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Abstract

This paper'proposes a type inference system for Guarded
Horn Clauses, GHC, based on the notion of value and

communication type. Value type is a type that a predi-

cate can have, guaranteeing that a goal predicate of the

value type does not raise type errors at run time. Com-
munication type is a type under which two predicates

ccmmunicate each other. These types are obtained by
constraint solving and partial evaluation of a GHC pro-
gram to some extent. We show that these types con-
tribute to the early detection of errors in the software
development. '

1 Introduction

A type inference system is a system which detects the
types of a given program without type information. It has

been intensively studied for functional languages [Milner

78] and as a result, conceived as a useful software com-
ponent which contributes to the early detection of pro-
gramming errors. o

During the last several years, type inference has also
been studied in logic programming, in particular, Prolog
[Mishra 84, Kanamori 85 and Zobel 87). ‘However there
has been no attempt to infer types'in concurrent logic
languages.

This paper develops a type inference system of GHC
which infers the type of each predicate according to the
given partial type information. Two kinds of types are
introduced here: value type and communication type.
Value type is a type that a predicate can have, guarantee-

ing that a goal predicate of the type does not raise type

errors at run time.  Communication type is a type un-
der which two predicates communicate each other. These
types are obtained by constraint solving and partial eval-
uation of a GHC program to some extent. We show that
these types contribute to early detection of errors in the
software development. '

2 Types
This section defines value type and communication type

of GHC. First, this paper supports parametric polymor-
phism in value type. Thus, a type is able to involve a

type variable. However, overloading is excluded, mainly
because it makes the type inference much harder. For
instance, int is a type, and list(«) is also a type, if « is
a type variable and list is a type constructor.

Based on this, the value types of functions and pred-
icates can be declared. If some of them are not declared,
they are inferred by the methods in the following section.
In particular, if the type of a predicate is not declared, it
is, first, assumed as:

pred p: @p/n(1),---,@p/n(n), where @p/n(i) is
a type variable symbol denoting the unknown type
of the i-th argument of p/n

and the inference algorithm finds the appropriate type for
each @p/n(7).

In addition, three kinds of communication types be-
tween predicates are defined: one-shot communication
(OS for short), stream-based lazy communication (SL for
short) and stream-based eager communication (SE for
short). OS type is a communication type taking place
between two predicates (or processes) when a predicate
gives a value to the other only once via a shared variable.
SL type is a type indicating a communication pattern
that a predicate sends a piece of information continu-
ously via a stream, typically list, only when the other
predicate is ready to process it. SE type is a type indi-
cating a communication pattern that a predicate sends a
piece of information continuously via a stream, typically
list, immediately after the information is generated.

3 Value Type Inference as Con-
straint Solving

A value typing for a predicate or a clause associates a:
value type with each variable, functor and predicate. The
value type annotations need not be provided by users
because most general type annotations can be computed
by the typing rules in [Hanus 89]. From the typing rule
in [Hanus 89], we can get the Most General Typed Clause
(MGTC) of each clause. From these MGTCs, the type
of the predicate p/n is computed by Algorithm 1 with a
set of constraint ¥,



Algorithm 1. type constraint algorithm for the predi-
cate p/n

Input : typed clauses whose heads are p/n

Output : a set of equations for the types of p/n with its
type constraint ¥,

1. For each @p/n(i) which denotes the i-th argument
type of p/n,

@p/n(i) = unify(r}, .- -, 7F), where 73 is the
type of the i-th argument of the j-th clause
whose head is p/n.

2. For every typed predicate q(sy:0y, - - -, s§:0%), in the
body part in an input typed clause, add a type con-
straint (oy, - -, ok) = 04/ (@q/k(1), - - -, @q/k(k))
to ‘I’p/n-

For instance, let us consider the append program in
Example 1 including preassumed types for list and equal
predicate.

Example 1.

func [J: — list(a)

func [..|..]: a, list(a) — list(a)

pred =: 8, 8

append([},X,Y) :-true | X =Y
append([H|T1],X,Y) :- true | Y = [H|T2],
append(T1,X,T2)

First, from these preassumed types, we get the follow-
ing MGTCs;
append([Jdist(ay), X:az, Y:ag) :- true | X:ay = Y:a,.

append([H :a3|T1:list(as)]list(as), X :aq, Y:list(as)) :-
true | Yilist(as) = [H:as|T24ist(as)]dist(az), append(T'1:
list(ag), X:aq, T2ist(as)).

Secondly, by Algorithm 1, the value type of append is
computed as:

@append/3(1) = unify(list(a,), list(es)),
@append/3(2) = unify(as, o),
@append/3(3) = unify(az, list(as)),

with a constraint,

¥oin = { (list(as), as, list(as)) =
o(@append/3(1), @append/3(2), @append/3(3))}.

If a program does not have indirect recursion, the
equations obtained by Algorithms 1 can be solved. For
instance, the equations for append are solved with a type
(list(ar), list(ay), list(ay)).

4 Communication Type

Communication types are inferred using the value types
inferred in Section 3. If a variable is shared between two
predicates and its type is a primitive type, then the com-
munication type between them is OS. SL and SE could
take place if there is a shared variable whose type is typi-
cally a list. The distinction between SE and SL are found
by partial evaluation of a GHC program to some extent.
We will not discuss this topic in detail owing to the lim-
ited space.

5 Conclusion

This paper proposes a type inference system for a concur-
rent logic language, GHC. Every type of a predicate or
a functor is not necessarily predefined. Instead, the type
system infers the undeclared types. Hence, it leaves out
the burden that a programmer should declare the types
and at the same time, it contributes to the early detection
of errors in the software development.
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