TR QA5 I CRIE 4 4101 2 lERk 2 1—-103
Rule-based Simulation Control

4 X—8 in an Object-oriented Environment

Emily Candell Yasuyuki Tauchi

SECOM Intelligent Systems Laboratory

SECOM Co Ltd
1 Introduction
In order to develop a training simulator*, we have developed Tec++, m Infer?nce
an object-oriented expert system shell. The system employs knowledge /‘ Engine
objects by combining object-oriented functionality, (0 represent the RULES
entities which exist in the simulated environment, with rule-based
reasoning techniques, to describe the behavior of the entities in the WORKING
simulation. MEMORY
In most object-oriented systems, object control is handled by an ”

embedded scheduling mechanism. This method limits the flexibility in COIVSI;BI&‘ICT

the user’s control of objects. Simulation of a real-world system requires
the user to accurately control the occurrence of simulated events. In
this object-oriented shell, delegation of control among the objects is
handled by a knowledge object. The rules of this knowledge object,
the Scheduler Object, are used to govemn which object is in control of
inferencing at any time. Additional scheduling rules can be defined to
control the objects in the simulation, thus giving the user more flexibility
in overall object and event manipulation.

2 Tecalbe

Tecalbe is a real-time, rule-based expert system sheil.t It was developed
using EAJ, an adaptation of Scheme[ea89] which supports event
handling.

Tecalbe uses inferencing to correlate a rulebase with the system’s
working memory (WM). The inference engine of Tecalbe uses a Rete
Network [For82] to quickly match working memory elements (WME)
with the left-hand-side (LHS) of the patiern rules in the rulebase.

3 Tec++

Tec++ combines Tecalbe’s rule-based inferencing capabilities with
general object-oriented functionality, including classes, objects and
message passing.

3.1 Classes
3.1.1 Rules

In an object-oriented environment, classes may be used to define the
behavior of a group of related entities. In Tec++, a set of rules is
associated with each class. These rules represent the behavior of all
objects created from this class. The rules are defined using the if-then
form employed by the OPS5 Rule-Based System[BFKM85].

3.1.2 Inheritance

At class creation time, a super class may be specified. A class inherits
the rules defined in its super class. The user can define rules in the
sub-class which will override its super class’ rules in order to create a
variation of a previously defined class. If a rule of the same name as a
super class rule is defined in a class, the new rule will replace the super
class rule.

*This simulator will be used for the training of SECOM security system
operators.
1Developed at SECOM Intelligent Systems Laboratory

Figure 1: Knowledge Object

3.2 Knowledge Objects

From each class which is defined, objects can be instantiated. Tec++
uses a knowledge object to represent each entity of the simulation.
These objects are similar to the knowledge objects used in [MUT87].
An object’s behavior is governed by the rules defined in the class from
which it was instantiated. All objects which are created from the same
class behave in the same way.

Each knowledge object consists of four parts (See figure 1):

o ID: Gives an object a unique name by which it can be referred in
message passing

o Rules: Govern the behavior of a knowledge object with respect
to the simulated entity which it represents

e Working Memory: Contains working memory elements which
describe the current status of the object during the simulation

o Conflict Set: Contains the set of rules which are fireable in an
object at any time during the course of the simulation

The object in control at any time functions in the same way as
Tecalbe. Tecalbe’s inference engine is shared between all the objects
which were defined for the simulation (Sec figure 1). The object which
controls the inference engine at any time is determined by a specialized
knowledge object, the Scheduler Object, which will be described in
Section 3.4.

3.3 Message Passing

In order to simulatc a system accuraicly, the entities being simulated
must have the ability communicate with each other. In Tec++, inter-
action among the simulated entities is realized by means of message
passing among knowledge objects. A knowledge object has the ability
to send messages to the other knowledge objects.



1-104

All messages which arc sent among the objects in the system are
first intercepted by the Scheduler Object. The Scheduler Object will be
described in more detail in Section 3.4. Ultimately, the message will
be forwarded to the receiving object. When a message is forwarded
from the Scheduler Object to the receiving object, its contents are
inserted into the WM of the receiving object. The inferencing context
is changed to that of the receiving object. The new WME may trigger
inferencing in the receiving object depending on the contents of its
working memory. When inferencing is completed in the receiving
object, control is retumned to the Scheduler Object.

Knowledge
Object

Knowledge

Scheduler
Object

Figure 2: Mcssage Passing in Tec++

3.4 Scheduling

In Tec++, a specialized knowledge object, the Scheduler Object, inter-
cepts all messages which are sent among the objects in the system (See
figure 2). The message becomes a WME in the WM of the Scheduler
Object. The message WME includes such attributes as a message’s re-
ceiving object, forwarding time, contents, and other information which
may be useful for scheduling the objects in an application.

In a simulation, it may be necessary to delay the sending of a
message in order to accurately represent when an event will oceur.
The Scheduler Object uses a user-specified delay to determine the
forwarding sequence of messages. The forwarding time in the message
WME indicates the time during the simulation that 2 message should be
sent from the Scheduler Object 1o its receiving object.

The scheduler in Tec++ is a knowledge objecl. All message arc
scheduled according to the rules which exist in the set of rules associated
with the general scheduler class (See figure 3). To control scheduling,
the Scheduler Object periodically compares the current real time, in
the form of a WME, to the forwarding time of all existing message
WMESs. If a message’s forwarding time is less than the current time, the
message is forwarded 10 its receiving object. If more than one message
can be sent at a given time, they will be sent on a FIFO basis. If there
is no message having a forwarding time which is less than the current
time, the Scheduler Object will update the time WME, and wait until a
message is ready 1o be sent. These scheduling procedures are controlied
entirely by the rules defined in the gencral scheduling class.

Scheduler Objec

Rules

Working Memory /

Conflict Set

A 4

R /

® Current Real Time| ¢ Forward

® Message(s)
B '_ ’%

. Figure 3: Scheduler Object

Similar to the other knowledge objects in the system a sub-class
can be created with the pre-defined general scheduling class as a super
class. In the set of rules associated with this subclass, the user can
define rules which control specific scheduling needs of an application.
User-defined scheduling rules can be uscd to control such things as
initialization of the status of the objects in a simulation and simulation
duration. The user can use any of the atiributes of the message WME
to control scheduling in the application.

4 Conclusion

By using a knowledge object, the Scheduler Object, to control the
objects of the simulation, we are preserving the modularity inherent
in object-oriented systems. Since all messages must pass through the
Scheduler Object, simulation control is centralized by means of the
scheduling rules. The rules which can be defined in the scheduler’s
sub-class give the user more flexible control of objects with respect the
real-world system which is being simulated.

References

[BFKM85] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy
Martin. Programming Expert Systems in OPSS : An In-
troduction to Rule-Based Programming. Addison Wesley,
1985. ’

H.Abelson et. al. Revised®?? report on the algorithmic
language scheme. Technical report, MIT Artificial Intelli-
gence Laboratory, August 1989.

[ca89]

[For82] Charles L. Forgy. RETE: A Fast Algorithm for the Many
Pattlern/Many Object Pattern Match Problem. Artificial

Intelligence, 19:17--37, 1982.

[MUT87] Takeo Maruichi, Tetsuya Uchiki, and Mario Tokoro. Be-
havioral simulation bascd on knowledge objects. In Con-

ference Proceedings of ECOOP '87,1987.



