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Proposal for New E-cash System Using Message Recovery Signature

Koji Hirohashi,† Mitsuru Tada†† and Eiji Okamoto†††

In this paper, we have examined the actual problem in the e-cash system (Nguyen, et
al. 1998), and then proposed a new untraceable off-line e-cash system with the feature of
Nyberg-Rueppel Signature (1993; 1995), which provides message recovery. Moreover, we
have estimated the security in our e-cash system from the viewpoints of completeness, user’s
privacy in the payment, forgery of coins and double-spending detection. Considering the cost
of communication and computation, our system is more efficient than other e-cash systems
(Brands 1994; Ferguson 1994).

1. Introduction

Electronic cash systems (e-cash systems)
have become one of the most important re-
searches from both practical and theoretical
viewpoints. In e-cash systems, there are the
following payment methods:
On-line Payment: When a user buys some-

thing at a shop, the shop links to a bank in
order to check the validity of the received
e-cash, and then deposits the e-cash. That
is, both payment and deposit are simulta-
neously executed in an on-line manner.

Off-line Payment: When a user pays an e-
cash to a shop, the procedure between the
user and the shop can be performed with-
out linking to a bank. The shop deposits
the received e-cash afterward.

Some on-line e-cash systems have been pro-
posed by Chaum 4), Damg̊ard 6) and Pfitzmann,
et al.17). However, since the on-line e-cash
systems require that the shop confirms the
validity of the received e-cash by linking to
the bank, their systems are not practical from
the viewpoints of turn-around-time, commu-
nication cost and database-maintenance cost.
Therefore, the off-line e-cash systems are prefer-
able from the practical viewpoint. Hereafter,
we consider only off-line payment. Off-line e-
cash systems should also satisfy the following
properties:
Independence: The security of e-cash must

not depend on any physical conditions.
Then the coin can be transferred through
networks.

Security: Nobody can copy (reuse) or forge
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coins.
Privacy (Untraceability): The privacy of a

user should be protected in the payment.
That is, the relationship between the user
and his purchases must be untraceable by
anyone else.

These points are considered by many e-cash
systems 1),2),5),9)∼11),15),16),19). In Brands 2),3),
the e-cash system 2) allows the attacker to forge
coins by executions of the scheme in parallel.
In other words, this system is weak for paral-
lel attack. In Ferguson’s 9),10), the withdrawal
scheme is not efficient because of enormous
communication cost. The e-cash systems 15),16)

realize the dividability that a coin can be sub-
divided into many pieces. However, the e-cash
system 15) utilizing cut and choose technique
makes the coin which consists of many terms
(for example, 40 terms). Therefore, this sys-
tem is very inefficient. On the other hand, the
e-cash system 16) does not realize the unlinka-
bility among coins divided from the same coin.
Nyberg and Rueppel 13) introduced the signa-

ture scheme, which holds the following feature:
Message Recovery: A message can be con-

veyed within a signature and can be recov-
ered at a verifier’s site. That is, the mes-
sage need not be hashed or sent along with
the signature, which saves storage space
and communication bandwidth.

The previous signature schemes based on the
discrete logarithm problem, such as ElGamal7)
and Schnorr19) signature schemes, cannot real-
ize this property.
Utilizing the feature of this signature,

Nguyen, et al.12) proposed the e-cash system
with message recovery unlike the previous e-
cash systems 1),2),5),9)∼11),15),16),19). However,
this e-cash system allows anyone to forge coins.
The reason is that a user can make the coin
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satisfying the verification equations, even if he
does not know the private keys a bank uses in
the withdrawal scheme.
In this paper, we will first consider the actual

problem in the e-cash system 12). Secondly, we
will propose a new untraceable off-line e-cash
system with the property of Nyberg-Rueppel
signature, which provides message recovery. In
addition, we will estimate the security in the
e-cash system.

2. Nyberg-Rueppel Signature Scheme

Here we review the signature scheme which
we use in this paper, and which is a special case
of Nyberg-Rueppel Signature Scheme 13),14).
The system parameters consist of two primes p
and q, such that q|(p−1), and an element g ∈ Z∗

p

whose order is q. (Since most operations are ex-
ecuted under modulo p, we will often omit the
description of (mod p), if that omission may
not cause any confusion.) The signer’s private
key is x ∈ Zq, while the corresponding public
key is h := gx. To sign a message m ∈ Zp,
the signer selects k ∈ Zq at random, and then
computes r and s such that

r := mg−k;
k = r′ + sx (mod q),

where r′ := r (mod q). The pair (r, s) turns
out to be the signature for the message m. The
message can be recovered by computing a veri-
fication equation:

m = grhsr.

3. E-cash System 12)

3.1 Preparation
Let p, q and g be two primes such that q|(p−

1) and an order-q element in Z∗
p, respectively.

Then, we suppose those are public. The bank
B has a private key x. B selects w1 and w2

at random, and then computes g1 := gw1 and
g2 := gw2 as well as h1 := gx

1 and h2 := gx
2 .

Then, we suppose g1, g2, h1 and h2 are also
public.
The user U has a pair of private and public

keys (u, v), where v := gu
1 g2. B registers the

public key v as the user identity. U is given w :=
vx as the bank certificate of the user identity.

3.2 Withdrawal Scheme
When U wants to withdraw some coins, B

and U must go through some authentication
process. For each coin, the following scheme
is run:
Step 1. B chooses a random number k ∈ Zq,

and then transfers δ := vk to U .
Step 2. U randomly generates y, z1, z2 ∈ Z∗

q ,
and then computes α := wy, β := vy and
λ := hz1

1 hz2
2 .

Step 3. Using a strong one-way hash function
H, U forms the message m := H(α, β, λ),
generates a, b ∈ Z∗

q at random, calculates
r := mβaδby, and then sends r′ := rb−1

(mod q) to B.
Step 4. B sends s′ := r′x+ k (mod q) to U .
Step 5. U removes the blind factor b, and

then obtains s := s′b+ a (mod q).
Step 6. U verifies the validity of the coin by

using the equation, H(α, β, λ) = β−sαrr.

3.3 Payment Scheme
When U wants to pay the coin M :=

[α, β, λ, r, s] to the shop S, the following scheme
is performed:
Step 1. S sends d := H(S ‖ Date ‖ Time ‖
· · ·) to U .

Step 2. U computes the response (r1, r2),
where r1 := z1 + udy (mod q) and r2 :=
z2 + dy (mod q), and then sends M and
(r1, r2) to S.

Step 3. S verifies the received coin by using
the two verification equations, H(α, β, λ) =
β−sαrr and hr1

1 hr2
2 = αdλ. If the checks are

successful, then the coin is regarded to be
valid.

3.4 Deposit Scheme
When S wants to deposit the coinM received

from U , the following scheme is executed:
Step 1. S sends the payment transcript

(M,d, r1, r2) to B.
Step 2. B confirms the two verification equa-

tions, H(α, β, λ) = β−sαrr and hr1
1 hr2

2 =
αdλ. If both are satisfied, then B accepts
the coin.

4. Problem in the E-cash System 12)

In this system, anyone can forge the coin. Be-
cause
• U can make the coin parameters satisfying
the verification equations even if he does
not know the B’s private keys.

Although Nguyen, et al.12) insist that we have
to find how to frame up another valid signature
from a certain one to forge a coin, we can give
another way for forgery.
Now, we show the attack on the e-cash sys-

tem 12). In the withdrawal, since α and β are
the information which B do not know, it is pos-
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U
τ, τ1, τ2, z1, z2 ∈R Z∗

q

α← βτ

β ← hτ1
1 hτ2

2 , λ← hz1
1 hz2

2

m← H(α, β, λ) , τ3 ∈R Zq

r ← mβτ3 , s← τr + τ3 (mod q)
M ← [α, β, λ, r, s]

r1 ← z1 + ττ1d (mod q)
r2 ← z2 + ττ2d (mod q)

S

d← H(S ‖ Date ‖ Time ‖ · · ·)

β−sαrr
?= H(α, β, λ)

hr1
1 hr2

2
?= αdλ

✛

✲

d

M ,r1,r2

Fig. 1 Attack on the e-cash system12).

sible for U to make α = βτ and β = hτ1
1 hτ2

2
(τ, τ1, τ2 �= 0). After computing m = H(α, β, λ)
by using λ = hz1

1 hz2
2 , U makes τ3 (�= 0), and

then calculates the equation:
r := mβτ3 .

Then, from the verification equation, we can
easily understand

r = mβsα−r

= mβs−τr.
Therefore, when U determines s as s := τr+τ3,
he can complete the forgery of the coin M =
[α, β, λ, r, s]. In the payment, since U knows
the powers of α and λ, he can compute r1 and
r2 satisfying hr1

1 hr2
2 = αdλ. Consequently, U

can pay the forged coin. Moreover, even if the
double-spending appears, B cannot detect the
illegal user. We reveal the actual example in
Fig. 1.

5. New E-cash System

In this section, we propose a new e-cash
system using Nyberg-Rueppel Signature13),14),
which provides message recovery.

5.1 System Setup
Let p and q be primes which satisfy q|(p −

1). We suppose both are public. Moreover, we
suppose g ∈ Gq\{1} is also public, where Gq is
a subgroup of Z∗

p consisting of order-q elements.
H is a strong one-way hash function mapping
from {0, 1}∗ to {0, 1}� (� ≈ 160). Let ‖ denote
concatenation. B generates three private keys
x, x1, x2 ∈ Z∗

q , and then computes h := gx,
h1 := gx1 and h2 := gx2 , which are public keys.

5.2 U ’s Account Establishment
U shows (by physical or other means) u ∈ Z∗

q

to B. If hu
1 �= 1 and hu

1h2 �= 1 are satisfied, then
B registers u. In other words, U is assumed to
share the user identity u with B.
5.3 Withdrawal Scheme
When U wants to withdraw some coins from
B, he must prove the ownership of his account
by some means. Then, the following scheme is
performed (see Fig. 2):
Step 1. B generates a random number k ∈

Zq, and then sends δ := (hu
1h2)k to U .

Moreover B generates the coin information
c, which consists of value, expiration date,
possibly some random bits and so on. But
as mentioned later, B must not send c to U
at this step.

Step 2. After choosing y ∈ Z∗
q at random,

U calculates α := (hu
1h2)y. U also gener-

ates four random numbers a, b, z1, z2 ∈ Zq,
and then computes m := hz1

1 hz2
2 and r :=

mgaαbδ.
Step 3. U sends r′ := r + a (mod q) to B.
Step 4. B sends s′ :=

r′+H(c)x
ux1+x2

+k (mod q)

and c generated at Step 1, to U .
Step 5. U computes s := s′y−1 + b (mod q).
Step 6. U accepts if and only if

α−sgrrhH(c) = m .

5.4 Payment Scheme
When U wants to pay the coinM := [α, c, r, s]

to S, the following scheme is executed (see
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U

y ∈R Z∗
q

α← (hu
1h2)y

a, b, z1, z2 ∈R Zq

m← hz1
1 hz2

2

r ← mgaαbδ

r′ ← r + a (mod q)

s← s′y−1 + b (mod q)

α−sgrrhH(c) ?= m

B
k ∈R Zq

δ ← (hu
1h2)k

c : coin information

s′ ← r′ +H(c)x
ux1 + x2

+ k (mod q)

δ

r′

c, s′

✛

✲

✛

Fig. 2 Withdrawal scheme.

Fig. 3):
Step 1. U transfers the coin M to S.
Step 2. S sends the challenge d := H(M ‖IS)

to U . IS contains data and time of the
payment, the shop identity, and possibly
some random bits to deal with the problem
of double-deposits.

Step 3. U sends the response (r1, r2), where
r1 := z1 + udy (mod q) and r2 := z2 +
dy (mod q), to S.

Step 4. S accepts if and only if the verifica-
tion, hr1

1 hr2
2 α−d = α−sgrrhH(c) is success-

ful.
5.5 Deposit Scheme
When S wants to deposit the coin M at B,

the following scheme is run (see Fig. 4):
Step 1. S sends the payment transcript

(M, IS , r1, r2) to B.
Step 2. B computes d = H(M ‖IS).
Step 3. B accepts if and only if the verifica-

tion, hr1
1 hr2

2 α−d = α−sgrrhH(c) is success-
ful.

6. Security

This section is due to Brands 2) and Schoen-
makers 19) to some extent. Following Feige, et
al.8), we denote by Z a party Z that follows
the schemes, and by Z̃ a party Z with unlim-
ited computing power that may deviate from
the schemes in an arbitrary way. Z denotes
either one of these.

6.1 Completeness
We say that an e-cash system is complete if

the system satisfies all the following properties:
(1) If U accepts in the withdrawal scheme,

and sends the coin and the response in
the payment scheme, then S accepts.

(2) If S accepts in the payment scheme, and
deposits the payment transcript in the
deposit scheme, then B accepts.

Proposition 1 New e-cash system is com-
plete.
Proof.
The proof will be given in Appendix.

6.2 Privacy
We say that an e-cash system protects the

privacy of the user in the payment if the system
holds the following property:
• If U follows the schemes, and does not
double-spend, then no shared information
can be developed between B and S in the
executions of the withdrawal and payment
schemes that U takes part in.

To prove the user’s privacy in the payment, we
show the following lemma:

Lemma 2 For any U , for any possible view
of B̃ in an execution of the withdrawal scheme in
which U accepts and for any possible view of S̃
in an execution of the payment scheme in which
the payer follows the scheme, there is exactly
one set of random choices that U could have
made in the execution of the withdrawal scheme
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U
M ← [α, c, r, s]

r1 ← z1 + udy (mod q)
r2 ← z2 + dy (mod q)

S

IS : shop ID
d← H(M ‖IS)

hr1
1 hr2

2 α−d ?= α−sgrrhH(c)

M

d

r1, r2

✲

✛

✲

Fig. 3 Payment scheme.

S
M ← [α, c, r, s]

B

d← H(M ‖IS)
hr1

1 hr2
2 α−d ?= α−sgrrhH(c)

M, IS , r1, r2✲

Fig. 4 Deposit scheme.

such that the views of B̃ and S̃ correspond to
the withdrawal and payment of the same e-cash.
Proof.
The proof will be given in Appendix.

Proposition 3 New e-cash system protects
the privacy of the user in the payment.
Proof.
The proof will be given in Appendix.

6.3 Forgery
To forge a coin, the verification equation,

hr1
1 hr2

2 α−d = α−sgrrhH(c) (= m), must be sat-
isfied. We say that illegal users cannot forge a
coin in an e-cash system if the system is pro-
tected from all the following attacks:

Forgery without the Withdrawal Scheme
Attack 1 Some users make a coin without the

use of coin parameters.
Attack 2 Some users make a coin from two

(or more) coins.

Forgery in the Withdrawal Scheme
Attack 3 A user executes the withdrawal

scheme by himself, and then frames up a
coin.

Attack 4 Two (or more) users simultane-
ously execute the withdrawal scheme in
parallel, and then frame up a coin with co-
operation (parallel attack).

Proposition 4 Illegal users cannot forge a
coin in the new e-cash system.

Proof.
The proof will be given in Appendix.

6.4 Double-spending Detection
If U has double-spent a coin, B will be able

to obtain the responses (r1, r2) and (r′1, r
′
2) for

two different challenges d and d′, where r1 =
z1 + udy (mod q), r2 = z2 + dy (mod q), r′1 =
z1 + ud′y (mod q) and r′2 = z2 + d′y (mod q).
Then, B can compute

r1 − r′1 = u(d− d′)y ;
r2 − r′2 = (d− d′)y.

From u(d− d′)y and (d− d′)y, B can easily ob-
tain u. Therefore, B can determine the double-
spender.

7. Performance Evaluation

In this section, we compare the efficiency of
new e-cash system with that of the off-line e-
cash systems1),9),10), which are famous and se-
cure. The efficiency of e-cash systems is esti-
mated by the cost of communication and com-
putation. We suppose that the computation
cost depends on the number of exponentiations
in each scheme, and that the communication
cost relies on the communication amount of pa-
rameters in each scheme. Now, we assume in
Brands scheme1), |p| = 1024, |q| = 160, in
Ferguson scheme9),10), |n| = 1024, |v| = 160,
and in our system, |p| = 1024, |q| = 160,
|c| = 160, where | · | denotes the binary length.
Then, we get the following results on Table 1.
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Table 1 Comparison between new e-cash system and other e-cash systems1),9),10).

Communication Amount [bits] Number of Exponentiation

Withdrawal Payment
Withdrawal Payment

U B U S
Brands system1) 2368 5760 12 2 0 7

Ferguson system9),10) 10880 4416 19 9 5 8
New e-cash system 1504 1952 9 2 0 6

In the withdrawal, the communication
amount of our system is smaller than those of
Ferguson and Brands systems. Moreover, the
number of exponentiations imposed on U is also
smaller than those in any other systems1),9),10).
The number of exponentiations imposed on B
in our system is the same as Brands system, and
the number in both systems is smaller than that
in Ferguson system.
In the payment, the communication amount

of our system is smaller than those of other e-
cash systems1),9),10). In our system and Brands
system, U do not need exponentiations. The
number of exponentiations imposed on S is
smaller than those of Ferguson and Brands sys-
tems.
Therefore, we see that new e-cash system is

more efficient than other e-cash systems1),9),10).

8. Conclusion

In this paper, we have considered the actual
problem in the e-cash system12), and then pro-
posed a new untraceable off-line e-cash system
using the property of Nyberg-Rueppel Signa-
ture 13),14), which provides message recovery.
In addition, we have estimated the security in
the the proposed e-cash system, which consists
of completeness, privacy, forgery and double-
spending detection. Our e-cash system is more
efficient than other e-cash systems 1),9),10).
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Appendix

Here we have the proofs of Proposition 1,
Lemma 2 and Propositions 3 and 4.

Proposition 1 New e-cash system is com-
plete.
Proof.
First, we prove the property (1). S accepts if

hr1
1 hr2

2 α−d = α−sgrrhH(c).

In the withdrawal, U computes
r = mgaαbδ

and

m = hz1
1 hz2

2 = α−sgrrhH(c).

Therefore, it suffices to prove that

αsg−rh−H(c) = gaαbδ

and

hr1
1 hr2

2 α−d = hz1
1 hz2

2

for the assignments made by U in the schemes.
The first equality follows from

αsg−rh−H(c)

= (hu
1h2)ysg−rg−H(c)x

= gr′+H(c)x(hu
1h2)kαbg−rg−H(c)x

= gr+aαb(hu
1h2)kg−r

= gaαb(hu
1h2)k

(∗)
= gaαbδ

and the second from

hr1
1 hr2

2 α−d

= hz1+udy
1 hz2+dy

2 (hu
1h2)−yd

= hz1+udy
1 hz2+dy

2 h−udy
1 h−dy

2
= hz1

1 hz2
2

= m.

The substitution in (∗) is allowed because U
accepts in the withdrawal only if (hu

1h2)k =
(hu

1h2)s
′
g−r′

h−H(c) = δ.
The other property (2) is immediately clear

from the fact that the shop identity included in
IS differs per shop and S does not use the same
value for IS in two different payments, since the
verification relation that is applied by B in the
deposit scheme is the same as that applied by
S in the payment scheme.
Lemma 2 For any U , for any possible view

of B̃ in an execution of the withdrawal scheme in
which U accepts and for any possible view of S̃
in an execution of the payment scheme in which
the payer follows the scheme, there is exactly
one set of random choices that U could have
made in the execution of the withdrawal scheme
such that the views of B̃ and S̃ correspond to
the withdrawal and payment of the same e-cash.
Proof.
We first consider the relations that must be
satisfied by the definition. The response
s′ of B̃ in the withdrawal scheme satisfies
(hu

1h2)s
′
g−r′

h−H(c) = δ, since U accepts in
the withdrawal scheme. By Proposition 1,
we can assume that the relation hr1

1 hr2
2 α−d =

α−sgrrhH(c) is satisfied in all views of S̃ in an
executions of the payment scheme in which the
payer follows the scheme.
We correspondingly define the following sets:
Views(B̃)
:= {(c, δ, r′, s′)|δ ∈ Gq and r′, s′ ∈ Zq

such that
(hu

1h2)s
′
g−r′

h−H(c) = (hu
1h2)k = δ} ;

Views(S̃)
:= {(α, c, r, s, d, r1, r2)|α, r ∈ Gq,

d ∈ {0, 1}� and s, r1, r2 ∈ Zq

such that
hr1

1 hr2
2 α−d = α−sgrrhH(c)} ;

Choices(U)
:= {(a, b, y, z1, z2)|a, b, z1, z2 ∈ Zq

and y ∈ Z∗
q} .

We have only to show that for all B̃-view ∈
Views(B̃) and for all S̃-view ∈ Views(S̃), there
is exactly one tuple (a, b, y, z1, z2) ∈ Choices(U)
such that B̃-view and S̃-view correspond to the
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withdrawal and payment of the same e-cash.
First, y is uniquely determined from α and

v = hu
1h2 as y = logv α. From r1, u, d and y, we

see that the choice z1 = r1−udy (mod q) must
have been made, and from r2, d and y, it follows
that z2 = r2− dy (mod q) must have been cho-
sen. The choice r together with r′ determines
a as a = r′ − r (mod q). Finally, the numbers
s, s′ and y determine b as b = s−s′y−1 (mod q).
For these choices of the five variables, all

the assignments and verifications in the two
schemes executions would be satisfied by defini-
tion, except for the assignments m = hz1

1 hz2
2 (=

α−sgrrhH(c)) and r = mgaαbδ that must have
been made by U in the withdrawal scheme. To
prove that these assignments hold as well, we
notice that from S̃-view ∈ Views(S̃) we have
that

hr1
1 hr2

2 α−d = α−sgrrhH(c).

Therefore, the proof is completed if

αsg−rh−H(c) = gaαbδ

and

hr1
1 hr2

2 α−d = hz1
1 hz2

2

for (a, b, y, z1, z2) made above. This is obvious
in the proof of Proposition 1, considering that
in the case the substitution in (∗) is allowed
because B̃-view ∈ Views(B̃).
Proposition 3 New e-cash system protects

the privacy of the user in the payment.
Proof.
This is an immediate consequence of Lemma 2
and the fact that U in the withdrawal scheme
generates (a, b, y, z1, z2) uniformly at random
from Choices(U).
Proposition 4 Illegal users cannot forge a

coin in the new e-cash system.
Proof.
[Attack 1]
In this attack, some users must make a
coin only from the verification equation,
hr1

1 hr2
2 α−d = α−sgrrhH(c). First of all, con-

sidering hr1
1 hr2

2 α−d = m, since U cannot know
B’s private keys (x, x1, x2) because of the dif-
ficulty of the discrete logarithm problem, some
users should determine α as α = hε1

1 hε2
2 , where

ε1 �= 0 and ε2 �= 0. Since δ, ga, αb and hH(c) are
quite independent of r and s, from

αsg−rh−H(c) = gaαbδ,
some users can obtain the following equation:

(hε1
1 hε2

2 )
sg−r = gD,

where gD = gaαbδhH(c). However, as

s =
D + r

ε1x1 + ε2x2
,

the relationship between r and s requires B’s
private keys (x1, x2).

[Attack 2]
This is the attack that some users make a coin
by mixing two (or more) different coins. Now,
we suppose that two users UA and UB have two
coins MA and MB , respectively, where Mi =
[αi, ci, ri, si] (i = A,B). Assuming that

r = mg−rαsh−H(c)

= (µ1+µ2)mABg−µ1rA−µ2rBαµ1sA+µ2sB

· h−H(µ1cA+µ2cB),

where µ1 �= 0 and µ2 �= 0, and where mAB is
a common m involved both in rA and in rB .
In precise, m = (µ1 + µ2)mAB. UA and UB

wish to satisfy the equation, r = µ1rA + µ2rB .
However, since

µ1rA + µ2rB = mAB(µ1g
−rAαsA

A h−H(cA)

+µ2g
−rBαsB

B h−H(cB)),

we see that generally r �= µ1rA + µ2rB.

[Attack 3]

As B’s signature s′ contains
r′

ux1 + x2
, it is im-

possible for U to frame up the user identity
without B’s private keys (x1, x2) in the with-
drawal. Now, we consider the forgery of the
coin value. In the withdrawal scheme, U com-
putes r = mgaαbδµ, where µ �= 0, and then
sends r′ = (r + a)µ−1 (mod q) to B. After get-
ting s′ =

r′ +H(c)x
ux1 + x2

+ k (mod q), U calculates
s = s′µy−1 + b (mod q), and then verifies the
following equation:

m = α−sgrrhH(µc)

= g−(r+a)h−µH(c)δ−µα−b · gr

·mgaαbδµ · hH(µc)

= mhH(µc)−µH(c).

However, we see that generally H(µc) �= µH(c).
If B sent the coin information c at Step 1 in

our scheme, then U could forge a coin whose
coin information is c′, with pretending to with-
draw a coin whose coin information is c. Let c′
be the forged coin information. Then the forg-
ing scheme is as follows:

(1) Using c given at Step 1, U sets µ to be
H(c′)/H(c).
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(2) Then U computes r̃ := mgaαbδµ, and
sends r̃′ := (r̃ + a)µ−1 (mod q).

(3) After getting s̃′ :=
(
r̃′ +H(c)x

)
/(ux1+

x2) + k (mod q), U figures out s̃ :=
s̃′y−1µ+ b (mod q).

Then the coin [α, c′, r̃, s̃] can satisfy the verifica-
tion α−s̃gr̃ r̃hH(c′) = m, and is available both in
the payment scheme and in the deposit scheme.
Therefore B must not send c at Step 1.

[Attack 4]
Now, we suppose that two users UA and UB per-
form the withdrawal scheme in parallel. First,
UA and UB get (cA, δA) and (cB, δB), respec-
tively, where δi = (hui

1 h2)ki (i = A,B). Assum-
ing that u includes uA and uB , for example, u =
e1uA+e2uB for some constants e1 and e2, they
compute α = (hu

1h2)y and r = mgaαbδµ
AδB,

where µ �= 0. They send r′A = (r +
a)(2µ)−1 (mod q) and r′B = (r+a)2−1 (mod q),
respectively. Getting (s′A, s′B), respectively,

where s′i =
r′i +H(ci)x
uix1 + x2

+ ki (mod q) (i =

A,B), they calculate s = (µs′A + s′B)y−1 +
b (mod q), and then confirm the following equa-
tion:
m = α−sgrrhH(µcA+cB)

= mgr+a+H(µcA+cB)x

· (hu
1h2)

−(r+a)2−1−µH(cA)x

uAx1+x2
+

−(r+a)2−1−H(cB)x

uBx1+x2

· hµkAuA+kBuB−u(µkA+kB)
1 .

Then, the equation:

gθ(hu
1h2)

θ1
uAx1+x2

+
θ2

uBx1+x2

·hµkAuA+kBuB−u(µkA+kB)
1 = 1,

where θ, θ1 and θ2 are defined as follows:
θ = r + a+H(µcA + cB)x ;
θ1 = −(r + a)2−1 − µH(cA)x ;
θ2 = −(r + a)2−1 −H(cB)x ,

must be satisfied. Therefore, they can obtain
the following equations by solving a quadratic
identical equation with respect to x, x1 and x2:




uAuBθ + u(uAθ2 + uBθ1) = 0 ;
u(θ1 + θ2) + uA(θ + θ2)
+uB(θ + θ1) = 0 ;

θ + θ1 + θ2 = 0 ;
µkAuAuB(u− uA)
+ kBuAuB(u− uB) = 0 ;

µkA(uA + uB)(u− uA)
+ kB(uA + uB)(u− uB) = 0 ;

µkA(u− uA) + kB(u− uB) = 0.

However, it is possible to satisfy these equations
only if uA = uB .
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