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A Parallel Algorithm for Drawing Planar Graphs on the Grid
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1. Introduction

We consider the problem of embedding triconnected
cubic planar graphs on a hexagonal grid. The problem is
to embed the vertices of such a graph into a hexagonal
grid, where the edges lie on grid lines in such a way that
all edges except one are straight and any two edges do not
intersect.

We first introduce a sequential algorithm, given by
Kant [Ka}, which embeds a triconnected cubic planar
graph of n vertices on an 2 x n hexagonal grid in O(n)
time. We then present a parallel implementation of his
algorithm. The parallel algorithm runs in O(lognlog” n)
time using O(n) processors. Our parallel computation
model is CRCW PRAM.

2. Kant’s sequential algorithm
The algorithm consists of the following five steps:

(1) Construct the dual H of a given triconnected cubic
planar graph G. Apparently, H is triangular.

(2) Find a canonical numbering of H [FPP)]. The f faces
Fy, F,,..., and Fy of G correspond to the f vertices
v1, V2,..., and vy of H, respectively. Assume that
vertices v;, vz, ..., and vy are indexed according to
the canonical numbering.

(3) For each F;, 3 <1 < f, find E(F;) and be(F}) defined

as follows:
For aface Fy, 3 <1 < f, let E(F;) be the set of edges
of F; which belong to a face Fj such that j < 1. The
basis-edge of F;, 3 < i < f, denoted by be(F), is
the edge e € F; that, among all edges in Fj;, belongs
to the highest numbered face F; adjacent to Fj. Let
be(Fy) be the unique edge e € Fy N F1.

(4) Assign length lth(e) for each basis-edge ¢ in G as
follows.

Set lth(e) := 1, Ve € G;
fork:=3to f—1do

Ith(be(F1)) i= X ccp(r,) 1thie) = 1
Ith(be(Fy)) := zeeE(F,) lth(e) — 2;

(5) Draw Fy,Fy_,...,F3,F3,Fy sequentially in this order
as follows.

Draw Fy as follows: Let v, be the unique vertex
in Ffy N F; N F. Let vy and v, be the neighbors of
v, on Fy. We start with drawing v, on (0,0). From
v, we place vy lth(be(Fy)) steps in Y-direction (see
Figure 1) and v, lth(be(Ff)) steps in Z-direction. All
other vertices of Fy are placed on the horizontal line
segment (of length lth(bC(FjZB) between v, and vy in
a way that these horizontal edges e of F; have length
Ith(e).

When adding a face Fi by adding vertices and
edges of E(F}) to the current drawing of Fi41,...,.F,
we call the added vertices and edges new. Let Cr41
be the outerface of the current drawing of Fi41,...,Fy.
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Let ¢; and ¢; (j > 2) be the two vertices of Cj41, to
which new eéges of F, are incident, then we call ¢; the
startpoint and c; the endpoint of face Fy, respectively.

Adding a face goes as follows: if we add exactly
one vertex then we walk from ¢; upwards in Y-
direction and from ¢; upwards in Z-direction. The
crossing point is the place for the new vertex. If we
add two or more vertices w;,...,wp (p > 2), then we
go from c; one unit in Y-direction and from ¢; in Z-
direction to the same height (assume y(c;) > y{c:))
and place the new vertices on the horizontal line seg-
ment between them. Face F is drawn as illustrated
in Figure 1(c). Face F} is the outer face.

Y

(ay Adding a face with (b) Adding a face with
one vertex to the two vertices to the
current drawing. current drawing.

Figure 1
Each of steps 1, 3, 4 and 5 can be executed in O(n)

time. Step 2 also can be executed in O(n) time [CP].
Thus the sequential algorithm runs in O(n) time.

Theorem 2.1 [Ka] There is an O(n) time algorithm tc
embed any triconnected cubic planar graph on an § x n
hexagonal grid such that all edges except one are straight.

{(c) The complete
drawing.

3. Parallel implementation

Our parallel algorithm is as follows:

(1) Construct the dual H of a given triconnected cubic
planar graph G. Apparently, H is triangular.

2) Construct a realizer of the triangular graph H [Schl

3) For each interior vertex v of H, find be(F') and E(F
where F is the face of G corresponding to v. For
convenience, we call such a face F' an interior face o

(4) For each interior face F of G, calculate lth(be(F))

Also calculate Ith(be(Fy)).

(5) For each interior face F, calculate the X and ¥ co
ordinates for all of its new vertices.
We then analyze the correctness and time-complexity.

Step (1) can be executed in O(logn) time with O(n
processors [GR].

In step (2), we construct a realizer (instead of ¢
canonical numbering) of the triangular graph H, whict
is defined in the following definition [Sch]. This step car
1&3 Txecuted in O(log nlog* n) time with O(n) processor:

€.
Definition 3.1 A realizer of a triangular graph H is a par
tition of the interior edges of H into three sets {T1,T%, T,
of directed edges of trees such that the following hold.
(1) For each interior vertex v, the edges incident with ¢
appear around v in counterclockwise order as follows
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one edge in T) leaving v; a set (maybe empty) of
edges in T, entering v; one edge in T} leaving v; a set
(maybe empty) of edges in 71 entering v; one edge
in T, 'leaving v; a set (maybe empty) of edges in T
entering v.

(2) Let vy, vp and v, be the three exterior vertices.of
H appearing in counterclockwise order. All interior
edges incident with vy, v2 and v, enter vy, v2 and vy,
respectively, and belong to Ty, T> and Tn, respec-
tively.

Theorem 3.1 [Sch] Let H be a triangular graph with
at least four vertices. Then H has a realizer {T1, T2, Th}.
Moreover, each T; (i = 1,2,n)is a tree including all interior
vertices and exactly one exterior vertex v;, and all edges
of T; are directed toward v;.

Each interior vertex v of H has three neighbors x, y
and z such that edges (v,2), (v,y) and (v,z) leave v and
are in Ty, T> and T, respectively. Denote , y-and z by
Ty(v), T2(v) and Tn(v), respectively. We then have the
following two lemmas. .

Lemma 3.2 Given a realizer of a triangular graph H, one
can construct a canonical numbering of H such that, for
each interior vertex v of H, the neighbors of v appearing
around v between Ti(v) and T2(’U% in counterclockwise
order (including T;(v) and T3(v)) have indices less than
ind(v), and the other neighbors of v have indices greater
than ind(v).

- Proof. Omitted.

Lemma 3.3 For each interior vertex v, Th(v) has the
greatest index among the neighbors of v.
Proof. Omitted.

Using Lemmas 3.2 and 3.3, we can show that Step
(3) can be done efficiently in parallel as follows.

Lemma 3.4 Let G be a triconnected cubic planar graph
and H the dual. Given a realizer of H, one can find be( F)
and E(F) in parallel for interior faces F of G. It takes
O(log n) time with O(n) processors. :

We implement step (4) as follows.
(4-1) Construct a tree T}, defined as follows: T}, is a
rooted tree consisting of f — 2 nodes.

(a) the root node corresponds to Fy;

(b) each non-root node of T}, corresponds to an in-
terior face of G;

(¢) node n; is the parent of node n; in Ty, if be( F})
is in FY, where F) and Fj are faces of G corre-
sponding to ny and nj, respectively.

(4-2) Calculate Ith(be(F)) and lth(be(Fy)) by using
the doubling technique for Tp..
Step (4) can be executed in (logn) time with O(n) pro-
Ccessors.

We implement step (5) as follows.

(5-1) For each interior face F of G, find startpoint ¢;

and endpoint ¢; of F.
(5-2) For each interior face F' of G, calculate the X-
coordinates of its new vertices wj,...,wp.
(5-3) For each interior face F of G, calculate the Y-
coordinates of its new vertices wj,...,Wwp.
Clearly, using O(n) processors, step (5-1) and (5-2) can be
executed in O(1) and O(logn) time, respectively. There-
fore we shall show how to execute step (5-3) efficiently in
parallel.

(5-3-1) Construct trees T; and T, which are defined

as follows.

T.; is a rooted tree consisting of f — 2 nodes:

(a) the root node corresponds to F;

(b) each non-root node corresponds to an interion
face of G,

(¢) node ny, is the parent node of node ny, in Ty
if the endpoint c; of Fy, is a new vertex of Fy,.

T., is a rooted tree constructed from T, as follows:

for every two nodes n;, and ng, of Te;, add to Ty,

an edge directed from ny, to ny, and delete from T,

the edge directed from nyj, to its parent if (1) the

startpoint ¢; of F, is a new vertex of Fy, and (2]

Fy, has two or more new vertices.

‘We then have the following lemma.

Lemma 3.5 For each interior face F' of G and its cor-
responding ¢; and cj, the vertex v € {c;,¢c;} having
higher Y-coordinate'can be known by using T¢, and T,
in O(log n) time with O(n) processors.

Proof. Omitted. ‘

(5-3-2) Construct a tree T¢,;, which is defined as follows
- T;; is a rooted tree consisting of f — 2 nodes:
(a) the root node corresponds to F;
(b) each non-root node corresponds to an interior
face of G; . )
(c) node ny, is the parent node of node ny, in Tt
if for face F},, the vertex u € {ci,c;} having
higher Y-coordinate is a new vertex of Fy. .
(5-3-3) For each interior face F' of G, calculate the V-
coordinates of F'’s new vertices by using the dou-
bling technique for T¢;;.
Hence step (5) can also be executed in O(log n) time with
O(n) processors.
We thus can conclude the following theorem.

Theorem 3.6 There is a parallel algorithm which embed:s

a triconnected cubic planar graph on an 2 x n hexagonal

grid in O(log nlog* n) time with O(n) processors.
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