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A Framework for Performance Evaluation Based on Event Tracing

Takashi Horikawa†,☆

A framework is described for establishing a formulated method of performance evaluation
based on event tracing. It consists of abstractions representing a system, its behavior, and
the events to be measured. It also includes formulations of performance measures and of
algorithms for obtaining them from an event trace. Measures include not only such usual
ones as throughput, response time, and resource utilization, but also those describing such
process interactions as process waiting time and semi-busy-waiting. The framework has been
applied to the performance evaluation of an Apache HTTP server running on Linux 2.2.14
and 2.3.41 and executing the SPECweb96 benchmark program. This case study has clari-
fied the differences between the two versions of Linux, including differences in CPU usage,
global-kernel-lock usage, processing time, and process-switch frequency. The case study also
indicates that Linux 2.2.14 had a performance bottleneck other than physical resources, thus
the measurement of CPU usage alone is not enough; we also need to consider object inter-
actions including interprocess communications, at least so far as Apache HTTP servers are
concerned.

1. Introduction

Performance evaluation is necessary through-
out the entire software development lifecycle:
design, coding, testing, and operation. Early
detection of performance problems is particu-
larly important because the effort needed to
solve problems increases the longer detection is
delayed.
Performance estimation is especially useful in

the design and early coding phases to ascertain
whether the target system will effectively pro-
cess users’ jobs or not. The queueing network
models and simulation models usually used to
estimate performance require the input of pa-
rameters, often obtained by performance mea-
surements in actual systems12). As Smith14)

has shown, for performance estimation, event
tracers (she calls them “event recorders”) are
on the whole significantly more effective than
sampling-based tools.
Bottleneck detection is useful in the later cod-

ing and testing phases. Event-driven measure-
ment tools have also been used with good suc-
cess in bottleneck detection that is designed
to tune performance. Typical case studies
in this regard include the performance tun-
ing of an interrupt-handling routine10), of a
disk-intensive program5), of multithreaded pro-
grams8), and of a squid proxy server17).

† C&C Media Research Laboratories, NEC
☆ Presently with Development Laboratories, NEC
Networks

Some event-driven measurement tools are
commercially available (such as IBM’s Gen-
eral Tracing Facility and TNFtracing on So-
laris16)), while others are used exclusively for
the research being conducted by their develop-
ers (such as Haigh’s tracer for UNIX 6) and the
tools used in the above case studies). Because
these tools have been designed to be used for
specific purposes on target machine architec-
tures, operating systems, etc., they measure dif-
ferent sets of software events and are not stan-
dardized.
My motivation in developing a event-trace

framework was to provide a guiding principle
for unifying the disparate approaches that have
so far characterized event-based performance
evaluation. The proposed framework consists
of abstractions representing a system, its be-
havior, and the events to be measured. It also
includes formulations of performance measures
and of algorithms for obtaining them from an
event trace.
This paper is organized as follows. Section 2

describes an event abstraction and its prepa-
rations. Section 3 describes a formulation of
trace analysis. Section 4 applies my framework
to a case study in which the performance of an
Apache HTTP server running on Linux is eval-
uated. Section 5 briefly reviews related work,
discusses how this study has advanced the field,
and introduces some possible applications. Sec-
tion 6 concludes the paper.
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Fig. 1 Interaction between client and server process.
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Fig. 2 Mutual exclusion between processes by means
of a lock.

2. Event Abstraction

This section describes how we define events
to be measured. Those events are specified at
an abstract level so that we can define events
independently of the OS of the target system.

2.1 System Model
The target system is abstracted by introduc-

ing the concept of the object, which is any en-
tity required by the target system for job execu-
tion. Target system behavior can be abstracted
as the execution of jobs by objects and the in-
teractions between objects.
Objects include physical resources (CPUs,

disks, etc.), logical entities (processes, functions
in the programs, etc.), logical resources (locks,
etc.), and external entities (users, client ma-
chines, server machines, etc.).
Interactions between objects include commu-

nications and conflicts. Inter-process commu-
nication between client and server18), shown in
Fig. 1, is a representative example of the com-
munications. The mutual exclusion between
processes, achieved by means of a lock (see
Fig. 2), is a representative example of the res-
olution of a conflict.

2.2 Abstract Events
In my proposed framework, events are ab-

stracted from actual events, an “actual event”
being any kind of change in a system state4).
There are two categories of abstraction: ab-
straction of interactions between non-CPU ob-
jects and abstraction of CPU-related events.

R p, i
o

Event type
 R: Request
 A: Accept
 F: Finish
 W: Wait Requester ID

Requestee ID

Sequence number 
of request from 
p to o

Fig. 3 Notation for interaction events.

2.2.1 Abstraction of Interactions
Interactions include the following abstract

events: a request, an acceptance, a finish, and,
possibly, a wait event (see Figs. 1 and 2). Here-
after, I will use the notation shown in Fig. 3 to
describe these four events.
The following is a brief description of ab-

stract events. In it, “active object” represents
the physical resources and the logical entities
and “passive objects” represents the logical re-
sources.
Request An active object, referred to as the

requester, either gives a request for a job
execution to another active object or re-
quests approval from a passive object for
the use of a critical resource managed by
that passive object. The object receiving
the request is referred to as the requestee.
Requests can only be made when the re-
quester, usually a client process, is using a
CPU resource for its operation.

Accept For an active requestee object, “ac-
cept” means it begins to processes the re-
quested job. For a passive requestee ob-
ject, it means it approves the request and
changes its internal state to disapprove fur-
ther requests from any other requester.

Finish For an active requestee object, this
means it finishes processing a job and no-
tifies the requester of the completion. For
a passive requestee object, it means that it
is notified by the requester of the finish of
a job for which a critical resource has been
used; it then changes its internal state so
as to approve the next incoming request for
that resource.

Wait When a requester needs to know the
outcome of a job performed by an active
object requestee, it pauses in its operations
and waits to be notified. When such no-
tification is unnecessary, there will be no
wait.

With these abstract event definitions, we can
describe the interactions between objects. Ta-
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Table 1 Interactions between objects.
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Fig. 4 Abstract events related to CPU.

ble 1 shows examples of interactions between
objects located in a target system.

2.2.2 CPU-related Events
CPU-related events are mainly interactions

between the CPU and processes in the target
system. They are abstracted on the basis of
the process state-transition diagram shown in
Fig. 4; each abstract event corresponds to an
arrow in the figure. Some CPU-related events
are abstract events describing the interactions
between the CPU and the process object; the
wake up, resume, and sleep events correspond,
respectively, to the request, accept, and finish
events.
The diagram in Fig. 4 is a simplified and mod-

ified version of the process state-transition di-
agram for a UNIX process2), but it can be ap-
plied to most operating systems.

3. Formulation of Trace Analysis

With this event-trace framework, it is pos-
sible to generate performance measures on a
per-transaction basis, which means that such
performance measures as response time and re-
source usage can be obtained for each trans-
action. Such per-transaction-basis results are
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Fig. 5 Time chart showing object utilization: request
Rj

i is pending from Rj
i to Aj

i , it is processed

by process j from Aj
i to F j

i , during which time
process j uses object o.

quite useful to system engineers.
In this section, I define performance measures

by using abstract events, and I describe the
algorithms used to obtain them in event-trace
analysis.

3.1 Performance Visualization
A time chart can be used to display system

behavior; Fig. 5 shows an example of such a
chart. The horizontal lines show object uti-
lization, making it possible to visualize interac-
tions between objects. It basically shows how
the CPU is being used by processes; it can also
show the utilization of objects other than the
CPU.
Time charts like that of Fig. 5 are useful

for comprehending target-system behavior in-
tuitively.

3.2 Transaction
In my framework, I define the term “trans-

action” as a request coming from outside the
target system, usually from a user or client ma-
chine. More than one process can be involved in
the transaction processing; an example is shown
in Fig. 6.
Each transaction can be divided into sub-

transactions whose boundaries can be defined
arbitrarily; inter-process communications and
function calls, which correspond to the abstract
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Fig. 6 An example of transaction processing. Trans-
action processed by process c begins at request
event Rc

u and ends at finish event F c
u.

event of request and finish, are usually used to
mark those boundaries.

3.3 Performance Measures
In this section, I formulate various perfor-

mance measures and the algorithms used to
generate them, using the notation shown in
Fig. 3 to express the abstract events, and func-
tion t(e) to express the time when event e oc-
curred.

3.3.1 Object Utilization
To determine object utilization☆ (i.e., the

amount of time an object is used during trans-
action processing), we must take into account
inter-process communications. The algorithm I
have developed for doing this analyzes the event
trace. (It also can be used for analyzing object-
usage time for each sub-transaction.) The al-
gorithm is as follows.
( 1 ) Prepare a time accumulator (Uo

u) whose
initial value is zero, a process set (W ), a
request set (E), and a temporary variable
(τ o), where o is the target-object ID.

( 2 ) Read one record from the event trace.
( 3 ) If the event is APc

u , the beginning of a
transaction by requestee process pc, put
pc into W .

( 4 ) If the event is FPc
u , the finish of trans-

action processing by pc, remove pc from
W .

( 5 ) If the event is RPs
Pc, a request from pro-

cess pc in W to another process (ps), put
ps into W .

( 6 ) If the event is FPs
Pc , the finish of transac-

tion processing by process ps, remove ps

from W .
☆ Since objects in this framework include computa-
tional resources, such as CPUs and disks, object
utilization may be thought of as an extension of re-
source utilization.

( 7 ) If the event is Ro
p,i, a request for target

resource o by process (p) in W , put Ro
p,i

into E.
( 8 ) If the event is Ao

p,i, the beginning of
target-resource utilization corresponding
to Ro

p,i in E, set τo to t(Ao
p,i), the occur-

rence time of this event.
( 9 ) If the event is F o

p,i, the finish of the
target-resource utilization corresponding
to Ro

p,i in E, add (t(F o
p,i) − τo) to Uo

u ,
where t(F o

p,i) is the occurrence time of
this event.

( 10 ) If R and E are both empty, output Uo
u as

the object o utilization time for transac-
tion u; else go to step 2.

E is used for the case in which acceptance
Ao

p,i occurs after the finish of transaction FPc
u ;

at that time, process set W must be empty.
This case can occur if request Ro

p,i was pro-
cessed asynchronously.
Object utilization for each process, without

considering the inter-process communication, is
obtained using

Uo
p =

np∑

i=1

(t(F o
p,i)− t(Ao

p,i)), (1)

where o is the object ID, p is the process ID,
and np is the number of times that process p
used object o.

3.3.2 Response and Throughput
The response time of a transaction is ob-

tained by subtracting t(Ru) from t(Fu), where
Ru is the beginning of the transaction and Fu

is the finish. The average response time is∑nu

i=1(t(Fu,i)−t(Ru,i))/nu, where Ru,i and Fu,i

are the time of the request and of the finish of
the ith user request, and nu is the number of
transactions processed during the measurement
period.
Throughput is nu/T , where T is the length

of the measurement period.
3.3.3 Recent Measures
Ji, et al.8) have recently described two new

performance measures, process waiting time
and semi-busy-waiting, and used them to eval-
uate the performance and tuning of multi-
threaded programs.
My framework can be used to derive these

measures, in addition to deriving the traditional
performance measures described above.

Process waiting time is defined as the time
during which a process is waiting for a CPU re-
source to become available. Formulation using
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Fig. 7 An example of semi-busy-waiting. At Rc,n,
Servers 1 to m were woken up, and Server 1
processed request Rc,n. Servers 2 to m imme-
diately went back to sleep.

abstract events can expand this definition to the
time during which process p is waiting for any
object o; expanded process waiting time Qo

p is
given by

Qo
p =

np∑

i=1

(t(Ao
p,i)− t(Ro

p,i)), (2)

where the meaning of each symbol is the same
as that in the Eq. (1).

Semi-busy-waiting is defined as the num-
ber of times that a process was unnecessarily
woken up. An example is shown in Fig. 7.
Servers 2 to m were unnecessarily woken up
at Rc,n; they immediately went back to sleep.
Server 1 was woken up and processed request
Rc,n. Semi-busy-waiting for Server k is the
number of wake-ups between F k

c,i and Ak
c,i+1

minus one (i.e., minus the number of necessary
wake-ups).
Unnecessary wake-ups often occur in systems

in which the server processes are organized on
the basis of a team model19). In the Linux com-
munity, they are referred to as the “thundering
herd problem”3) or the “stampede effect”11).

4. Application

In this section I describe a case study in which
my framework was used to evaluate the perfor-
mance of a web server that uses the Apache1)
HTTP server on a Linux9) operating system. In
it, I investigated the change in behavior of the
SPECweb96 benchmark program15) with the
change of the execution environment including
Linux version (2.2.14 and 2.3.41)☆, acceptance
policy used in the HTTP servers, and the num-

ber of the HTTP-server and client processes.
I mainly focus on the effect of replacing the

global kernel lock, considered to be a weak
point in Linux 2.2.x13), with finer granularity
locks11), and of the “wake one” policy with
which Linux wakes up only one process among
those processes sleeping at the same socket11),
both introduced in the 2.3.x kernel.

4.1 Outline
4.1.1 Target System and Measure-

ment Tool
The configuration of the target system and

the measurement tool is shown in Fig. 8. To
prevent the client machine from becoming a
bottleneck, I used the client machine with
a higher-performance CPU than that on the
server machine. I expected that any bottle-
necks would occur in the CPUs on the server
machine.
Measurements, that is event tracing in this

case study, were conducted using a hybrid mon-
itor7) which consisted of software probes and
an event tracer. The CPU overhead created by
this tool was about 2%, estimated by comparing
the SPECweb96 throughput of a probed system
with that of a non-probed system. It is small
enough to ensure measurement accuracy☆☆.
The probes were inserted into the Linux ker-

nel and the Apache server by modifying their
source code. The kernel probes are designed to
detect CPU-related events (Section 2.2.2) and
object interactions, including disk accesses, net-
work accesses, and lock activities. The probes
for the Apache server will be described in Sec-
tion 4.2.1.

4.1.2 Apache Configurations
The following options were applied to the

Apache HTTP server used in the experiments.
Acceptance policy The default configura-

tion of the Apache server uses serialized ac-
ceptance, in which the accept() system calls
made by the HTTPd processes are serial-
ized by means of a flock() system call. The
Linux OS, however, allows more than one
process to use accept() system calls at the

☆ These are the latest versions, as of the beginning
of February, 2000, of the stable kernel and of the
development kernel, respectively.

☆☆ With regard to the relationship between measure-
ment accuracy and tool overhead, McKerrow has
noted that, if the software tool uses less than 5 %
of system resources, measurement accuracy is gen-
erally adequate10). 　　　　　　　　　　　　　　　
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Fig. 8 Event traces were captured from the server machine with hybrid
tracer consisted of the software probes and the hardware tracer.

Table 2 Parameters and results of experiments.

Case number 1 2 3 4 5 6 7 8
Linux version 2.2.14 2.3.41

Acceptance policy Serialized Parallel Serialized Parallel
HTTPd processes 5 50 5 50 5 50 5 50
Client processes 8 50 8 50 8 50 8 50

Throughput [ops/s] 212 229 72 95 273 268 280 274
Response time [ms] 37.6 218.1 111.6 527.2 29.2 182.9 28.5 179.1

same time (parallel acceptance)☆. I thus
tested two cases: serialized acceptance and
parallel acceptance.

Number of HTTPd processes In the de-
fault configurations of the Apache server
and SPECweb96, the number of initial
HTTPd process and client process were,
respectively, 5 and 8. Both defaults were
used in the experiments. In addition, I
also tested the case in which the number of
HTTPd processes was 50 and that of the
client processes was 50.

4.1.3 Benchmark Results
The parameters and results of the testing are

summarized in Table 2.
Both the throughput and response time with

version 2.3.41 of Linux were much better than
those with version 2.2.14. In particular, the
performance of 2.3.41 with parallel acceptance
was much better.
From these benchmark results, we can infer

that version 2.3.41 consumes less CPU power
per SPECweb96 HTTP operation than does
2.2.14. The wake-one policy and the reduced
global-kernel-lock usage, introduced in 2.3.41,
apparently have a beneficial effect.
☆ Serialization is necessary because some UNIX oper-
ating systems do not guarantee correct operation if
more than one process use accept() system calls at
the same time.

4.2 Analysis Plan
I planed the performance evaluation con-

ducted with the following steps: 1) capture an
event trace from the Apache-HTTP server that
includes application probes to divide its execu-
tions into five phases, 2) analyze the event trace
and produce such performance metrics as usage
of CPUs, Disks, and global lock for each phase,
and 3) compare the result with those obtained
from other cases. The measurement and the
trace analysis were designed according to this
plan.

4.2.1 Application Probes
The application probe used in the measure-

ment was inserted at the beginning of each
phase (see Fig. 9) so that the boundary infor-
mation could be used during trace analysis.

4.2.2 Abstract Model
The performance analysis was conducted

with using a hierarchical model that describes
the Apache behavior on the basis of my frame-
work (see Fig. 10).
The interactions between server process and

execution phases could be treated as a kind
of procedure calls; the request and the accept
event of a phase and the finish event of the pre-
vious phase occurred at the same time and they
were marked by the application probe inserted
at the beginning of the phase.
The performance metrics for each execution
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static void child_main(int child_num_arg)
{
  ....
  while (1) {

....

  SAFE_ACCEPT(accept_mutex_on());

....
  csd = ap_accept(sd, &sa_client, &clen);

....

  SAFE_ACCEPT(accept_mutex_off());
.....

  while ((r = ap_read_request(current_conn)) != NULL) {
....
ap_process_request(r);
....

 }

....
 ap_bclose(conn_io);

....
  }
}

Probe 1

Probe 2

Probe 3

Probe 4

Probe 5

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Fig. 9 Main loop in Apache HTTP server; the execution of the processes was
divided into five phases: 1) preparing the HTTP operation, 2) waiting
for the lock for accept() usable, 3) executing the accept() system call,
4) processing the HTTP request made by the client, and 5) closing
the TCP/IP connection corresponds to this HTTP operation.
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CPU
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Fig. 10 Apache execution was modeled with objects,
forming a hierarchical structure, and interac-
tions between objects in neighboring layers in
the hierarchy.

phase were obtained by using the algorithm de-
scribed in Section 3.3.

4.3 Analysis Results
Performance analysis was conducted using

20-sec event traces obtained from the target
machine for each case shown in Table 2. Each
event trace started 10 minutes after the bench-
mark program started.
The results in this section are shown on a per-

HTTP-operation basis. That is, the obtained
measures were divided by the corresponding
number of HTTP operations (Table 3).

4.3.1 Object Usage
The amount of object usage-time in process-

ing one HTTP operation☆ is shown in Table 4
(the two CPUs, three disks, and kernel lock
were here considered objects).
The CPU usage for 2.2.14, in rough out-

line, was almost the same as that for 2.3.41;
the average for Cases 1 to 4 was 7.03ms and
that for Cases 5 to 8 was 7.22ms. Thus, the
SPECweb96 throughput results cannot be ex-
plained simply on the basis of the CPU usage
results. It suggests that Linux 2.2.14 had a
performance bottleneck other than physical re-
sources (e.g., CPUs and disks).
The difference due to the change in the num-

ber of servers and of clients was smaller for ver-
sion 2.3.41; the CPU usage for Cases 1 and
3 was smaller than that for Cases 5 and 7 (8
client processes), and that for Cases 2 and 4 was
greater than that for Cases 6 and 8 (50 client
processes). Linux 2.3.41 should thus perform
more effectively in larger systems, which usu-
ally have a larger number of HTTPd processes
and serve more clients.
The degree of kernel-lock usage in 2.3.41 was

about one third of that in 2.2.14, that resulted
in the difference in the busy-wait time due to
spin locks; the results of the busy-wait time in
2.3.41 were one third to ninth of that in 2.2.14.

☆ The object usage by processes other than HTTPd
and kflushd processes was minimal; I thus take it
that all objects were dedicated to processing HTTP
requests. (A kflushd process wrote mainly the
HTTP-access log into the log file.)
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Table 3 Number of HTTP operations by case.

Case number 1 2 3 4 5 6 7 8
No. of ops 4442 4411 1290 2173 5559 5406 5619 5563

Table 4 Object usage-time in ms.

Case number 1 2 3 4 5 6 7 8
Process user 1.25 1.70 1.40 1.68 1.83 1.82 1.77 1.77

Process kernel 1.81 3.20 1.57 2.57 2.75 2.9 2.73 2.80
Disk Interrupt 0.02 0.03 0.03 0.03 0.03 0.05 0.04 0.04

Network Interrupt 1.76 1.99 1.78 2.03 2.34 2.37 2.37 2.35
Clock interrupt 0.04 0.05 0.06 0.05 0.04 0.04 0.03 0.04

Busy Wait 0.51 1.81 1.09 1.66 0.19 0.21 0.17 0.19
Total CPU 5.40 8.78 5.92 8.03 7.18 7.39 7.11 7.18

Disk 1 0.34 0.07 0.10 0.08 0.75 0.46 0.51 0.40
Disk 2 0.22 0.38 0.62 0.54 0.55 0.68 0.57 0.31
Disk 3 0.67 0.50 0.52 0.58 0.42 0.77 0.43 0.73

Kernel lock 2.00 2.82 2.19 2.60 0.82 0.78 0.68 0.68

Table 5 Phase details for Cases 1 and 5 in ms.

Case number 1 5
Phase number 1 2 3 4 5 1 2 3 4 5
Elapsed time 0.20 34.61 4.03 4.27 1.93 0.95 34.00 0.67 21.96 54.51

Process 0.08 0.20 0.17 2.33 0.29 0.14 0.11 0.14 3.64 0.52
Busy-wait for kernel lock 0.02 0.06 0.05 0.27 0.10 0.01 0.01 0.00 0.06 0.06
Busy-wait for other lock 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.02

Total CPU 0.10 0.25 0.21 2.60 0.39 0.15 0.12 0.15 3.71 0.60
Disks 1-3 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.99 0.00

Wait for CPU 0.10 4.66 0.21 0.53 1.28 0.8 30.62 0.28 17.07 53.86
Wait for Disk 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.17 0.00

Wait for Network 0.00 0.00 3.6 0.04 0.26 0.00 0.00 0.24 0.01 0.05
Conflict with other process 0.00 29.69 0.00 0.00 0.00 0.00 3.26 0.00 0.00 0.00

The influence of the busy-wait time was serious
in 2.2.14 because it accounted for 9% to 21%
of the CPU power. On the other hand, the
busy-wait time in 2.3.41 accounted for about
3% of the CPU power, the effect of the busy-
wait would be thus small as long as we use
Linux 2.3.41 on a system that have two CPUs.
The CPU usage for network-interrupt han-

dling was about 30% of the total CPU power.
Performance tuning of the protocol-stack pro-
cessing might perhaps improve this.

4.3.2 Phase Detail
The elapsed times by phase (see Fig. 9) are

shown in Table 5 for Cases 1 and 5.
The elapsed times for Phases 4 and 5, Case

1 (version 2.2.14) were far shorter than those
of Case 5 (2.3.41), mainly because of the dif-
ference in the “Wait for CPU” time. This con-
tradicts my expectation that the the average
response times shown in Table 2 would corre-
late closely with the elapsed times of Phase 4,
in which the HTTP requests from clients are
processed. The elapsed times of Phases 1 and 2
are not so important because these phases have
no connection with the client machine.

The difference in the elapsed times of Phases
3 resulted from the difference in the “Wait for
Network” time. It would be a clue to the
performance bottleneck in Linux 2.2.14 (Sec-
tion 4.3.1).

4.3.3 Semi-busy-waiting
A thundering herd problem occurred in Phase

2 for the HTTP servers with serialized accep-
tance and in Phase 3 for those with parallel
acceptance. The number of wake ups in these
phases was related to the severity of the thun-
dering herd problem. Table 6 shows the num-
ber of wake ups in Phase 2 for Case 1, 2, 5, and
6 or in Phase 3 for Case 3, 4, 7, and 8.
The number of wake ups in version 2.3.41 was

less than that in 2.2.14. This is as might be
expected from the fact that Linux 2.3.41 incor-
porates a wake-one policy.
This smaller number of wake ups occurred

not only for the HTTP servers using parallel
acceptance but also for those using serialized
acceptance, where the wake-one policy for ac-
cept() is not effective. Linux 2.3.41 possibly
has a process-scheduling policy that differs from
that of 2.2.14.
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Table 6 Wake up in phase 2 or 3.

Case number 1 2 3 4 5 6 7 8
Wake ups 7.56 10.96 4.80 10.95 0.82 0.10 0.77 0.28

Table 7 Wake ups for HTTPd processes and total number of process
switches (including those of processes other than HTTPds).

Case number 1 2 3 4 5 6 7 8
Wake ups: Disk 0.06 0.08 0.06 0.08 0.06 0.08 0.07 0.08

Wake ups: Network 4.85 0.82 5.73 10.06 0.61 0.10 1.21 0.41
Wake ups: Other processes 7.56 10.96 0.83 1.18 0.82 0.11 0.03 0.01

Process switches 12.76 12.77 7.08 12.18 1.95 0.98 1.95 1.21

4.3.4 Process Switches
I have also compared the number of wake ups

for HTTPd processes with the number of pro-
cess switches. As shown in Table 7, the num-
ber of process switches with version 2.3.41 was
much smaller than that with 2.2.14.

4.4 Characteristics of Linux 2.3.41
By comparing the performance of SPECweb96

benchmark program on Linux 2.2.14 with that
on Linux 2.3.41, I have identified the follow-
ing characteristics of Apache servers running on
Linux 2.3.41.
( 1 ) Their degree of the global-kernel-lock us-

age is smaller.
( 2 ) The change in the CPU usage due to the

change in the number of servers and of
clients is smaller.

( 3 ) The CPU usage is larger for Cases 5 and
7 (where the number of HTTPd processes
is 5).

( 4 ) The elapsed times of Phases 4 and 5 are
larger.

( 5 ) The number of process switches is
smaller.

Observations 1 and 2 are consistent with prior
expectations, but not Observations 3 and 4.
The origin of the improvement in SPECweb96
throughput on version 2.3.41 is not a reduction
in CPU usage; Linux 2.2.14 had a performance
bottleneck other than the CPU resource, and it
was solved in 2.3.41. It is possible that the bot-
tleneck was connected with the change in the
process-scheduling policy (Observation 5).
The cause of the reverse relationship between

the SPECweb96 response time and the elapsed
times of Phases 4 and 5 is not clear. Exper-
iments that trace the correspondence between
received packets and server processes, as well as
that between server processes and sent packets,
are needed in order to determine the cause. The
proposed framework will be useful in designing
those behavior measurements by simply extend

the communication events to those connected
with communications between client and server
machines.

5. Discussion

5.1 Relation to Previous Work
5.1.1 Previous Formulation
The formulation of event-trace described

by McKerrow10) defines performance measure-
ment as ascertaining the extent of an object or
of the set of modules. It uses the following def-
initions:
Object The particular entity whose perfor-

mance is to be measured.
Object hierarchy An object at a specific hi-

erarchical level can be decomposed into
modules that are objects lower in the hi-
erarchy. The hierarchy extends from the
micro-code level, via the function level, to
the process and system levels.

Object execution An ordered sequence of
module executions.

Event The termination of one module in the
execution sequence and the start of the
next module.

This formulation is useful for measurements
that focus on the internal behavior of processes,
i.e., the execution of program instructions that
is not affected by the execution of other pro-
cesses.
Computer systems now commonly use dis-

tributed objects or parallel objects. There-
fore measurement of their performance has to
take into account the interaction between pro-
cesses in addition to process-internal behavior.
An example of this is the performance evalu-
ation and tuning of multithreaded programs8)
in which process waiting time and semi-busy-
waiting were introduced.

5.1.2 Advance by this Work
The framework I have described has been de-

signed to include interactions between processes
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as well as process-internal behavior. For this
purpose, I have created abstractions of the sys-
tem, its behavior, and events within it.
This framework abstracts target systems by

introducing objects that can be any kind of en-
tity with a connection to job execution in the
target system. This definition is an expansion
of that by McKerrow, in which logical entities
alone are considered to be objects.
This framework abstracts events as interac-

tions between objects. These events include in-
teractions across the object hierarchy, the same
as a McKerrow event, and interactions between
objects with no hierarchical relationship. This
definition of event is thus broader than that by
McKerrow.
Because events are abstracted, there is no dis-

tinction between them based on the properties
of the objects involved in the interaction; Ta-
ble 1 shows some actual object interactions that
can be treated by this framework. In the case
study described in Section 4, the same algo-
rithm based on this framework could be used for
obtaining the results for the whole HTTPd ex-
ecution and those for its each execution phases.
Since this framework formulates performance

measures by using abstract events, we can de-
fine and obtain performance measures for any
object. We can formulate not only traditional
performance measures such as throughput, re-
sponse time, and resource utilization, but also
such recent performance measures as process
waiting time and semi-busy-waiting. Process
waiting time was originally defined as the time
during which a process is waiting for the CPU
resource to become available. In this frame-
work, that definition has been expanded to be
the time during which a process is waiting for
any resource to become available. The ex-
panded process-waiting times were presented in
Section 4.3.2.

5.2 Application to Performance Esti-
mation

Performance estimation with such perfor-
mance models as queueing-network and simu-
lation models requires input data that describe
the characteristics of the target system’s behav-
ior.
Smith tidied up the input data in her SPE

(system performance engineering) method14),
in which she proposed that software execution
needs to be divided into sub-executions and
resource-usage data needs to be obtained for
each component. These sub-executions cor-

respond to the subtransaction and execution
phases in this paper.
As described in Section 4.3.2, by using this

framework, we can obtain performance mea-
sures for each execution phase. It is thus suit-
able for use in performance estimation methods,
including the SPE method.

6. Conclusions

Event-driven measurement tools have tra-
ditionally measured different sets of software
events and have not been standardized, though
event tracing is useful for performance estima-
tion and bottleneck detection. My motivation
in developing a event-trace framework was to
provide a guiding principle for unifying the dis-
parate approaches that have so far character-
ized event-based performance evaluation.
The framework consists of 1) abstractions

representing a system, its behavior, and the
events to be measured and 2) formulations of
performance measures and of algorithms for ob-
taining them from an event trace. It enables the
interactions between processes to be treated to-
gether with process-internal behavior.
I have applied the framework to the perfor-

mance evaluation of an Apache HTTP server
running on Linux 2.2.14 or 2.3.41 and execut-
ing the SPECweb96 benchmark program. The
CPU overhead created by the hybrid monitor
used in the measurement was about 2% so that
I could capture software events concerned with
such detail target system behavior as global-
kernel-lock usage with little disturbance on the
target system behavior. A low-overhead mea-
surement tool is a key to apply the framework
to actual systems.
By comparing the performance of the bench-

mark program on Linux 2.2.14 with that on
Linux 2.3.41, I was able to clarify the differ-
ences between the two versions of Linux. Some
observations, including those of global-kernel-
lock usage and robustness for the increase in the
number of clients, are consistent with prior ex-
pectations, but others are not; in particular, the
difference in CPU usage did not explain the dif-
ference in SPECweb96 performance, and thus it
suggested that Linux 2.2.14 had a performance
bottleneck other than physical resources (e.g.,
CPUs and disks).
This case study indicates that the measure-

ment of CPU usage alone is not enough. We
also need to consider process interactions, at
least so far as Apache HTTP servers are con-
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cerned. This framework includes the treatment
of the process interactions, easily extendable to
communications between client and server ma-
chines, it is thus useful for performance evalua-
tion of systems whose performance is influenced
by process interactions as well as by process-
internal behavior.
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