
Vol. 41 No. 8 IPSJ Journal Aug. 2000

Regular Paper

Security Analysis on the Proactivized System against

Latent Virus Attacks

Yuji Watanabe† and Hideki Imai†

The notion of proactive security of basic primitives and cryptosystems was introduced in
order to tolerate a very strong “mobile adversary.” However, even though proactive mainte-
nance is employed, it is a hard problem to detect the viruses which are skillfully developed
and latent in the memory of servers. We introduce a new type of virus attacks, called latent
virus attack, in which viruses reside in the intruded server and wait for the chance for viruses
colluding with each other to intrude more than the threshold of servers. The main subject
of this paper is to analyze the resilience of proactive system against latent virus attacks and
present how to enhance the security against such virus attacks. At first, the robustness of
proactivized systems against this attack is estimated by probabilistic analysis. Next, in order
to enhance the resilience against such virus attacks, we introduce active rebooting aproach, in
which the reboot procedure on a predetermined number of servers is performed in the total
independence of servers being infected or not. The effectiveness is also evaluated. As far as we
know, this work is the first proposal for enhancing the robustness of proactive system against
latent virus attacks.

1. Introduction

Threshold protocols 5)∼7) address a variety
of adversaries and a variety of attacks. They
maintain appropriate security against illegal
hackers, insiders, disgruntled ex-employees,
computer viruses, and other agents of data es-
pionage and destruction.
Threshold protocols maintain secrecy in the

face of up to k − 1 adversaries and yet achieve
data integrity and availability with the coop-
eration of k out of n shareholders. They are
called “(k, n) threshold protocol,” which is based
on the presupposition that the ability of an at-
tacker is less than a predetermined threshold.
However, it is substantially difficult to esti-

mate the ability of an adversary quantitatively
and to set a reasonable threshold, especially in
case they are an attractive target for break-
ins. For instance, we consider a (3, 5) threshold
protocol (in practice, MasterCard/Visa SET
root key certification system has been imple-
mented as a 3 out of 5 RSA threshold signature
scheme 8)). This protocol assures the security in
a cryptographic sense, provided the adversary
can corrupt (during the entire lifetime of the
protocol) only at most 2 servers. It is natural
that we should be concerned what the vulnera-
bility of the system is, in other words, “what is
the probability that the adversary can corrupt
more than 3 servers?”

† Institute of Industrial Science, University of Tokyo

Moreover, in some services, such as certifica-
tion authorities (CA), the system must remain
secure for a very long period of time. For se-
curing such a service, the system is composed
of multiple servers which engage in a thresh-
old protocol. However, in such systems, it is
intuitively clear that it is difficult to restrict
the attack within a constant fraction of servers
during an entire lifetime of the system. (Given
a sufficient amount of time, an adversary can
break into servers one by one, thus eventually
compromising the security of the system.)
A trivial but effective method to enhance the

security against this fault is to set the thresh-
old high enough to prevent the attack. Up-
per bounds of possible thresholds are therefore
to be chosen as the proportion to the num-
ber of whole servers (typically the majority of
servers), i.e., this method results in increasing
the number of participating servers. Therefore,
disadvantages of this approach include the com-
plicated management of a server’s security.
On the other hand, recently, the notion of

“proactive security 1)” of basic primitives and
cryptosystems that are distributed amongst
servers was introduced in order to tolerate a
very strong “mobile adversary” without in-
creasing the number of servers. This adversary
may corrupt all servers throughout the lifetime
of the system in a non-monotonic fashion (i.e.,
recoveries are possible) but the adversary is un-
able to compromise the secret if at any time pe-
riod it does not break into more than k−1 loca-

2228

Vol. 41 No. 8 Security Analysis on the Proactivized System against Latent Virus Attacks 2229

tions (k = �l/2� is optimum 1)). Proactive se-
curity adds a periodic refreshing of the contents
of the distributed servers’ memories. Therefore,
the knowledge of the mobile adversary (repre-
senting: hackers, viruses, bad administrator,
etc.) obtained in the past from compromising at
most k−1 number of servers is rendered useless
for the future. As a result, the system can tol-
erate a “mobile adversary” which is allowed to
potentially move among servers over time with
the limitation that it can only control up to
k − 1 servers during a period of time 9). This
setting was originally presented by Ostrovsky
and Yung 1). The notion of “proactive secu-
rity” assures increased security and availability
of the cryptographic primitive 2)∼4).

1.1 Latent Virus Attack to Proactive
System

We consider a very pragmatic scenario. Very
diverse viruses are produced by malicious peo-
ple and try various possible means to infect
servers and to avoid the detection. Once the
existence of a virus is detected by virus detec-
tion tools (e.g., anti-virus scanners) or check-
ing protocols at run-time (e.g., VSS 10),11)), the
system instantly triggers the reboot operation
of the infected server in order to remove the
virus from the server completely 1),2).
Computer viruses (as well as biological

viruses) go through several processes (infection
→ latency → activation) until they cause dam-
age to infected servers. Once the viruses be-
come active and disturb the system in a mali-
cious way, they are removable by checking the
protocol or by detecting the infection. How-
ever, how can we detect and remove the virus
in the latent period? Proactive maintenance
provides the measure to find malicious behav-
ior, but does not provide the measure to detect
latency of a virus. Therefore, detection of a la-
tent virus relies on virus detection tools. How-
ever, it is an intuitively hard problem to de-
tect the viruses which are skillfully developed
and latent in the memory of servers. Cohen 12)

showed that a perfect defense against computer
viruses is impossible. In fact, we never know
perfect virus detection tools which detect all la-
tent viruses without exception before their ac-
tivation.
Furthermore, we modify the model of latent

virus to a more powerful one which adaptively
causes malicious corruption. In this model, la-
tent viruses reside in the intruded server and
wait for the chance for viruses colluding with

each other to intrude more than the threshold of
servers. Once the chance has come, all viruses
become active and compromise the security of
the system.
Of course, a latent virus setting seems to

be rather theoretical but must be a poten-
tial threat, because we can easily see its real-
ity by observing a vicious spiral of construc-
tion of virus detection tools and appearance
of new type of stronger virus. A latent infec-
tion is a potential threat over many network-
systems, but is hardly manageable by crypto-
graphic techniques.

1.2 Our Results
The notion of proactive security was intro-

duced in order to realize the long-term secu-
rity against break-ins. A proactivized system
includes the mechanism to refresh the servers’
memories and renew the exposed shares into
new one in order to make the old one useless
for the adversary, as well as the mechanism to
detect malicious behavior during the protocol.
However, proactive systems provide no mea-

sure to detect the latent viruses before their
activation, so it depends on the ability of the
virus detection tools. Therefore, a proactive
system is not robust against the attack by la-
tent viruses, due to the hardness to detect la-
tent viruses which is produced skillfully.
The main purpose of this study is to show a

method for enhancing the robustness of proac-
tive protocol against latent virus attacks. Our
contribution in this paper is as follows. At first,
we estimate the robustness of proactivized sys-
tems against this attack by probabilistic analy-
sis. As a result, we show that if the virus detec-
tion rate is higher than a certain threshold, it is
possible for proactive maintenance to make the
system robust, while, if less than the threshold,
the failure probability of the system is depen-
dent only on the virus infection rate.
In order to enhance the resilience against such

virus attacks, we propose the notion of active
rebooting, in which the system performs the re-
boot procedure on a predetermined number of
servers in total independence of servers being
infected or not. We estimate the security of
proactive maintenance with active rebooting by
extending the probabilistic model. As a result,
we show that active rebooting enables us not
only to enhance the security against the viruses
with higher infection rate, but also to make the
system robust even in the case of a low detec-
tion rate. Moreover, we show that it is effective

2230 IPSJ Journal Aug. 2000

even in the case the number of servers which are
forced to carry out the reboot operation every
update phase is comparatively small.

1.3 Organization
The organization of this paper is as follows.

In the next section, we explain the basic defi-
nitions and a probabilistic model of virus infec-
tion and detection in a proactive maintenance.
In Section 3, we estimates the robustness of
a proactivized system against latent virus at-
tacks. Then, as an effective and practical coun-
termeasure against such attacks, we show “ac-
tive rebooting” method in Section 4. Finally,
we shall conclude in Section 5 with a summary
of our results and future works in this area.

2. Preliminaries

2.1 Model
We basically use the model by Herzberg, et

al.2) with a slight modification. This modifica-
tion is due to simplification of the analysis on
latent virus attacks (see Section 2.3).
In (k, n)-threshold protocol 13), a system of

n servers P = {P1, . . ., Pn} share a func-
tion fs for some key s. This secret value s
is shared among n servers through a (k, n)-
threshold scheme (i.e., s is divided into n shares
{s1, . . . , sn} such that k − 1 shares provide no
information on the secret, while k shares suf-
fice for the reconstruction of the secret). We
say that the protocol is a (k, n)-threshold pro-
tocol if, when k uncorrupted servers are active,
for any x, the shared function fs can be recon-
structed to compute fs(x) even in the presence
of k − 1 corrupted servers, yet nothing about
fs(x′) is revealed for x′ �= x.
(k, n)-proactive protocol 2) is a variant of

(k, n)-threshold protocol in order to enhance
the security against the adversary who can cor-
rupt all servers throughout the entire lifetime
of the system in a non-monotonic fashion, but
can corrupt no more than k−1 out of n servers
during any period of time. Proactive protocol
works as follows (Fig. 1). Let t be the time
which has passed from the beginning of the op-
eration of servers. For instance, we assume a
time unit is a day. The lifetime of the secret
s is divided into periods of time (e.g., days,
weeks, etc.). We define ξ as ξ = �t/τ� where τ
is the length of single time period. Accordingly,
if (ξ − 1)τ ≤ t < ξτ , we say that the system at
the time t belongs in ξ-th time period.
Each time period is divided into two parts,

operating phase and update phase. The time

-th time period

Num. of
Infected
Servers

Time

Detection
& Share

 Recovery

Threshold
(<n/2)

-th operating phase
-th update phase

o

u

o u)
 (short)

 infection

Fig. 1 A diagram illustrating proactive maintenance.

length of them are denoted as τo and τu, re-
spectively (i.e., τ = τo + τu), where the update
phase is negligibly short when compared to the
length of a time period, that is, τu
 τ, τo ≈ τ .
We refer to the period within (ξ − 1)τ ≤ t <
(ξ− 1)τ + τu as ξ-th update phase U (ξ), and the
period within (ξ − 1)τ + τu ≤ t < ξτ as ξ-th
operating phase O(ξ). The largest part of each
time period belongs to the operating phase and
only a short period at the beginning of each
time period belongs to the update phase.
At update phases, the servers engage in an

interactive update protocol, after which they
hold completely new shares of the same secret.
A non-faulty majority of servers trigger a re-
boot operation of faulty servers during an up-
date phase, in order to bring a completely fresh
version of the program from ROM to memory.
We refer these operations during update phases
as proactive maintenance.
Note that a server which has been infected by

the virus but has not detected it yet does not
perform the reboot operation. Accordingly, the
viruses can stay in servers’ memories as long as
it is not detected. Considering the behavior of
such viruses is the main subject of this paper.
For the simplicity of analysis, we do not con-

sider the corruption during an update phase.
Even if a server is corrupted during an update
phase, we can consider the servers as corrupted
during both periods adjacent to that update
phase. It is also not a realistic concern in our
setting, where the update phase is negligibly
short when compared to the length of a time
period.
On a removal of viruses through reboot pro-

cedures, we assume that the adversary intrud-
ing the servers P is “removable ” in the sense
that all of the shares are thrown away and new
shares of the secret are created. These was car-

Vol. 41 No. 8 Security Analysis on the Proactivized System against Latent Virus Attacks 2231

ried out through a reboot procedure when it
is detected by explicit mechanisms by which a
majority of (honest) servers always detects and
alerts about a misbehaving server or by regu-
lar detection mechanisms (e.g., anti-virus scan-
ners) available to the system management.
Triggering the reboot operation of a misbe-

having server relies on the system management
which gets input from a majority of (honest)
servers. Once the mechanism is found to be
infected, a complete reboot is performed in or-
der to bring a completely fresh version of the
program from ROM to memory. In this paper,
we assume that viruses cannot survive a phys-
ical reboot of the machine (for its detail, see
Ref. 2)), and for this assumption, we also as-
sume each server has the minimum amount of
trusted hardware for I/O and ROM.

2.2 Virus Intrusion Detection Model
One of the purposes of this paper is to esti-

mate the robustness of the system based on a
threshold structure against virus attacks.
Generally, at first, viruses attempt to intrude

into a server’s memory. After they are latent
within a certain period of time after their in-
trusion, they act and behave in various ma-
licious ways. However, once such viruses act,
they are detectable with extremely high proba-
bility by the virus detection mechanism of the
system. Accordingly, the powerful attacker who
attempts to corrupt the system totally design
viruses which are adaptively latent until intrud-
ing more than a threshold of servers. Therefore,
we consider adaptive viral behavior such that
viruses do not act until they succeed in intrud-
ing and lurking into more than a threshold of
servers.
According to these observations, the state of

an individual server can be placed in the follow-
ing three categories. Let C(t) be a set of servers
which are uninfected by viruses at the time t,
I(t) be a set of servers which are infected by
viruses but not aware of their own infection,
and D(t) be a set of servers which are infected
by viruses and have already detected the infec-
tion of viruses in their own memories. Define
nc(t) = |C(t)|, ni(t) = |I(t)| and nd(t) = |D(t)|,
where n = nc(t) + ni(t) + nd(t).

Figure 2 shows the simple model of state
transition with respect to virus infection and
detection. Let β, called infection rate, be the
probability with which an individual uninfected
server is infected by viruses in a unit time, i.e.,
for ∀ξ, ∀t ∈ O(ξ), ∀Pj′ ∈ C(t),

C
(clear)

I
(infected) t t

D
(detect)

1- t 1- t 1

C
(clear)

I
(infected)

1

D
(detect)

1
1

Operating Phase

Update Phase
(infection) (detection)

(rebooting)

Fig. 2 A model of virus infection and detection on a
proactive system.

Pr[Pj′ ∈ I(t +∆t)] = β∆t
Pr[Pj′ ∈ C(t +∆t)] = 1− β∆t.

After a virus intruding and being latent in Pj′ ∈
C(t), Pj′ belongs to I(t + ∆t). Consequently,
Pj′ ∈ I(t + ∆t), nc(t + ∆t) = nc(t) − 1 and
ni(t +∆t) = ni(t) + 1.
Proactivized servers should take enough mea-

sure to prevent a virus infection from prop-
agating successively by strict management of
communication among servers or use of diverse
operating systems among each other. If not,
it may be feasible for the number of infected
servers to exceed the predetermined threshold.
So, we do not consider the successive propa-
gation of virus infection but consider the sim-
ple model that the infection rate β is invariable
throughout the lifetime of the system.
Moreover, most of a proactivized system is

symmetrically constructed, which means that
there is no difference among the roles the dif-
ferent servers play. So, we use the model that
each individual server is infected by viruses at
the same rate β among each other.
Similarly, let δ, called detection rate, be the

probability with which an individual infected
server become aware of viruses intruding and
being latent in its inside in a unit time, i.e., for
∀ξ, ∀ t ∈ O(ξ), ∀Pj′ ∈ I(t),

Pr[Pj′ ∈ D(t +∆t)] = δ∆t
Pr[Pj′ ∈ I(t +∆t)] = 1− δ∆t

After Pj′ ∈ I(t) detected the infection of
virus, Pj′ belongs to D(t +∆t). Consequently,
Pj′ ∈ D(t + ∆t), ni(t + ∆t) = ni(t) − 1 and
nd(t + ∆t) = nd(t) + 1. Viruses detected in
O(ξ) are surely removed from server’s memory
as a result that the reboot procedure is trig-
gered with probability 1 in the update phase
U (ξ+1). (This setting is well defined in Ref. 2).)
At each update phase, the system performs

proactive maintenance in order to renew old
shares of all servers into new ones. The update
phase is negligibly short when compared to the

2232 IPSJ Journal Aug. 2000

length of a time period, that is, τu
 τ . There-
fore, we assume that there is not any new infec-
tion and detection within an update phase, be-
cause it is reasonable that the probability of oc-
currence of new infection and detection within
an update phase is negligibly small compared
with that within an operation phase.
We consider in this paper the probability of

occurrence of failure caused by latent viruses
intruding into servers. Accordingly, we define
the failure of (k, n)-threshold (proactive) pro-
tocol as follows.

Definition 2.1 (Failure probability) For
a (k, n) threshold (proactive) protocol, we say
that the system fails if the number of corrupted
(or infected) servers exceeds k−1 at some point
of time t. Pf (t) denote the probability of occur-
rence of this failure from the beginning of the
system till the time t. We call Pf (t) the failure
probability, which can be defined as

Pf (t) := Pr[∃ζ < t, ni(ζ) + nd(ζ) ≥ k].
2.3 Latent Virus Attack
At the end of this section, we informally de-

fine the adversary that we consider in this pa-
per. Let P = {P1, . . . , Pn} denote a system of n
servers employing the (k, n)-proactive protocol.
We call a group of adversary A = {A1, . . . , An}
latent viruses if A meets the following proper-
ties.
• Aj can infect server Pj in a unit time at

the rate β.
• After the infection, Aj is latent in server’s

memory without carrying out malicious be-
havior and wait for the instruction from the
director.

• Once more than a threshold of servers have
been infected by a subset of A, denoted as
A′, A′ starts to corrupt intruded servers
simultaneously in arbitrary malicious way,
which may lead to disrupt the proactive
protocol.

• A is computationally bounded and there-
fore can not break any of the underlying
cryptographic primitives used.

Note that A can wait for the opportunity to
disturb the servers, since he knows whether the
intrusion of viruses into servers results in suc-
cess or failure. It is intuitively reasonable that
viruses for intruding into proactivized servers
are more adaptive and intellectual than biolog-
ical viruses epidemic or the normal computer
viruses.
We will take up the (4, 7)-proactive protocol

as a typical example. Our greatest concern in

this paper is to enhance the security against
latent virus attack without modifying the ex-
isting system, so we does not leave increasing
the number of servers out of consideration. (Of
course, it is one of the most effective solutions.
However, it is a trivial fact that increasing the
number of participating servers results in mak-
ing the system more robust against the failure.)
Narrowing an argument down to the case of a
certain number of servers (here we take up 7
servers’ case), we evaluate its security against
a latent virus attack and show how to enhance
the security without increasing the number of
participating servers.
Throughout the following analysis, we as-

sume the length of the time period τ is a day.
So, β and δ mean the probability of occurance
of new infection and detection within a day, re-
spectively.

3. Analysis

3.1 Robustness of Latent Virus At-
tacks (Unproactivized Systems)

At first, we examine a failure probability
of (k, n)-threshold protocol without proactive
maintenance against latent virus attacks. In
order to account for the relationship between
obscure parameters, we use the probabilistic
approximation of virus infection and detection.
(This description was introduced by Cohen 12).)
Accordingly, we do not deal with states of
servers at any point of time as deterministic
states but as probabilistic states by represent-
ing the probability of transition from one state
to another.
Note that there are no transition in the di-

rection of decreasing the number of infected
servers, because the information of shares which
has been leaked out by viruses cannot be recov-
ered without being refreshed into new shares
by proactive maintenance, even if viruses are
detected and removed from servers’ memories.
Consequently, the security of (k, n)-threshold
protocol against latent virus attacks can be
equivalent to that of (k, n)-proactive protocol
in case of δ = 0. Therefore, the result of (k, n)-
threshold protocol (without proactive mainte-
nance) is an upper bound of a failure probabil-
ity against this attack.
A typical threshold is k = �n/2� in most of

(k, n)-threshold protocols, because this guaran-
tees the existence of k honest servers and the
corruption of no more than k − 1 servers (for
details, see Ref. 1)). Throughout this paper, we

Vol. 41 No. 8 Security Analysis on the Proactivized System against Latent Virus Attacks 2233

100 101 102 10310-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

=10-2

=10-3

=10-4

=10-5

Time Period

Fa
ilu

re
 P

ro
ba

bi
lit

y

Fig. 3 A failure probability of the (4, 7)-threshold
protocol.

assume k = �n/2�.
Figure 3 shows the failure probability of

(4, 7)-threshold protocol. The horizontal axis
denotes the progress of time. As one can see
clearly, the failure probability of the system in-
creases along with the progress of time. Let us
define η as the time when the failure probabil-
ity Pf (η) exceeds 1/2 at first, which is given as
η = ln 2/β ≈ β−1.
Let us consider after 1000 (= 103) time pe-

riods, for example (after about 3 years from
the beginning of the system). If β = 10−2 or
β = 10−3, there is no doubt the system will
fail. Even if β = 10−4, the system is not se-
cure enough to ensure long-term security. It
is required that the virus infection rate should
not exceed 10−5 as long as the system should
be available for more than 3 years (in case of
the (4, 7)-threshold protocol without proactive
maintenance).

3.2 Robustness against Latent Virus
Attacks (Proactive Systems)

As figure 3 shows, the assumption of thresh-
old does not hold over a long period of time but
within a certain period of time. In threshold
protocols without proactive maintenance, once
the secret information in servers has leaked out
by the viruses, there is no measure to refresh
the information and to make the leaked infor-
mation useless. So, given a sufficient amount of
time, the viruses can break into the servers one
by one, thus eventually compromising the secu-
rity of the system. Accordingly, the attacks of
the viruses with high infection rate are serious
concern in systems that must remain secure for
long periods of time.
Proactive maintenance is highly effective

against such viruses, due to the mechanism to
remove detected viruses and to renew old shares

10-5 10-4 10-3 10-2 10-1

10-4

10-3

10-2

Detection Rate

Pf=10-2

Pf=10-3Vulnerable

Robust

Pf=10-4

Pf=10-5

In
fe

ct
io

n
R

at
e

Fig. 4 Virus infection rate against virus detec-
tion rate achieving the failure probability
10−2, 10−3, 10−4 and 10−5 after 1000 time pe-
riods.

into completely new ones (see Fig. 1). There-
fore, a proactive protocol is more robust against
latent virus attacks than a threshold protocol
without a proactive maintenance. Actually, it is
an interesting question how the proactive main-
tenance enhances the security against the latent
viruses with infection rate β = 10−2 − 10−4

which are a threat to (4, 7)-threshold protocol
without proactive maintenance as mentioned in
Section 3.1.
We estimate the above probabilistic model

of virus infection and detection in a proac-
tive maintenance. Let us define the probability
function S(j1, j2, t) for ∀ξ, ∀t ∈ O(ξ) as

S(j1, j2, t) := Pr[ni(t) = j2 − j1, nd(t) = j1],
where n − j2 servers are uninfected by viruses.
S(j1, j2, t) means the probabilistic state of the
system with respect to virus infection and de-
tection. We can easily see, for ∀ξ, ∀t ∈ O(ξ)

Pf (t) = 1−
k−1∑

j2=0

j2∑

j1=0

S(j1, j2, t)

Now we estimate the security of the system
which is engaged in a (4, 7)-proactive mainte-
nance after 1000 time periods. Figure 4 shows
the relationship between virus infection rate β
and detection rate δ achieving each failure prob-
ability Pf after 1000 time periods. If the point
(δ, β) is located above each of the boundary
lines, the system cannot keep the corresponding
security against latent virus attacks, otherwise,
the system assures the security with less failure
probability.
There are remarkable differences on the shape

of all lines between δ > δth and δ < δth, where
δth is the lower bound of effective detection of
viruses and in this case (i.e., (4, 7)-proactive
protocol), we can find δth � 10−3. From this

2234 IPSJ Journal Aug. 2000

observation, we can easily see the following re-
quirements for keeping the system secure.
If δ > δth, the requirement for achieving an

failure probability Pf is β/δ < ρth, where ρth is
the threshold of infection/detection raito which
is determined by the number of servers and the
failure probability to be achieved. In this case,
the detection and removal of viruses by proac-
tive maintenance works for enhancing security
against latent virus attacks. If δ < δth, the re-
quirement for achieving an failure probability
Pf is β < βth, where βth is determined by the
number of servers and the failure probability to
be achieved. In this case, there is hardly any
contribution of proactive maintenance to en-
hance the security against latent virus attacks
because of the lack of the ability to detect the
viruses. Therefore, the failure probability of the
system practically depends on the infection rate
β.
Accordingly, the security of the system

against latent virus attacks depends heavily on
the ability to detect the infection of the viruses.
Especially, in case of δ < δth, we can find
that the detection and removal of viruses in
proactive maintenance does not work effectively
enough. This threshold δth also exists in the
case of n servers in general, because the proac-
tive protocol in case of the low detection rate is
almost equivalent to unproactivized protocol in
which the failure probability does not depend
on the total number of servers (see Section 3.1)
Increasing the detection rate can be achieved
by improving the virus detection mechanism
(anti-virus scanner, etc.), this parameter is too
unknown and fluid to estimate the security of
the system appropriately. Therefore, from the
viewpoint of constructing a mission critical sys-
tem, it is to be desired that we could cope
with more powerful viruses by more controllable
means even in a case where the ability to de-
tect viruses is not enough. The method to meet
these demands is “active rebooting method”
which we present in the following session.

4. Active Rebooting

Above proactive maintenance does not work
enough in case of low detection rate. This is
caused by the fact that the server is not re-
booted until it becomes aware of the existence
of viruses (passive rebooting). Therefore, the
unawareness of viruses intruding and being la-
tent in servers results in neglecting to take ap-
propriate measures promptly. Accordingly, we

101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Time Period

=10-3

=0 , =10-3

 Upper bound (unproactivized system)

=2, =10-3

=0 , =10-2

=0 , =10-1

=1, =10-3

Fa
ilu

re
 P

ro
ba

bi
lit

y

Fig. 5 A failure probability with respect to the
progress of time for β = 10−3.

propose a new method of rebooting servers,
which we call “active rebooting” method. Ac-
tive rebooting assures us that in each update
phase, more than a predetermined number α of
servers (of course, α < k) is rebooted and their
states were made uninfected. Since active re-
booting method does not depend on detection
of viruses for their removal, it is expected to
remarkably reduce the failure probability espe-
cially in case of low detection rate.
In the same way as the previous section, we

estimate the security of the system which is
engaged in a (4, 7)-proactive maintenance with
active rebooting. Figure 5 shows the failure
probability Pf (t) with respect to the progress
of time for β = 10−3. The vertical axis means
the failure probability and the horizontal axis
means the progress of time. A dotted line is the
upper bound of failure probability of the (4, 7)-
threshold protocol (see Section 3.1). If the de-
tection rate δ < 10−2, there is no improvement
even though the system performs the proactive
maintenance. Applying active rebooting to up-
date procedure enables us to reduce the failure
probability even in case of low detection abil-
ity. We remark that active rebooting is effective
as compared with passive rebooting even when
small α, that is, the increase of processing is
comparatively small.

Figure 6 shows the relationship between the
infection rate β and the detection rate δ achiev-
ing the failure probability Pf = 10−3 after 1000
time periods. If the point (δ, β) is located above
each of the boundary lines, the system cannot
keep the corresponding security against latent
virus attacks, otherwise, the system assures the
security with less failure probability. The curve
of α = 0 (without active rebooting) is the same
as Fig. 4.
Employing the active rebooting enhances ro-

Vol. 41 No. 8 Security Analysis on the Proactivized System against Latent Virus Attacks 2235

10-5 10-4 10-3 10-2 10-1

10-4

10-3

10-2
Vulnerable

Robust

Failure Probability = 10 -3

Detection Rate

 = 0
 = 1
 = 2
 = 3

 = 0

 = 1

 = 2
 = 3

In
fe

ct
io

n
R

at
e

Fig. 6 Virus infection rate against virus detection rate
achieving the failure probability 10−3 after
1000 time periods.

bustness against latent virus attack with higher
infection rate β throughout the entire range of
δ, so that the failure probability is not so depen-
dent on the detection rate δ. We mention that
the proactivized system with active rebooting
even in the case of relatively small δ can as-
sure the same level of security against the la-
tent viruses as that of high δ. This is caused by
the mechanism of active rebooting removing in-
fected and hidden viruses in servers. In the case
of n servers, the size of α is also small compared
with the size of n, because the removal rate of
viruses by active rebooting can be estimated as
α/n. This result means that the use of active
rebooting is highly effective against the attack
of latent viruses, even though β and δ may not
be measured quantitatively in practice. There-
fore, it is important to use proactivized system
in an active rebooting manner in order to main-
tain the security against unknown viruses.

5. Conclusions

In this paper, we proposed the method for
enhancing the robustness of proactive protocol
against latent virus attacks. Our contribution
in this paper is as follows.
At first, we estimated the robustness of proac-

tivized systems against this attack by proba-
bilistic analysis. Next, in order to enhance the
resilience against such virus attacks, we pro-
posed the notion of active rebooting, in which
the system performs the reboot procedure on a
predetermined number of servers in the total in-
dependence of servers being infected or not. We
estimated the security of proactive maintenance
with active rebooting by extending the proba-
bilistic model of proactive maintenance. As far

as we know, this work is the first proposal for
enhancing the robustness of a proactive system
against latent virus attacks.

References

1) Ostrovsky, R. and Yung, M.: How to with-
stand mobile virus attacks, Proc. PODC’91,
pp.51–59 (1991).

2) Herzberg, A., Jarecki, S., Krawczyk, H.
and Yung, M.: Proactive secret sharing, or
How to cope with perpetual leakage, Proc.
CRYPTO’95, pp.339–352 (1995).

3) Herzberg, A., Jakobsson, M., Jarecki, S. and
Krawczyk, H.: Proactive public key and sig-
nature systems, Proc. 4th ACM Symposium
on Computer and Communication Security’97
(1997).

4) Frankel, Y. Gemmell, P., Mackenzie, P. and
Yung, M.: Proactive RSA, Proc. CRYPTO’97,
pp.440–454 (1997).

5) Shamir, A: How to share a secret, Comm.
ACM, Vol.22, pp.612–613 (1979).

6) Desmedt, Y.: Threshold cryptosystem, Euro-
pean Trans. Telecommunications, Vol.5, No.4,
pp.449–457 (1994).

7) Gemmell, P.S.: An introduction to threshold
cryptography, CryptoBytes, Vol.2, No.3, pp.7–
12 (1997).

8) Frankel, Y. and Yung, M.: Distributed pub-
lic key cryptography, Proc. PKC’98, pp.1–13
(1998).

9) Canetti, R., Gennaro, R., Herzberg, A. and
Naor, D.: Proactive security: Long-term pro-
tection against break-ins, CryptoBytes, Vol.3,
No.1, pp.1–8 (1997).

10) Feldman, P.: A practical scheme for non-
interactive verifiable secret sharing, Proc.
FOCS’87, pp.427–437 (1987).

11) Pedersen, T.P.: Non-interactive and informa-
tion-theoretic secure verifiable secret sharing,
Proc. CRYPTO’91, pp.129–140 (1991).

12) Cohen, F.: Computer viruses, theory and
experiments, Computers & Security, Vol.6,
pp.22–35 (1987).

13) De Santis, A., Desmedt, Y., Frankel, Y. and
Yung, M.: How to share a function securely,
Proc. STOC’94, pp.522–533 (1994).

14) Adleman, L.: Abstract theory of computer
viruses, Proc. CRYPTO’88, pp.354–374 (1988).

15) Watanabe, Y. and Imai, H.: Active reboot-
ing method for proactivized system: How to en-
hance the security against latent virus attacks,
Proc. 1999 International Information Security
Workshop (ISW’99), pp.118–135 (1999).

16) Watanabe, Y. and Imai, H.: Probabilistic
analysis on proactive security against latent
virus attacks, Technical Report of IEICE,

2236 IPSJ Journal Aug. 2000

ISEC99-36, pp.77–84 (1999).

(Received November 30, 1999)
(Accepted June 1, 2000)

Yuji Watanabe was born
in 1973. He received his B.E.
and M.E. degrees in information
and communication engineering
from University of Tokyo in 1996
and 1998, repectively. From
1998, He is currently working

toward the Ph.D. degree in information and
communication engineering in the University of
Tokyo. He is a member of ACM and IACR.

Hideki Imai was born in
Shimane, Japan on May 31,
1943. He received the B.E.,
M.E., and Ph.D. degrees in elec-
trical engineering from the Uni-
versity of Tokyo in 1966, 1968,
1971, respectively. From 1971 to

1992 he was on the faculty of Yokohama Na-
tional University. In 1992 he joined the faculty
of the University of Tokyo, where he is currently
a Full Professor in the Institute of Industrial
Science. His current research interests include
information theory, coding theory, cryptogra-
phy, spread spectrum systems and their appli-
cations. He is an IEEE Fellow.

