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This work explores an empirical model that puts genetic operators in a cooperative-
competitive stand with each other. Two parallel operators produce offspring and fulfill specific
roles: Self-Reproduction with Mutation (SRM) as a permanent source of diversity to induce
the appearance of beneficial mutations and Crossover and Mutation (CM) to propagate them
in the population. An extinctive selection mechanism subjects CM’s and SRM’s offspring to
compete for survival and to guarantee the preservation of beneficial mutations for the next
generation. SRM is implemented with an adaptive mutation schedule, which acts depend-
ing on SRM’s contribution to the actual population, and varies mutation rates from high to
small values to keep control of the exploration-exploitation balance. Two adaptive mutation
schemes are investigated for SRM, adaptive dynamic segment (ADS) and adaptive dynamic
probability (ADP). Mutation in CM is applied with a constant small probability. Thus, the
expected cooperation between CM and SRM emerges resulting in higher search velocity and
higher search reliability. The proposed model is investigated with the 0/1 multiple knap-
sack NP-hard combinatorial optimization problem where it outperforms a canonical genetic
algorithm as well as other enhanced GAs.

1. Introduction

Holland 1) defines crossover as the main ge-
netic operator. Its role is to construct high
order building blocks (hyperplanes) from low
order ones. Mutation, on the other hand, is
considered a “background” operator. Its pri-
mary role is to replace allele values lost from
the population assuring that crossover has a
full range of alleles so that the adaptive plan
is not trapped on local optima. In canonical
genetic algorithms these operators are applied
one after the other; crossover yielding recombi-
nation of alleles via exchange of segments be-
tween pairs of chromosomes and then mutation
inverting bits with a low probability rate pm

per bit.
Recent works, however, have shown that mu-

tation can play a more significant role in ge-
netic algorithms. Hinterding, et al. 2) investi-
gate the role of mutation as an independent re-
production operator (a new chromosome is pro-
duced either by crossover or mutation but not
both). They conduct various experiments to
determine the mixture of operators’ rates that
produces the best results within a number of
evaluations. Best results were often obtained
with quite low rates of crossover and hence high
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rates of mutation in the functions where their
algorithm was applied. Also, applying muta-
tion after crossover, similar to canonical genetic
algorithms, but varying mutation rates using ei-
ther time dependent functions or self-adaptive
schemes for mutation rate control have proven
to be effective approaches to improve the per-
formance of genetic algorithms 3)∼5).
Moreover, theoretical as well as empirical

studies of recombination and mutation in EAs
in general 6) and crossover and mutation in GAs
in particular 7),8) have given more insights to
better characterize the roles of these operators.
Spears 7), theoretically, and Wu, et al. 8), em-
pirically, demonstrate that there are some im-
portant characteristics of each operator that
are not captured by the other. Some com-
mon conclusions derived from these works are:
(i) crossover is more powerful than mutation
to propagate as well as to recombine building
blocks (construction or exploitation), (ii) muta-
tion introduces diversity in the population and
is more powerful than crossover in terms of de-
stroying building blocks (disruption or explo-
ration), and (iii) the genetic search can take
advantage of crossover’s recombination ability
only when the population is diverse and con-
tain appropriate building blocks. Other very
important points mentioned in Ref. 7) are: (iv)
it is possible to control the amount of explo-
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ration that mutation performs by adjusting the
mutation rate, and (v) crossover can simultane-
ously achieve higher levels of construction and
survival than any particular amount of muta-
tion; for mutation, on the other hand, it seems
difficult to simultaneously achieve high levels of
construction and survival.
The balance between crossover, mutation,

and selection has a long history and is a very
important issue in genetic algorithms. The way
this balance is sought will always rely on the un-
derstanding of how the genetic operators work.
Although the studies to which we refer above
were mainly aimed to clarify and show the rele-
vance of the individual contributions of genetic
operators, they also suggest forms in which
appropriate balances could be better achieved
leading to improve GAs.
From this point of view, this work explores

an empirical model of GA that pursues better
balances over the course of a run 9),10). The
model uses two parallel operators to create off-
spring and assign them specific roles: Self-
Reproduction with Mutation (SRM) as a per-
manent source of diversity to favor the appear-
ance of beneficial mutations, and Crossover and
Mutation (CM) to promote the increase of ben-
eficial mutations in the population. An extinc-
tive selection mechanism keeps the best indi-
viduals among them to guarantee the preserva-
tion of beneficial mutations for the next gen-
eration. The parallel formulation of genetic
operators tied to extinctive selection creates
a cooperative-competitive environment for CM
and SRM. SRM is provided with an adap-
tive mutation schedule that varies mutation
rates from high to small values depending on
SRM’s own contribution to the population (mu-
tants survival ratio) keeping control of the
exploration-exploitation balance and maintain-
ing competition between the two operators’ off-
spring during the entire course of evolution.
The proposed method is applied to a NP-hard
combinatorial optimization problem, the 0/1
multiple knapsack problem 11), where it out-
performs not only a canonical genetic algo-
rithm but also other enhanced genetic algo-
rithms 5),12).

2. Proposed Model

2.1 Beneficial Mutations
Crucial factors that facilitate the existence of

beneficial mutations in the population that will
contribute to the progress of evolution are (i)

rate at which favorable mutations occur, which
is directly related to mutation rate and popu-
lation size, (ii) propagation of beneficial mu-
tations, sustained by crossover and (iii) how
favorable mutations are, related to the inten-
sity of selection (addressed in Section 2.3). It
should be considered that these factors are not
independent but strongly related to each other.
An augment in the population size will pro-

vide with more individuals to mutate increas-
ing the possibility for favorable mutations to
appear. However, smaller populations are de-
sirable for many practical situations. In such
cases, an increase in the mutation rate seems
to be the only form to induce a higher rate for
favorable mutations.
Once favorable mutations appear, its propa-

gation to the rest of the population has to be
considered in order to increase the number of
beneficial mutations of each individual. To il-
lustrate this point, as an example, let us sup-
pose that two beneficial mutations, m′ and m′′,
arise in the population. There are two ways in
which the same organism might come to have
both of them. (i) One of the mutations, m′′,
may originate in an individual that already has
the other mutation, m′. (ii) Crossing over two
organisms, one who has m′ but not m′′ and one
who has m′′ but not m′. In the first case, relay-
ing only in mutation, beneficial mutations must
increase one after the other, or serially. How-
ever, when crossover is used, they can increase
at the same time in parallel. The crossover
potential for parallel combination of beneficial
mutations can help to increase their number in
the population improving the fitness of the in-
dividuals.
This suggests that crossover combined with

higher mutation rates may give improved per-
formance in genetic algorithms.

2.2 Parallel Genetic Operators
One way in which we could try to combine

crossover with higher mutation rates is to sim-
ply apply one operator after the other, as in a
canonical genetic algorithm. Let us discuss the
possible effects of crossover followed by muta-
tion on favorable recombinations and beneficial
mutations. First, we should consider that the
crossover’s benefits could be diminished accord-
ing to the probability of mutation. If mutation
probabilities are high, then although crossover
alone could be doing a good job it is likely that
some of the just created favorable recombina-
tions may be lost because of the high disruption
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introduced by mutation. We could think of this
case as a mutation interference with crossover’s
job. Another possibility is that mutation could
be doing a good job but crossover may produce
poor performing individuals (for instance, the
recombination of individuals located on differ-
ent peaks in multimodal landscapes can pro-
duce individuals located in the valleys between
peaks where the fitness is low 6)). Thus the sur-
vivability of beneficial mutations could also be
affected by ineffective crossing over operations.
We can think of this case as a crossover inter-
ference with mutation’s job. Other possibilities
are when the effects of crossover and mutation
aggregate either in a favorable or unfavorable
manner or are neutral and don’t interfere with
each other.
Another way to combine crossover with

higher mutation rates is to apply the opera-
tors in parallel. The parallel formulation of ge-
netic operators can avoid those cases in which
the operators interfere with each other implic-
itly increasing the levels of cooperation between
operators to introduce and propagate beneficial
mutations. It also sets the stage for competi-
tion between operators’ offspring.
In order to take advantage of recombination

and favor beneficial mutations simultaneously,
we explore an empirical model of GA that ap-
plies two genetic operators in parallel to pro-
duce offspring, each one fulfilling a specific role.
(i) Self-Reproduction with Mutation. Its role is
to introduce diversity by means of mutation in-
ducing the appearance of beneficial mutations.
(ii) Crossover and Mutation. Its main role is
to recombine information via exchange of seg-
ments between chromosomes promoting the in-
crease of beneficial mutations in the population.
We call these operators SRM and CM briefly
from now on.
We expect SRM to be the major source of

diversity in our model and its benefit depends
upon the favorable mutations that it is able
to create during the entire period of evolution.
The search process goes through various stages
and mutation should be sensible and support-
ive to all of them. At the beginning, empha-
sis on exploring the search space is required
and mutation should seed its progeny in be-
half of a global search. However, as the process
goes on exploitation of profitable regions, with-
out losing global search capabilities, are also
needed. The exploration-exploitation balance
over the course of a run is a crucial factor in

the search process and it is incorporated in our
model by providing SRM with a varying muta-
tion scheme.
Since the introduction of diversity is expected

from SRM, what we expect from CM is to
work as a good replication-recombination op-
erator. Thus, the mutation probability p

(CM)
m

related to CM, a replication error, is kept at a
low rate. Note that serial small mutation after
crossover in CM does not contradict the con-
cept of our model (crossover parallel to high
mutation) because the additional disruption
caused by mutation gives little affection to the
replication-recombination task of CM. In this
way, the CM’s strengths to propagate and re-
combine building blocks are not diminished by
the high levels of disruption and exploration
that SRM introduces during the various stages
of the search. The main reason for applying
small mutation after crossover is to keep the ap-
propriate balance between CM and SRM. (This
is verified with Fig. 6 and Fig. 7 in Section 4.4)

2.3 Extinctive Selection
As mentioned above, the parallel formulation

of genetic operators tries to avoid interferences
between operators. However, it does not pre-
vent SRM from creating deleterious mutations
or CM from producing ineffective crossing over
operations. To cope with these cases we also in-
corporate in the model the concept of extinctive
selection that has been widely used in Evolu-
tionary Strategies 13). Thus through extinctive
selection the offspring created by CM and SRM
coexist and compete for survival. Figure 1 il-
lustrates the expected effect of extinctive selec-

Fig. 1 Parallel formulation of genetic operators tied
to extinctive selection.
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tion: eliminate the poor performing individuals
created by both CM and SRM.
Note that in our model the positive effect of

crossover and mutation is never lost due to the
interaction between CM’s and SRM’s offspring.
That is, (i) we allow the best offspring of the
two parallel operators to coexist in the same
parent population through extinctive selection,
and (ii) selection can choose individuals for re-
production based only on their fitness without
any consideration about which operator created
the individuals in the previous generation.
The parallel formulation of genetic oper-

ators tied to extinctive selection creates a
cooperative-competitive environment for the
offspring created by CM and SRM and gives the
chances of interaction between them. Informa-
tion about the relative success of the mutants
is feedback to adapt mutation rates in SRM.

3. Improved Genetic Algorithm

3.1 Algorithm
The algorithm of the improved GA based on

the proposed model is presented below and its
block diagram is also shown in Fig. 2.
begin
t := 0
initialize (P (0))
evaluate (P (0))
while (not termination condition)
begin
P ′(t) = crossover and mutation (P (t))
P ′′(t) = self-reproduction with mutation
(P (t))

evaluate (P ′(t) ∪ P ′′(t))
P (t+ 1) = (µ, λ) proportional selection
(P ′(t) ∪P ′′(t))

t := t+ 1
end

end
CM is applied to individuals selected from

the parent population P (t) analogous to canon-
ical GA as explained by Holland 1) and Gold-
berg 14), therefore the following sections de-
scribe only SRM and the selection mechanism.

3.2 SRM (Self-Reproduction with
Mutation)

In order to produce offspring with SRM, indi-
viduals are selected from the parent population
P (t), an exact copy is created and then mu-
tation is applied with a mutation probability
p
(SRM)
m . SRM is provided with an adaptive mu-

tation schedule that acts depending on SRM’s

Fig. 2 Block diagram of proposed algorithm.

own contribution to the population, keeping
control of the exploration-exploitation balance,
and maintaining competition between the two
operators’ offspring during the entire course of
evolution. Two mutation schemes are investi-
gated for SRM: (i) adaptive dynamic-segment
(ADS), and (ii) adaptive dynamic-probability
(ADP).

3.2.1 ADS (Adaptive Dynamic-Seg-
ment)

ADS directs mutation only to a segment of
the chromosome using constant mutation prob-
abilities per bit

p(SRM)
m =

{
α (if the bit is in the segment)
0 (otherwise)

while the mutation segment size 	 is dynami-
cally adjusted every time a normalized mutants
survival ratio, γ, falls under a threshold, τ . The
normalized mutant survival ratio is specified by

γ =
µSRM

λSRM
· λ
µ

(1)

where µSRM is the number of individuals cre-
ated by SRM present in the parent population
P (t) after selection, λSRM is the offspring num-
ber created by SRM, λ is the total offspring
number (λCM + λSRM), and µ is the number
of individuals in P (t). The segment reduction
is summarized below:
	 = n (t = 0)
if (γ < τ) and (	 > 1/α)
	 = 	/2

where the segment size 	 varies from n (bit
string length) to 1/α, [n, 1/α] following a step
decreasing approach as shown in Fig. 3.
The segment initial position, for each chro-

mosome, is chosen at random, si = N [0, n),
and its final position is calculated by

sf = (si + 	) mod n. (2)
With this scheme, the average number of
flipped bits goes down from nα to 1, [nα, 1].
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Fig. 3 ADS (adaptive dynamic-segment) mutation.

Fig. 4 ADP (adaptive dynamic-probability)
mutation.

3.2.2 ADP (Adaptive Dynamic-Proba-
bility)

With ADP, every bit in the chromosome is
always subject to mutation with probability
p
(SRM)
m varying each time γ falls under τ :
p
(SRM)
m = α (t = 0)

if (γ < τ) and (p(SRM)
m > 1/n)

p
(SRM)
m = p

(SRM)
m /2

In other words, the segment size is kept con-
stant, 	 = n, but p(SRM)

m follows a step decreas-
ing approach from α to 1/n per bit, p(SRM)

m =
[α, 1/n] as shown in Fig. 4.
Both schemes, ADS and ADP, impose an

adaptive mutation rate control with the same
expected average number of flipped bits; the
difference lies whether mutation is applied lo-
cally inside the segment (ADS) or globally at a
chromosome level (ADP). Also, in the case of
ADS two different probabilities per bit are used
meanwhile in ADP a uniform mutation proba-
bility per bit is used.

3.3 (µ,λ) Proportional Selection
Among the various extinctive selection mech-

anism available in the EA literature 13) we chose
(µ, λ) Proportional Selection 13),15) to imple-

ment the required extinctive selection mecha-
nism. We are interested in comparing the pro-
posed algorithm with a canonical genetic algo-
rithm and using this selection mechanism we
can switch from the former to the latter by sim-
ply setting µ = λ. Selection probabilities for
this kind of selection are computed by

Ps(x
(t)
i )=




f(x(t)
i )

µ∑
j=1

f(x(t)
j )

(1 ≤ i ≤ µ)

0 (µ < i ≤ λ)

(3)

where x
(t)
i is an individual at generation t which

has the i-th highest fitness value f(x(t)
i ), µ is

the number of parents and λ is the number
of offspring. This kind of selection has been
characterized as dynamic, extinctive, pure se-
lection 13),15).

4. Experimental Results and Discus-
sion

4.1 The 0/1 Multiple Knapsack Prob-
lem

The 0/1 multiple knapsack problem consists
ofm knapsacks of capacities c1, c2, . . . , cm and n
objects. Each object has a profit pi (1 ≤ i ≤ n),
weights wij (1 ≤ j ≤ m), and it is either placed
in all m knapsacks or in none at all. The 0/1
multiple knapsack problem can be formulated
to maximize the function

g(x) =
n∑

i=1

pixi (4)

subject to
n∑

i=1

wijxi ≤ cj (j = 1, . . . ,m) (5)

where xi ∈ {0, 1} (i = 1, . . . , n) are elements
of a vector x = (x1, x2, . . . , xn), which is the
combination of objects we are interested in find-
ing. A solution vector x should guarantee that
no knapsack is overfilled and the best solution
should yield the maximum profit. An x that
overfills at least one of the knapsacks is consid-
ered as an infeasible solution.

4.2 Experimental Setup
We study our model and test its effective-

ness using various 0/1 multiple knapsack prob-
lems 11) which from previous efforts 5),12) seem
to be fairly difficult for GAs to find global op-
timum solutions.
Experiments are conducted using the follow-

ing algorithms: (i) a cGA (CM and propor-
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Table 1 Genetic algorithms parameters.

Parameter cGA GA(µ, λ) GA-SRM(µ, λ)
Representation Binary Binary Binary

Selection Proport. (µ, λ) Proport. (µ, λ) Proport.
Scaling Linear Linear Linear
Mating (xi,xj), i �= j (xi,xj), i �= j (xi,xj), i �= j

Crossover one point one point one point
pc 0.6 0.6 1.0

p
(CM)
m 1/n 1/n 1/n

p
(SRM)
m - -

{
α = 0.5, � = [n, 1/α] (ADS)
α = [0.5, 1/n], � = n (ADP )

µ : λ - 1 : 2 1 : 2
λCM : λSRM - - 1 : 1

tional selection), (ii) a GA (µ, λ) Proportional
Selection (CM and extinctive proportional se-
lection), and (iii) the proposed GA-SRM(µ, λ)
Proportional Selection (CM, SRM and extinc-
tive proportional selection). Unless stated oth-
erwise, the genetic algorithms we use here are
set with the parameters specified in Table 1.
Every experiment consisted of 100 indepen-

dent runs. Each run was set with different seeds
for the random initial population and ended af-
ter T evaluations were performed (the number
of generations for each experiment is calculated
as T/λ).
The objective function we use in our study in-

troduces the same penalty term used in Ref. 12)
to deal with infeasible solutions (no repair strat-
egy is used). Thus the fitness function is speci-
fied by

f(x) = h(g(x)− s ·max{pi}) (6)
where h(·) denotes linear scaling 14) and s (0 ≤
s ≤ m) is the number of overfilled knapsacks.

4.3 Operators’ Balance
First, we investigate the importance of SRM

and the operators’ balance for offspring cre-
ation. Three general cases are considered. (i)
The parent population P (t) has the same num-
ber of individuals as CM’s and SRM’s offspring
populations, λSRM = µ = λCM . (ii) P (t) is
smaller than CM’s but bigger than SRM’s pop-
ulation, λSRM < µ < λCM . (iii) P (t) is bigger
than CM’s but smaller than SRM’s population,
λSRM > µ > λCM .
In the case of equal size populations, both op-

erators could allocate all its offspring to P (t).
Therefore, there is competition between the two
operators’ offspring for every spot in P (t). The
normalized mutant survival ratio γ, specified
by Eq. (1), reflects the number of mutants win-
ners that survive after competing with CM’s
offspring. Also, in this case the number of mu-
tants that survive selection equals the number

of CM’s offspring being eliminated.
However, if one of the offspring populations is

smaller than P (t), then it could at most cover a
fraction of the parent population. Hence com-
petition for survival between operators is not
for the µ spots but rather for µc specified by
the size of the smaller population since the best
µ− µc of the exceeding population need not to
compete in order to survive. For example, if the
bigger population corresponds to SRM, µSRM

in Eq. (1) includes not only the mutants win-
ners but also those that survive without com-
petition. Also, the number of mutants that sur-
vive selection does not equal to the number of
CM’s offspring being eliminated.
To reflect the competition between operators

when different offspring population sizes are
used the mutants survival ratio of Eq. (1) is ex-
tended to

γ =
µw

SRM

λc
SRM

· λ
c

µc
(7)

where µw
SRM is the number of individuals cre-

ated by SRM that compete and survive selec-
tion (mutants winners), λc

SRM is the offspring
number created by SRM that undergoes com-
petition, λc is the total offspring number that
compete for survival (λc

CM + λc
SRM ), and µc

is the number of spots that SRM’s and CM’s
offspring compete for in the parent population
P (t). Note that Eqs. (1) and (7) are the same
if equal size populations are used (case (i)).
The balance between operators for offspring

creation is studied using Eq. (7). We set
(µ, λ) = (50, 100), and conduct several ex-
periments especially for Weing 7☆ in which
our scheme varies from an all CM regime to
a 90% SRM regime. A 100% CM regime in
☆ For this problem we set T = 2 × 105. The same
number of evaluations were used in Refs. 5) and 12)
using offspring populations of 100 and 50 individu-
als, respectively.
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Fig. 5 Operators’ balance and search ability.

our case represents a genetic algorithm that
applies “background” mutation after crossover
and uses (µ,λ) Proportional Selection, i.e.,
GA (50,100). Also, note that because SRM’s
adaptive mutation schedule is based on a mu-
tant survival ratio, which reflects the compe-
tition among SRM’s and CM’s offspring, it is
not possible to test the algorithm with an all
SRM regime and simultaneously keep its adap-
tive feature.
The relationship between operators’ offspring

balance and search ability (best individuals’
average and number of times the global opti-
mum was found in 100 runs, Average and N
respectively) is shown in Fig. 5 when SRM is
implemented with ADS. From this figure the
following observations can be drawn. Ratios
that favor SRM’s offspring, i.e., λSRM > 50%,
produce better results than its opposites. A
λCM : λSRM = 1 : 1 ratio is the best choice
for stable and robust performance that simul-
taneously maximizes N and Average. In the
following sections we use the best 1 : 1 opera-
tors’ balance.

4.4 Mutation Probability in CM
Second, we fix λCM : λSRM = 50 : 50 and

study the relevance of CM’s mutation proba-
bility. The model’s searching ability for p(CM)

m

values in the range [0.5/n, 1.5/n] are shown in
Fig. 6. From this figure the following observa-
tions are relevant. A p

(CM)
m = 1/n turns out

to be the probability that gives us the high-
est values for Average and N , that is a coin-
cidence with the results in Ref. 13). Values of

Fig. 6 CM’s mutation probability and search ability.

p
(CM)
m > 1/n are less deteriorative than values

of p(CM)
m < 1/n are. Segment size reduction,

	, as well as the number of individuals pro-
duced by SRM that survive selection, µSRM ,
are shown for one of the runs for p(CM)

m = 1/n
in Fig. 7 (a). Here we can observe that SRM
contributes to the survivor parent population
in every generation of the search process. The
key factor for SRM to be an effective operator
lies in its own regulation mechanism, i.e., the
mutation rate is adjusted every time the num-
ber of mutants that survive selection falls under
a minimum level τ . Also, the average number of
SRM’s offspring that survive selection increases
as the mutation segment is reduced.
For p

(CM)
m ≤ 0.5/n we observe that SRM’s

offspring fitness cannot compete with CM’s off-
spring, which is specially critical during the
early stages of the search, causing a premature
reduction of SRM’s mutation rate, lost of di-
versity in the population and convergence to
a local optimum. Another typical figure on
SRM’s contribution µSRM and segment size re-
duction 	 for p(CM)

m = 0 (without mutation after
crossover) is shown in Fig. 7 (b) to compare with
Fig. 7 (a). As mentioned in Section 2.2, small
mutation after crossover is required in CM to
achieve a robust search performance by keeping
an appropriate balance between CM and SRM.

4.5 Extinctive Selection Pressure
Next, we set λCM : λSRM = 50 : 50, p(CM)

m =
1/n, and vary µ to study the effect that extinc-
tive selection has in our model. Figure 8 shows
results for (µ, λ) = ({10, 20, . . . , 90}, 100).
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(a) p
(CM)
m = 1/n.

(b) p
(CM)
m = 0.

Fig. 7 SRM’s offspring number after extinctive
selection.

High values of Average are attained for ra-
tios of extinctive selection pressure in the range
µ/λ = [40/100, 70/100]. For µ < 50 both CM
and SRM produce offspring in excess of the par-
ent population’s requirement (λCM > µ and
λSRM > µ). In this case, there exists compe-
tition for survival even among CM’s offspring,
and SRM’s offspring have to outperform CM’s
best offspring to survive. As we reduce the par-
ent population size, competition conditions be-
come severer.
On the other hand, for µ > 50 neither CM

alone nor SRM can cover the parent popula-
tion’s demand (λCM < µ and λSRM < µ).
In this situation, even if CM totally outper-
forms SRM, the latter has guaranteed at least

Fig. 8 Extinctive selection pressure and search
ability.

Fig. 9 SRM’s minimum level and search ability.

µ−λCM of its best progeny for the next genera-
tion. However, with this scheme we do not facil-
itate the removal of CM’s offspring that are per-
forming poorly. Note that for the worst CM’s
offspring to be eliminated it has to be worse
than the best µ− λSRM SRM’s offspring.

4.6 SRM’s Minimum Level τ
Figure 9 plots Average and N for values of

τ in the range [0.20,0.52] for Weing 7. SRM’s
offspring that survive selection increases as mu-
tation rates are reduced. Therefore, if τ is too
small the mutation rate could remain too high
at the end of the search, i.e., after certain point
there are no further reductions in SRM’s muta-
tion rate because the mutants survival ratio γ
is always higher than τ . In our experiments, we
observe that the minimum mutation rates were
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3/n in more than 90% of the runs for τ ≤ 0.28,
and 1.5/n in 92% of the runs for τ = 0.32. In
both cases Average is high but there is a big
difference in N.
As we increase τ , the minimun value of the

mutation rate will tend to be 1/n and its re-
duction will be faster. In this example, the
average time (on the hundred runs) at which
1/n mutation rate is reached is about 0.5T for
τ = 0.48, and 0.25T for τ = 0.52. A proper
reduction speed of SRM’s mutation rates guar-
antees a high Average and a SRM’s mutation
rate close to 1/n during the final stage of the
search helps to locate the global optimum.
From Fig. 9, it can be observed that there is a

broad range for the threshold τ in which the Av-
erage is very high. Also, that there is a safety-
range in which both Average and N are high.
Similar behavior is observed on other problems
used to test the model.

4.7 Contribution of Parallel Genetic
Operators and Extinctive Selec-
tion

Based on the optimum parameters obtained
in Sections 4.3–4.6, in order to isolate the
contributions of parallel genetic operators and
higher selection pressure induced by extinctive
selection we conduct several experiments using
a cGA, GA (µ, λ), and GA-SRM(µ, λ). Fig-
ure 10 plots the average objective fitness in
100 runs of the best-so-far individual over the
generations by a cGA (100), GA (50,100), and
GA-SRM(50,100). From this figure we can
see that the higher selection pressure of extinc-
tive selection causes an increase on search ve-
locity. GA (µ,λ) in this problem also exhibits
higher convergence reliability than cGA with-
out extinctive selection; however, GA (µ,λ) is
still not able to find the global optimum and the
Average is lower compared to GA-SRM(µ,λ)
(see Table 5 for Weing 7 ).
The only difference between GA (µ,λ) and

GA-SRM(µ,λ) is the inclusion of adaptive mu-
tation, SRM, in the latter. Therefore any
difference in performance between these algo-
rithms can be attributed to SRM. To better
observe SRM’s contribution we conduct ex-
periments in which starting with a GA (µ,λ)
configuration (all CM and extinctive selection)
after a predetermined number of evaluations
the algorithm switches to a GA-SRM(µ,λ)
configuration (CM, SRM and extinctive se-
lection). Figure 11 plots results by an al-
gorithm that makes the configuration transi-

Fig. 10 Average fitness in 100 runs of the best-so-far
individual.

Fig. 11 Configuration transition: GA (50,100) to
GA-SRM(50,100).

tion from GA(50,100) to GA-SRM(50,100) at
{0.02T, 0.05T, 0.10T, 0.20T, 0.5T} evaluations,
respectively. As a reference it also includes the
results presented in Fig. 10 by GA (µ,λ) and
GA-SRM(µ,λ). From Fig. 11 we can see that
as soon as SRM is included fitness starts to
pick up increasing the convergence reliability
of the algorithm. Also, early transitions pro-
duce higher performance. For example, final
results for the algorithms that perform transi-
tions at 0.10T and 0.50T are (N, Ave)={(22,
1095242.1), (10, 1094912.8)}, respectively.
Summarizing Figs. 10 and 11, GA-SRM(µ,λ)

gains its increase on search velocity from ex-
tinctive selection and its higher convergence re-
liability from the inclusion of parallel adaptive
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Fig. 12 Configuration transition: GA-SRM(50,100)
to all SRM or all CM.

mutation.
To further clarify the contribution of the in-

teraction between CM and SRM during the lat-
est stages of the search we also conduct exper-
iments in which starting with a GA-SRM(µ,λ)
configuration, after the mutation rate on SRM
has reached a predetermined value, the algo-
rithm switches either to a all CM regime with
extinctive selection or to a all SRM regime with
extinctive selection (in the latter case no fur-
ther reductions on SRM’s mutation rate are
done). Figure 12 plots results by an algo-
rithm that makes the configuration transition
from GA-SRM(50,100) when the mutation seg-
ment length in SRM has reached 	 = {6, 3}. As
a reference it also includes the results presented
in Fig. 10 by GA-SRM(µ,λ). From Fig. 12 we
can see that neither CM nor SRM alone but
the interaction of both CM and SRM leads to
a higher convergence reliability.
To explain why the interaction of both CM

and SRM works better than CM alone we look
at diversity values and performance simultane-
ously. Figure 13 presents the fitness value of
the best individual in the population and the
average hamming distance to the best individ-
ual h̄ over the generations for one of the runs by
cGA and GA-SRM. The SRM’s mutation seg-
ment reduction 	 is also presented for GA-SRM.
We can see that cGA ends up with values of h̄

higher than GA-SRM after T evaluations. Also,
at the end of the run the number of diverse in-
dividuals in the parent population is about 95%
in cGA and 83% in GA-SRM. We let the cGA

Fig. 13 Diversity and search ability.

run for 4T and found that h̄ and the number of
diverse individuals remains at the same levels
and that the quality of the solution does not
increase significantly (see below at the end of
Section 4.8). The higher levels of diversity ob-
served in cGA after T evaluations and the lack
of improvement in the quality of solutions after
4T evaluations seem rather contradictory. Our
explanation for this comes from the highly mul-
timodal nature of the landscape that the prob-
lem used in our simulations has and it is in ac-
cordance with the findings in Ref. 6). In Ref. 6)
it is shown that the recombination of high fit-
ness individuals located on multiple peaks can
often produce poor performing individuals in
the valley between peaks, with the side effect of
increasing the values of diversity metrics such as
h̄ and the number of diverse individuals. On the
other hand, the presence of multiple peaks will
have less influence on the mutation of a high fit-
ness individual on a particular peak (assuming
small mutation probabilities). The values of h̄
in Fig. 13 rather than being an indication of the
cGA’s ability to keep diversity show that CM
alone has difficulties pulling the population to
higher peaks. In the case of GA-SRM, the lost
of effectiveness by CM during the final stages
of the search is supplemented by the augment
of SRM’s contribution conform mutation rates
are reduced as shown in Fig. 7 (a).

4.8 Search Ability and Evaluation
Times

The global search ability under the influence
of various evaluation times is observed by let-
ting the algorithms run for 4T evaluations. Ta-
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Table 2 Results for Weing 7 using GA-SRM(50,100) with ADS under
various evaluation times.

Maximum 0.25 T 0.5 T T = 2× 105 2 T 4 T
1095445 2 11 26 57 77
1095382 8 29 47 41 23
1095357 2 8 15 1
1095352 1 2 2 1

< 1095352 87 50 3
Average 1094854.1 1095177.6 1095345.5 1095417.4 1095430.5
Stdev 602.8 545.3 337.2 41.6 27.63

ble 2 presents results by GA-SRM for some
intermediate times, where Stdev denotes the
value of standard deviation around Average.
The previous figures and Table 2 empirically
show the effect of the proposed cooperative-
competitive model in terms of higher search ve-
locity and higher search reliability (reach bet-
ter solutions with small Stdev values). Note
the Average, N and Stdev for 0.25T and 0.5T .
They also indicate that SRM is a continuous
and effective source of diversity, which at the
expense of time could be used to improve the
search results. For example, when the algo-
rithm was allowed to run for 2T evaluations
for this particular problem, a remarkable im-
provement was achieved finding the global max-
imum 57% of the times with Average greater
than the second known optimum and very small
Stdev values. Results by cGA and GA (µ,λ)
after 4T evaluations are (N, Ave, Stdev)={(0,
1087312.0, 1555.2), (0, 1093797.3, 1624.1)}, re-
spectively.

4.9 Two-point and Uniform Crossover
We also conducted experiments using two

point and uniform crossover. Results using
two point crossover by cGA and GA (µ,λ) af-
ter T evaluations are (N, Ave, Stdev)={(0,
1086886.8, 1590.8), (0, 1092647.5, 3032.0)},
respectively. Similarly, results using uniform
crossover are (N, Ave, Stdev)={(0, 1090392.1,
1020.7), (0, 1093748.4, 1776.9)}.
These results are better than those obtained

with one point crossover, yet the global opti-
mum solution could not be found. In the case of
GA-SRM(µ,λ), however, the obtained results
are quite similar to one point crossover.

4.10 Impact of the Population Size
The impact of the population size in the

method’s robustness is verified in Table 3 (a)
and (b) by GA-SRM using ADS and ADP, re-
spectively. All population configurations use
the same T evaluations. The right number in-
dicates the value of the global (local) optimum
and the left one the number of times it was

found. At the bottom of each column, Average
and Stdev are also presented. The model using
only 40% of the population size still produces
high values for Average and N. These results are
encouraging and show that another important
benefit of the cooperative-competitive model
could be the reduction of the population size.
Results by a larger population configuration,
i.e., GA-SRM(100,200), are also included. Un-
der the same evaluation time, we could not see
considerable difference in the results by GA-
SRM from (100,200) to (30,60) configurations
for this particular problem.

4.11 Comparison
Finally, various results are additionally pre-

sented and compared in this section. In Ta-
ble 4 column Problem indicates the knapsack
instance name Name, the number of objects n
(it corresponds to the chromosome bit string
length), the number of knapsacks m and the
known global optimum value Max. Column
Parameters shows the specific values set for τ
(used only in GA-SRM), CM’s mutation proba-
bility p

(CM)
m ≈ 1/n, and number of evaluations

T . Table 5 shows results by cGA (popula-
tion of 100 individuals), GA (50,100), and GA-
SRM(50,100) using either adaptive dynamic
segment SRM-ADS or adaptive dynamic prob-
ability SRM-ADP.
As a reference, Table 6 presents results for

the same problems reported by Khuri, et al. 12)
running a genetic algorithm for the same T
evaluations with a population of 50 individu-
als. Table 7 shows the latest results by Bäck,
et al. 5) particularly for Weing 7 running a ge-
netic algorithm with constant mutation rates
and other enhanced genetic algorithms that ap-
ply varying mutations for the same T = 2×105

evaluations using offspring populations of 100
individuals.
From Table 5 it can be seen that the proposed

method outperforms cGA and GA (µ,λ) in ev-
ery knapsack test problem where simulations
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Table 3 Results for Weing 7 using GA-SRM with different population sizes.

(a) ADS.

GA-SRM(100,200) GA-SRM(50,100) GA-SRM(30,60) GA-SRM(20,40)

p
(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01

τ = 0.46 τ = 0.40 τ = 0.33 τ = 0.30
22 1095445 　 26 1095445 　 22 1095445 　 15 1095445 　
58 1095382 　 47 1095382 　 43 1095382 　 34 1095382 　
2 1095357 　 15 1095357 　 12 1095357 　 13 1095357 　
4 1095352 　 2 1095352 　 3 1095352 　 5 1095352 　
1 1095295 　 3 1095266 　 2 1095266 　 1 1095295 　
4 1095264 　 5 1095264 　 4 1095266 　
　 　　 　 　　 　 　　 7 1095264 　
9 < 1095264 　 7 < 1095264 　 13 < 1095264 　 21 < 1095264 　

Ave = 1095344.1 Ave = 1095345.47 Ave = 1095350.46 Ave = 1095265.45
Stdev = 267.9 Stdev = 337.17 Stdev = 174.50 Stdev = 498.52

(b) ADP.

GA-SRM(100,200) GA-SRM(50,100) GA-SRM(30,60) GA-SRM(20,40)

p
(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01 p

(CM)
m = 0.01

τ = 0.46 τ = 0.40 τ = 0.33 τ = 0.30
11 1095445 　 11 1095445 　 13 1095445 　 5 1095445 　
21 1095382 　 25 1095382 　 24 1095382 　 29 1095382 　
11 1095357 　 8 1095357 　 14 1095357 　 4 1095357 　
1 1095352 　 2 1095352 　 3 1095266 　 3 1095295 　
3 1095295 　 2 1095295 　 3 1095264 　 2 1095266 　

15 1095264 　 4 1095266 　 13 1095264 　
6 1095264 　

38 < 1095264 　 42 < 1095264 　 43 < 1095264 　 44 < 1095264 　
Ave = 1095050.63 Ave = 1094908.34 Ave = 1094877.47 Ave = 1094823.49
Stdev = 752.3 Stdev = 1106.3 Stdev = 986.56 Stdev = 1032.36

Table 4 Knapsack test problems.

Problem Parameters

Name n m Max τ p
(CM)
m T

Petersen 3 15 10 4015 0.48 0.067 5× 103

Petersen 4 20 10 6120 0.52 0.050 104

Petersen 5 28 10 12400 0.48 0.036 5× 104

Petersen 6 39 5 10618 0.48 0.030 105

Petersen 7 50 5 16537 0.48 0.020 105

Sento 1 60 30 7772 0.52 0.017 105

Sento 2 60 30 8722 0.52 0.017 105

Weing 7 105 2 1095445 0.40 0.01 2× 105

were conducted. Also, although direct compar-
isons are not possible between GA-SRM(µ,λ)
and the algorithms used in Refs. 5) and 12),
looking at Tables 5–7 we can see that the pro-
posed algorithm gives better results. It should
be specially noticed the results obtained for
Weing 7 where the proposed GA-SRM found
the global optimum 26% of the runs whereas
genetic algorithms with constant mutation rate
could not find the global optimum and the al-
gorithm that uses a time dependent hyperbolic
deterministic schedule for mutation rate con-
trol with a (15,100) selection mechanism found
it only 3% of the runs 5),12).
In combinatorial problems it is important

to find better solutions. Based on the

observations of the final feasible solutions
reached by the algorithms used in our simu-
lations, we can see that for Weing 7 in the
ranges [1095000,1095445], [1094000,1095445],
and [1093000,1095445], there are at least 30,
134, and 189 peaks of different heights, respec-
tively. This data might help to visualize the
quality of solutions reached by the algorithms.
We should mention that ADS and ADP ex-

hibit similar behavior. Although we obtained
better results with ADS for most of the knap-
sack test problems used here, at this time we
cannot conclude whether ADS is superior to
ADP. Also, the difference in performance be-
tween ADS and ADP might be relevant to the
kind of epistasis 16) the test problem has. For
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Table 5 Results for various knapsack test problems.

GA-SRM(50,100)
cGA (100) GA (50,100) SRM-ADS SRM-ADP

Name N Average Stdev N Average Stdev N Average Stdev N Average Stdev
Petersen 3 48 4007.0 12.0 85 4013.4 3.8 100 4015.0 0.0 97 4014.7 1.2
Petersen 4 6 6031.1 50.8 35 6099.7 59.6 42 6112.5 8.4 54 6113.5 8.1
Petersen 5 2 12278.0 55.7 50 12375.1 67.5 94 12398.9 5.5 98 12399.8 1.2
Petersen 6 - 10454.5 36.5 4 10524.7 67.4 16 10588.2 37.6 16 10587.3 24.5
Petersen 7 - 16300.9 53.7 - 16367.8 93.6 23 16485.2 53.1 21 16474.2 50.0
Sento 1 - 7505.1 50.5 14 7712.7 57.8 85 7770.3 5.4 67 7765.1 9.0
Sento 2 - 8506.3 33.9 - 8682.1 31.7 55 8718.5 5.3 50 8717.7 6.6
Weing 7 - 1085421.8 1881.2 - 1092615.0 2843.4 26 1095345.5 337.17 11 1094908.3 1106.3

Table 6 Results by Khuri, et al. 12).

Name N Average
Petersen 3 83 4012.7
Petersen 4 33 6102.3
Petersen 5 33 12374.7
Petersen 6 4 10536.9
Petersen 7 1 16378.0
Sento 1 5 7626
Sento 2 2 8685
Weing 7 - 1093897

Table 7 Results for Weing 7 using other mutation schedules 5).

Mutation Schedule Selection N Average
Constant mutation rate pm = 1/n (15,100) selection - 1091268

proportional selection - 1093924
Self-adaptive (15,100) selection - 1092743

proportional selection - 1094311
Time-dependent hyperbolic deterministic (15,100) selection 3 1094711

proportional selection - 1094479

the test problems used here we have no knowl-
edge how high epistasis the test problems have
for contiguous bits. More investigation should
be done to clarify this point in the future.

5. Conclusions

This paper has explored an empirical model
to improve GAs in which the genetic opera-
tors have been put in a cooperative-competitive
stand with each other. The cooperativeness is
sought through the parallel interaction of ge-
netic operators and its integration with extinc-
tive selection. SRM (Self-Reproduction with
Mutation) acts as a permanent source of di-
versity to induce the appearance of beneficial
mutations and CM (Crossover and Mutation)
propagate them in the population. The extinc-
tive selection mechanism subjects SRM’s and
CM’s offspring to compete for survival and to
guarantee the preservation of beneficial muta-
tions for the next generation. SRM is provided
with an adaptive mutation schedule that keeps
control of the exploration-exploitation balance.

We found that the sexual operator CM per-
forms better than the asexual operator SRM
during the initial stages of the search. On
the other hand, SMR’s contribution signifi-
cantly increases as the search progresses, mu-
tation rates are reduced, and the population
approaches the global optimum. Also, in spite
of CM’s initial effectiveness, configurations fa-
voring SRM (mutation in general) result into
better performance than configurations favor-
ing CM. However, if the operators are prop-
erly balanced and SRM is implemented to be
competitive to CM, the cooperation expected
from them emerges producing a higher search
velocity and higher search reliability. That was
attained by introducing mutation in CM with
an appropriate probability p

(CM)
m = 1/n, a

1 : 1 offspring balance for CM and SRM, and
a (µ, λ) = (50, 100) extinctive pressure in our
simulations. Consequently, for the 0/1 multiple
knapsack NP-hard combinatorial optimization
problem the improved GA using SRM outper-
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forms a canonical genetic algorithm as well as
other enhanced GAs.
With regards to the applicability of this

model to other problems we should say that so
far we have observed similar behavior for image
halftoning 17) problem and flowshop scheduling
problem 18). Results for these problems will be
reported elsewhere.
As future works, we plan to analyze more

deeply the model by using test problem gen-
erators, observe the conditions that favor the
emergence of cooperative behavior between ge-
netic operators in different classes of problems,
and include higher levels of adaptation. Also,
as it was mentioned before, another important
issue that needs to be addressed is the effect of
epistasis on the cooperative model and partic-
ularly on ADS and ADP.
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