ERAC P2 2 554610 (CTARR 5 A1) & TE A 2

1-277

Operator Based Protocol Synthesis for LOTOS Specification

6 P—6

Bhed Bahadur BISTA, Zi-xue CHENG and Norio SHTRATORIT

Faculty of Engincering, TOHOKTU University

1 INTRODUCTION

Nesigning communication protocols is complex and time consnm-
ing. Tt is desirable to have support methods which help protocol
designers to design protocols systematically such that their cor-
rectness can be ensured. Some protocol synthesis methods have
already been discussed in [t]and[2]). Tn {I] a single entity is de-
signed using Petri Net and its peer entity is generated in Petri Net.
Tn [2] specification primitives(components) are used to'synthesize
protocols which are designed using Finite State Machine(FSM).
In this paper we propose a method which generates a peer entity
from a single given entity which is designed nsing 1.LOTOS[3], a
Formal Discreption Technique developed within 1SO.

2 PROTOCOL SYNTHESIS

2.1 Overview of the Synthesis Procedure

Our protocol synthesis problem can be defined as follows.
[Definition 1] (Protocol Synthesis Problem):

Given a single entity we want to construct its peer entity such
that their interactions are complete, deadlock-free and properly
terminated.0

Completeness ensures that each send message in an entity appears
as a receive message in its peer entity. Deadlock-freeness guaran-
tees that no communicating entities are waiting for each other
farever. Proper termination ensures that whenever one entity ter-
winates successfully then its peer entity also terminates snccess-
fully. We briefly summarize our approach to solve this problem
which is shown in figure 1. (1) Design a single entity(process) us-
ing basic- LOTOS. (2) Decompose the process into sub-processes.
(3) Construct sub-processes of the peer entity(process) using the
synthesis rules. (4) Combine sub-processes in step 3 to construct
the complete peer entity which also is in basic LOTOS.

()
npu
a singlc entity
(PED)

&4—‘23 decomposing rules

. _sub-proce
—— 71
mE

sub-p

= -

Qutput

pecer entity
(PE2) _

Figure 1: Synthesis Approach

2.2 Definitions and Notation
2.2.1 Definitions

[Definition 2] (Actions of process P):
Actions of process P, Act(P), is defined as a set of all possible
actions executed by P.O

[Definition 3] (Synchronization actiouns of process P):
Synchronization actions of process P, Sync(P), is defined as a set
of actions which P synchronizes with a process Q.0

FExample: I{ P |[a,c]] Q then Sync(P) = Sync(Q) = {a, ¢}

[Definition 4] (Non-synchronization actions of process P):
Non-synchronization actions of process P,Non-sync(P) is defined

as Non-sync(P) = Act(P) - Sync(P).O

[Definition 5] (State Exploration Relation)
Let k be a state of entity PEI, then {(k) is a relation denoting
corresponding states of entity PE2.0

Example: Suppose PEI = a; b; exit and PE2 = ¢; a jexit then we
have following.

PE(D) PE(2) Note: This
relation
P1O) a CPZ(O) can be fixed
PI(D) P2(1) after applying
b a the synthesis
P1(2) ¢ P2(2) rules.

2.2.2 Notations

4 :a non-synchronization action of PEL.

£ : a non-synchronization action of PE2.

o: a synchronization action of PEl and PE2.

P1(i): state i of PE1; P2(j): state j of PF2.

P1(0):the initial state of PE[;P2(0): the nitial state of PE2.

2.3 Communication Model

Communication model which we adopted is synchronous and can
be summarized in figure 2.

| service user | [service ser |

service access points ——————3
{Non-synchronization actions)

communication points

(Svnchronization actions)

Fignre 2: Communication Model

Tn onr communication model, service access points correspond
to Service Primitives(SP) and communication points correspond
to Protocol Data Units(PDU). The constraints in PE1 and PE2
is that in normal course of actions each SP produces a PDU and
vice versa.

1—-278

2.4 Synthesis Rules for Constructing Sub-
processes of Peer Entity

The synthesis rules are constructed from the following two points;
(1) whenever an entity interacts first with its user at a service
access point (fig.2) in order to obtain a message from the user
to send to its peer entity then it interacts with its peer entity at
a communication point to send the message, (2) similarly when
an entity interacts first al a communication point to veceive a
message from its peer entity then it interacts with its user at a
service access point to deliver the message to the user.

2.4.1 Prefix / Recursion

Rule(pr) If PI{E) % Pi(i+ 1) 2 Pi(i +2)/P1(k)
then P2(j) EA P2(j + 1) < P2(+ 2)/ P2(f(k))
Rule(pra) If PI1(i) 2 Pi(i+ 1) & Pi(i + 2)/P1(k)

then P2(5) = P2(j +1) D P2(j + 2)/ P2(f(K))

2.4.2 Choice / Recursion

P1(i) 2 P1(i + 1) B P1(i + 2)/P1(k)
0 P16) 23 PG +1) 2 P1(i + 2)/PI(k)
then P3() B P2 +1) D P2(j +2)/ P2S(k))
D P2() 2 Pa(+ 1) 2 P2+ 2)/ PSR
P1(i) B P1(i + 1) 3 P1(i + 2)/P1(k)
0 P16) B Pi(i +1) %3 PI(i + 2)/ P1(k)
then P2(j) 2 P2(i + 1) L P2(5 + 2)/P2(£(4))
0 P20) = P20 + 1) 2 P2(j + 2)/ P2S(k))
Pi(i) 1 P1(i + 1) 3 P1(i + 2)/ P1(k)
0 Pi1G) 23 Pi(i +1) B PI(i + 2)/P1(k)
then P23) 5 P2(i + 1) 2 P2(j + 2)/P2(f(k))

0 P2) 2 Pagi+ 1) 2 P2(j + 2)/ P2AS (k)

Rule(ch) If

Rule(chy) If

Rule(chs) If

3 SYNTHESIS ALGORITHM

Qur algorithm supports the following operators in LOTOS:prefix,
choice, stop, exit, disable and recursion.

3.1 Algorithm
step 1 Design a single entity in basic LOTOS.

step 2 Starting from the initial state of PE1 decompose
PE1 into sub-processes such that each sub-process
with prefix only, has one SP and one PDU and
choice has n SP and n PDU (n > 2).

step 3 Use the synthesis rules in Section 2.4 to construct
sub-processes of PE2. Each a action will have one 3
action which can be renamed for semantical mean-
ing.

step 4 Combine sub-processes of PE2 to constrnct the
complete peer entity. Note: this is inverse opera-
tion of step 1.

3.2 Properties

Our algorithm and the synthesis rules hold the following proper-
ties.

(1) PE1 |[synchronization actions]| PE2 is deadlock-free.

{2) Tnteractions between PE1 and PE2 are complete.

(3) PEL and PE2 are well terminated.

4 APPLICATION EXAMPLE

The example shown in fignre 3 is for connection establishment,
data transfer and disconnect phase of Transport Layer.

QUTPUT

step 2
pI'(D: pT" (@) :
Lpl« i PI((':
TonRe '
Pi(1 : isln;
C " :
P1(2 ' cf;l(DR
i pPIEs P1(4)
iConC
s P1GS :
lRulc(I)’_z) Rule(ch_1 1 Rule(ch_2) Wstep 3
p2(l) i p2'(3)
P2(0
R
P2(:
Conln ;
P2Ce

Figure 3: Application Example

5 CONCLUSIONS

When designing a new protocol, our algorithm and synthesis rules
creates a peer entity, if a single entity is given in hasic LOTOS.

Our fture research is to extend our present algorithm for full
LOTOS and n entities. '

6 References

[1] C.V Ramamoorthy, S.T. Dong and Y.Usuda, An Implementa-
tton of an Automated Protocol Synthesizer(4PS) and its Imple-
mentation to the X.21 Protocol, TEEE Trans. Software Fngineer-
ing, Vol SE-11,NO. 9 Sept. 1985.

[2] Y. Kakuda and Y. Wakahara, Component-based Synthesis of
protocols for unlimited number of Processes, Proc. TERE COMP-
SAC’87, OCT.1987 PP721-730.

[3] 18O, LOTOS- a formal description technique hased on the tem-
poral ordering of observational behariour, ISO8807(Feb.1989).

