WS 28420 CER 3 FRl)2EAL

4—127

History Update in Temporal Object-Oriented Databases

2L—10

Mohamed El-Sharkawi™

Yahiko Kambayashi*

*Faculty of Engineering, Kyushu University

*Faculty of Engineering, Kyoto University

1- Introduction

Advanced database applications, e.g. CAD and OIS,
have two requirements. First, they need
semantically rich data model, since record oriented
data models are not able to support these
applications. Object-oriented data model is
promising to be used in such applications. The
second requirement is extendinig and adding some
new features to database management systems.
Among these features are support of long
transactions, controlling versions, and adding the
time dimension to the data. In this paper, we
discuss problems in updating the history in
temporal object-oriented databases (TOODB).
(Detailed discussions of some problems in
answering queries in TOODB’s can be found in [1].)
. In object-oriented databases an update on an object
may enforce it to change its class [2]. That is the
object will migrate to another class. Due to object
migration updating the history of an object may
affect the position of the current vérsion of the
object (it may also affect other versions).
Accordingly, when the history of an object is
updated, the system has to check whether this
update will affect one of the object’s versions.

2- Basic Concepts

2-1 Object-Oriented Data Model

In object-oriented data model, entities in the real-
world are considered as objects. Properties of an
object are divided into two parts, its status and its
behavior. Status of the object is captured through
its instance variables. Object behavior is
encapsulated in a set of methods associated with the
object. A method is a code that manipulates the
object's status. To manipulate an object a message
should be sent to the object. Response to a message
is done by executing a method corresponding to the
message. Objects having similar properties are
grouped together to constitute a class. All objects
belong to a class are its instances. Classes in the
system are organized in a class hierarchy. An edge
between two classes represents IS-A relationship
between the two classes. A class inherits all
properties of its immediate superclass. It may have
also its own properties. For data modeling it is
necessary to extend the class hierarchy into a class
lattice. A class may have several immediate
superclasses and it inherits all of their properties.
The class lattice, also the class hierarchy, is rooted
such that there is no dangling nodes. The root node
is a system defined class called OBJECT. An
instance variable gets its possible values from
instances of a class in the system. The class domain
is either one of system defined basic classes or any
other user defined class. Basic classes include
INTEGER, REAL, CHAR, and BOOLEAN. An
instance variable that gets its value from one of the
basic classes is called a basic instance variable,
otherwise it is called a complex instance variable.
2-2 Object Migrationin OODB’s

An update may cause object migration. That is, the
updated object may change its current class. The
idea is explained through an example. Consider the
schema shown in Fig. 1. It models people in a

OBJECT

PERSON

STUDENT STAFF

TECH

PROF
UNDERGRAD

TA
GOOD-GRAD

ASST-PROF FULL-PROF
Fig.1 An example schema -

university, Suppose that instances of class GOOD-
GRAD students are defined to be graduate students
with total marks exceeding certain value. From
this, an update that modifies this value may cause
an object to migrate from class GRAD to class
GOOD-GRAD. Such object migration has some side
effects that should be handled by the system.

2.3 Temporal Databases

For new applications, it is necessary to store the
current status as well as the history of the world. In
temporal databases, users may access history data

- by using temporal queries. The query contains, in

addition to conditions should be satisfied by the
output, the time at which the output is valid. For
example, find the Salary of Tom from March 1989 to
Feb. 1990. Several efforts have been done to extend
the relational data model with the time dimension.
Temporal databases are classified into three types
rollback, historical, and temporal databases. This
classification is based on two criteria, the type of
the time s gported by the database and whether it
is permitted to update the history. There are two
types of time: transaction time and wvalid time.
Transaction time is the time at which information
was stored in the database. Valid time is the time
at which the real-world was changed. Rollback
databases support transaction time, historical
databases support valid time, and temporal
databases support both transaction and valid
times.In rollback databases, however, it is not
permitted to update the history as known of now. In
our discussion it is immaterial which time is
supported.

4—128

3- History Update in TOODB’s

Databases that support the time dimension are
classified into three types [SA] rollback, historical,
and temporal. One of the features of historical and
temporal databases is the possibility of updating
the history as known of now. In this section, we will
study history update in TOODB’s. Modifying the
history in TOODB’s may have some side effects. To
show that consider the schema shown in Fig. 2. At

O GRAD

U1l

GOOD-GRAD

Update Ul at t1 enforcesO Update U2 at t2 enforces O

to migrate to GOOD-GRAD to migrate to class TA

{a) (b)

Fig.2 The effect of history update

t1 update Uy is done on object O to increase Total-
Markes of O to 87. Accordingly, O will migrate to
class GOOD-GRAD. At t2 O is updated again to
move into class TA. Later, at t3, it is discovered that
the Totul-Markes of O should be corrected to be 78.
If this history update is done, O will not satisfy
conditions to be an instance of class TA. The system
should consult the user before correcting the
history.
There are two possibilities when the history is
updated:
1- The correction of an update done at t; does not
affect any update done at tj, t;>t;, in this case, the
correction is applied. It happens when:
(a) The corrected instance variable is not one of
those causing objects in the class to migrate, for
example correcting an update that modified the
address of object O when it was an instance of class
GRAD will not affect its position in class TA.

(b) The corrected instance variable is one of those
" causing objects in the class to migrate, however the
correction will not affect the object’s current
position. For example, in Fig. 2, correcting the
Total-Markes from 87 to 97 will not invalidate the
existence of O in class TA.
2- The correction of an update done at t; does affect
some update done at tj, tj>t;, the corrected update
may aff%ct other updates in the following cases:
(a) The correction will make one of the migration
conditions satisfiable. For example, an object in
class C; may migrate into class Cjiff: A = 50,B <
80, and C = 20, where A, B, and C are instance
variables. Suppose at time t1 A is updated to be 45,
at time tg B is updated to 70 and C to 20. The update
at time tg does not cause any migration. Later, at

time t3 it is discovered that the first update was not
correct, A should be 54 instead of 45. If this mistake
is corrected, the update at time tg should be
completed, since, now, all conditions of migration
are satisfied.

(b) The corrected instance variable does not cause
any migration to objects in the class, however, it
may cause migration of some versions in some other
class. For example, consider an object O* that has
two versions one in class C; and the other in class
C2. The version in class Cg was generated from the
version in class C1. The condition for O* to migrate
from C2 to some other class C3 is that A > 45.
Assume that a history update is applied on the
version in class C; to make its A equal to 60.
Applying this history update will enforce the object
to migrate from class Cg to class Cg3.

The system has to detect whether correcting an
update has side effects. When the correction does
not have any effect, it can be executed. Otherwise,
the user has to be informed and the decision of
performing the correction should be taken by the
user. The system may support the user with
information that help him to take the decision.
These information may include the instance
variables that causes the side effects, the new
position of the object when the history is corrected,
and etc. :

Before we give an outline of the procedure that
checks history corrections, we need the following
definitions.

Definition 3. Associated with each class Cj a set of
migration conditions denoted by MC(Cj). A
migration condition has the form:

Instance variable OP Value, where OP belongs to
{=,#,>,2, <, =}and Value is obtained from the
domain of the instance variable.

Definition 4. The class of the most recent version of
an object O is called the current class of O and
denoted CC(O). The class of the version that will be
updated is called the history update class and
denoted HUC(O). The history path of object O,
denoted HP(O), is the union of HUC(O), CC(0), and
each class Cj, in the path between HUC(O) and
CC(0), such that O has a version belongs to C;.

Note that the history update class (HUC) and the
current class (CC) of an object can be obtained by
consulting class UPDATES.

Procedure History-Update-Validation
Input: Given a correction U(O, IVi, NEW-
VALUE)
Output: The correction is done, or, the user is
informed of the side effects.
Method: for every class Cy in HP(O) do
if correcting the history makes one
of MC(Cy) true then inform the
user; exit;
end do;
perform the correction,;

exit;
END HISTORY UPDATE

References

[11El-Sharkawi, M. “Answering Queries in
Temporal Object-Oriented Databases,” DASFAA,
March 1991 (to appear).

{2]El-Sharkawi, M. Kambayashi, Y “Object
Migration Mechanisms to Support Updates in
Object-Oriented Databases,” Proce. PARBASE-90.

