obtain the following the-

orem.

Theorem 3 We can sort n elements with
O(n

p logn) computation time and a constant
number of communication rounds by using p
processors in CGM and BSP models for n

p ≥ p2.

5. Conclusions

In this paper, we have proposed two selec-
tion algorithms and described their applica-
tion to sorting for the CGM and BSP models.
The first selection algorithm runs with O(n

p)
computation time and O(min(log p, log logn))
communication rounds, and the second selec-
tion algorithm runs with O(n

p log p) computa-
tion time and a constant number of communi-
cation rounds. We also presented a sorting al-
gorithm that runs with O(n

p logn) computation
time and a constant number of communication
rounds for n

p i ≥ p2.
Acknowledgments We would like to thank
the reviewers for their constructive comments
to improve the quality of this paper.

References

1) Al-furaih, I., Aluru, S., Goil, S. and Ranka, S.:
Practical Algorithms for Selection on Coarse-
Grained Parallel Computers, IEEE Trans.Par-
allel and Distributed Systems, Vol.8, No.8,
pp.813–824 (1997).

2) Bader, D.A. and JáJá, J.: Practical Paral-
lel Algorithms for Dynamic Data Redistribu-
tion, Median Finding, and Selection, Proc. 10th
International Parallel Processing Symposium,
pp.292–301 (1996).

3) Bäumker, A., Dittrich, W., Heide, F.M. and
Rieping, I.: Realistic Parallel Algorithms: Pri-
ority Queue Operations and Selection for the
BSP Model, Proc. Second International Euro-
Par Conference, pp.369–376 (1996).

4) Blum, M., Floyd, R., Pratt, V., Rivest, R. and
Tarjan, R.: Time Bounds for Selection, Jour-
nal of Commputer and System Sciences, Vol.7,
No.4, pp.448–461 (1973).

5) Dehne, F., Fabri, A. and Rau-Chaplin, A.:
Scalable Parallel Computational Geometry
for Coarse Grained Multicomputers, Proc.
ACM Symposium on Computational Geometry,
pp.298–307 (1993).

6) Gerbessiotis, A. and Siniolakis, C.: Selection
on the Bulk-Synchronous Parallel Model with
Applications to Priority Queues, Proc. 1996
International Conference on Parallel and Dis-
tributed Processing Techniques and Applica-
tions (1996).

7) Gerbessiotis, A. and Valiant, L.: Direct Bluk-
Synchronous Paralle Algorithms, Proc. SWAT

1508 IPSJ Journal May 2000

’92, pp.1–18 (1992).
8) Goodrich, M.T.: Communication-Efficient Par-
allel Sorting, Proc. 28th Annual ACM Sympo-
sium on Theory of Computing (1993).

9) Ishimizu, T., Fujiwara, A., Inoue, M.,
Masuzawa, T. and Fujiwara, H.: Parallel Al-
gorithms for Selection on the BSP Model and
the BSP* Model, Trans. IEICE (DI), Vol.J82,
No.4, pp.533–542 (1999).

10) Juurlink, B.H.H. and Wijshoff, H.A.G.: A
Quantitative Comparison of Parallel Compu-
tation Models, Proc. 8th Symposium on Par-
allel Algorithms and Architechtures, pp.13–23
(1996).

11) Saukas, E. and Song, S.: A Note on Parallel
Selection on Coarse-Grained Multicomputers,
Algorithmica, Vol.24, pp.371–380 (1999).

12) Valiant, L.G.: A Bridging Model for Paral-
lel Computation, Comm. ACM, Vol.33, No.8,
pp.103–111 (1990).

(Received August 25, 1999)
(Accepted February 4, 2000)

Akihiro Fujiwara received
the B.E. degree in Osaka Uni-
versity in 1993, and received the
M.E. and Ph.D. degrees in Nara
Institute of Science and Technol-
ogy (NAIST) in 1995 and 1997,
respectively. He is now an as-

sociate professor of Kyushu Institute of Tech-
nology. His main research interests are paral-
lel algorithms, parallel complexity theory and
cluster processing. He is a member of IEEE
and IEICE.

Michiko Inoue received her
B.E., M.E, and Ph.D. degrees
in computer science from Osaka
university in 1987, 1989, and
1995 respectively. She worked at
Fujitsu Laboratories Ltd. from
1989 to 1991. From 1995, she

is an instructor of Graduate School of Infor-
mation Science, Nara institute of Science and
Technology (NAIST). Her research interests
include distributed algorithms, parallel algo-
rithms, graph theory and design and test of
digital systems. She is a member of IEEE, the
Institute of Electronics, Information and Com-
munication Engineers, and Japanese Society for
Artificial Intelligence.

Toshimitsu Masuzawa re-
ceived the B.E., M.E. and
D.E. degrees in computer sci-
ence from Osaka University in
1982, 1984 and 1987. He had
worked at Education Center for
Information Processing, Osaka

University between 1987–1990, and had worked
at Faculty of Engineering Science, Osaka Uni-
versity between 1990–1994. He is now an as-
sociate professor of Graduate School of Infor-
mation Science, Nara Institute of Science and
Technology (NAIST). He was also a visiting as-
sociate professor of Department of Computer
Science, Cornell University between 1993–1994.
His research interests include distributed algo-
rithms, parallel algorithms and graph theory.
He is a member of ACM, IEEE, EATCS and the
Institute of Electronics, Information and Com-
munication Engineers.

