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Regular Paper

Modulo Interval Arithmetic and Its Application to Program Analysis

Tsuneo Nakanishi† and Akira Fukuda†

Interval arithmetic, an arithmetic system on intervals of real numbers, is useful for program
analysis which deals with range information of variables or expressions such as array reference
analysis, data dependence analysis and value range analysis. However, since loop indices or
array subscripts often take contiguous integers with a stride, the interval representing densely
contiguous real numbers is not accurate representation for program analysis and degrades
opportunity of parallelization or code optimization. In this paper modulo interval arithmetic,
an arithmetic system on sets of contiguous integers with strides included in real intervals,
is presented. Modulo interval arithmetic has both arithmetic operations and set operations
which are useful for various program analysis. Moreover, this paper discusses application of
modulo interval arithmetic to program analysis for parallelizing compilers.

1. Introduction

The interval, which is defined for two arbi-
trary real numbers a, b ∈ R (a ≤ b), is the set of
real numbers {x ∈ R | a ≤ x ≤ b} and denoted
by [a, b]. Interval arithmetic 12),18) is an arith-
metic defined on intervals. Interval arithmetic
is used to estimate errors produced by float-
ing point calculation. Interval arithmetic or its
similar ideas are useful also for program analy-
sis, for example, array reference analysis, data
dependence analysis 2) and value range analy-
sis 6),14),17),20). However, real numbers are usu-
ally used for representing physical data in real
programs and loop indices and array subscripts,
which are analyzed in these program analyses,
mostly take integers. Thus the interval is too
rough representation for program analysis, es-
pecially to deal with sparse integer intervals
such as index values of loops with strides.
Subarray representation is important to an-

alyze data dependences among procedures or
to optimize data partitioning or transference
on distributed memory multiprocessors. Re-
searchers in high performance computing have
developed various kinds of subarray representa-
tions 1),3),11),15),19). Some of these subarray rep-
resentations are based on the triplet notation,
which is used in Fortran90 or HPF 9) programs,
or other subarray representations use sets of
inequalities bounding subarrays. These subar-
ray representations have basic set operations for
data dependence analysis in general. Consider-
ing facility of implementation and manageabil-
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ity on run-time, the triplet notation will be the
most simple and practical subarray representa-
tion. Note that the triplet notation is a kind of
intervals consisting of contiguous integers pos-
sibly with a stride.
Based on these observations, this paper pro-

poses modulo interval arithmetic, an extension
of interval arithmetic, which has arithmetic op-
erations and set operations on sets of integers
included in intervals of real numbers. Modulo
interval, denoted by [a, b]n(r), means the set of
integers in [a, b] which are divisible by n with a
remainder of r. Although additional informa-
tion of the modulo interval to the interval are
only the modulus n and the residue r, the mod-
ulo interval is a simple and useful representation
with rich well-defined mathematical properties
to express a set of iterations and subarrays.
The advantages of the modulo interval over

other subarray representations will be its sim-
plicity and generality. Arithmetic and set oper-
ations of the modulo interval are so simple that
complicated implementation is not required
like inequality-based subarray representations.
Simplicity of these operations owes the modulus
part of the modulo interval which is not con-
tained in the triplet notation. Most inequality-
based subarray representations are exclusively
used for subarray representation and thus have
only set operations for array reference analysis
and data dependence analysis. On the other
hand, modulo interval arithmetic has not only
set operations but also arithmetic operations.
The arithmetic operations expand applications
of modulo interval arithmetic to other program
analysis, such as value range analysis, besides
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array reference analysis and data dependence
analysis.
This paper is organized as follows: Sec-

tion 2 summarizes interval arithmetic as a back-
ground of modulo interval arithmetic. Section 3
presents the definition of the modulo interval
and mathematical properties of modulo interval
arithmetic. In Section 4, modulo interval arith-
metic is applied to program analysis performed
by parallelizing compilers. Section 5 describes
related works. Section 6 concludes the paper.

2. Interval Arithmetic

An interval is defined for two arbitrary real
numbers a and b with a ≤ b and denoted by
[a, b]. An interval [a, b] means the set of real
numbers {x ∈ R | a ≤ x ≤ b}.
Any arithmetic operation � on real numbers

is redefined as an arithmetic operation on inter-
vals by the following definition where A and B
are intervals.

A�B = {x = a� b | a ∈ A, b ∈ B}
By the above definition and denseness of real
numbers, addition (+), subtraction (−), multi-
plication (×) and division (/) of intervals [a, b]
and [c, d] are derived as follows except division
is not derived if 0 ∈ [c, d].

[a, b] + [c, d] = [a+ c, b+ d]
[a, b]− [c, d] = [a− d, b− c]
[a, b]× [c, d] = [min{ac, ad, bc, bd},

max{ac, ad, bc, bd}]
[a, b] / [c, d] = [min{a/c, a/d, b/c, b/d},

max{a/c, a/d, b/c, b/d}]
Moreover, exponentiation of an interval [a, b] is
derived as follows where n ≥ 0.

[a, b]n =




[an, bn]
(if a ≥ 0 or n is odd)

[bn, an]
(if b < 0 and n is even)

[0,max{an, bn}]
(otherwise)

Addition and multiplication on intervals are
both associative and commutative. The dis-
tributive law does not hold for interval arith-
metic in general. Instead of the distributive
law, the subdistributive law shown below holds
for intervals A, B and C.

A× (B + C) ⊆ A×B +A× C
See Ref. 12) for the details of interval arith-

metic.

3. Modulo Interval Arithmetic

In this section the modulo interval and its

mathematical properties are introduced.
3.1 Definition
A modulo interval is defined for two arbitrary

real numbers a and b with a ≤ b, a non-zero
integer n referred to as a modulus, and an in-
teger r referred to as a residue, and denoted
by [a, b]n(r). A modulo interval [a, b]n(r) means
the set of integers {x ∈ Z | a ≤ x ≤ b, x =
nm+ r,m ∈ Z}. Examples are shown below.

[7, 21]5(4) = {9, 14, 19}
[−6, 10]−4(2) = {−6,−2, 2, 6, 10}
[−7, 9]4(−3) = {−7,−3, 1, 5, 9}

[3, 7]2(3) = {3, 5, 7}
A modulo interval [a, b]n(r) is normalized if

both a and b are in [a, b]n(r) and 0 ≤ r < n.
Some definitions and notations are described

below for formal discussion.
The sign of an integer a, denoted by sig(a),

gives +1, 0 and −1 if a > 0, a = 0 and a <
0, respectively. The quotient of an integer a
divided by an integer b, denoted by a div b, is
defined as sig(a/b)∗�|a|/|b|
. The remainder of
an integer a divided by an integer b, denoted by
a%b, is defined as a− (a div b) ∗ b. 0 ≤ a%b < b
if and only if a ≥ 0 and 0 ≥ a%b > b if and
only if a < 0.
The greatest common divisor of integers m

and n, denoted by gcd(m,n), is defined as
the greatest positive integer which divides both
m and n if m and n are non-zero integers.
gcd(m,n) is defined as zero if m or n is zero.
The least common multiple of integers m and

n, denoted by lcm(m,n), is defined as the least
positive integer which are divisible both by m
and by n if m and n are non-zero integers.
lcm(m,n) is defined as zero if m or n is zero.

3.2 Arithmetic Operations
Any arithmetic operation � on integers is re-

defined as an arithmetic operation on modulo
intervals by the following definition where A
and B are modulo intervals and z is an inte-
ger.

A�B = {x = a� b | a ∈ A, b ∈ B}
A� z = {x = a� z | a ∈ A}
z �B = {x = z � b | b ∈ B}

Addition, subtraction and multiplication on
modulo intervals have the following property.

Property 1 The relations below hold for
addition, subtraction and multiplication on
modulo intervals.
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[a, b]m(r) + [c, d]n(s)

⊆ [a+ c, b+ d]gcd(m,n)(r+s)

[a, b]m(r) − [c, d]n(s)

⊆ [a− d, b− c]gcd(m,n)(r−s)

[a, b]m(r) × [c, d]n(s)

⊆ [min{ac, ad, bc, bd} ,

max{ac, ad, bc, bd}]gcd(m,n)(rs)

PROOF. Let x denote an integer in [a, b]m(r)

and y an integer in [c, d]n(s). x and y are
expressed as x = mu + r and y = nv + s
with appropriate integers u and v, respectively.
Thus the sum of x and y is represented with
g = gcd(m,n) as follows.

x+ y = (mu+ r) + (nv + s)
= (mu/g + nv/g)g + (r + s)

Since both m and n are divisible by the greatest
common divisor of m and n (namely g), mu/g+
nv/g is an integer. It follows that x+y divided
by g makes a remainder of r + s. On the other
hand, since a ≤ x ≤ b and c ≤ y ≤ d, a + c ≤
x+y ≤ b+d holds. These prove the first relation
concerning addition on modulo intervals.
The other relations are proved likewise. ✷

Property 1 is given as a set of inclusion re-
lations. However, the relations concerning ad-
dition and subtraction on modulo intervals are
reduced to equivalent relations in the special
case described in the following property.

Property 2 The relations below hold for
addition and subtraction on normalized mod-
ulo intervals of an identical modulus.

[a, b]n(r) + [c, d]n(s) = [a+ c, b+ d]n(r+s)

[a, b]n(r) − [c, d]n(s) = [a− d, b− c]n(r−s)

PROOF. Since both [a, b]n(r) and [c, d]n(s) are
normalized, a, b, c and d are expressed as a =
nua + r, b = nub + r, c = nuc + s and d =
nud + s with appropriate integers ua, ub, uc

and ud, respectively. Moreover, a ≤ b, c ≤ d
and n > 0 hold and it follows that ua ≤ ub and
uc ≤ ud.
An integer x in [a+ c, b+ d]n(r+s) is ex-

pressed as x = nu + r + s with an appropriate
integer u such that ua+uc ≤ u ≤ ub+ud. Thus
u is expressed as u = ua+uc+∆ with an integer
∆ such that 0 ≤ ∆ ≤ (ub + ud)− (ua + uc).
Consider the case such that 0 ≤ ∆ < ub−ua.

Since x is expressed as x = {n(ua +∆) + r}+
(nuc+s), it follows that n(ua+∆)+r ∈ [a, b]n(r)

and nuc + s ∈ [c, d]n(s).

Consider the case such that ub − ua ≤ ∆ ≤
(ub + ud) − (ua + uc). Since x is expressed as
x = (nub + r) + {n(ua + uc − ub + ∆) + s}, it
follows that nub + r ∈ [a, b]n(r) and n(ua +uc −
ub +∆) + s ∈ [c, d]n(s).
[a+ c, b+ d]n(r+s) ⊆ [a, b]n(r) + [c, d]n(s) is

proved by the consequences of the above cases.
[a, b]n(r) + [c, d]n(s) ⊆ [a+ c, b+ d]n(r+s) holds
by Property 1. These prove the first relation
concerning addition of normalized modulo in-
tervals of an identical modulus.
The relation on subtraction is proved like-

wise. ✷

Addition, subtraction and multiplication of a
modulo interval and an integer have the follow-
ing property.

Property 3 The relations below hold for
addition, subtraction and multiplication of a
modulo interval and an integer.

[a, b]n(r) + z = [a+ z, b+ z]n(r+z)

z + [a, b]n(r) = [z + a, z + b]n(z+r)

[a, b]n(r) − z = [a− z, b− z]n(r−z)

z − [a, b]n(r) = [z − b, z − a]n(z−r)

[a, b]n(r) × z = [az, bz]nz(rz)

z × [a, b]n(r) = [az, bz]nz(rz)

PROOF. By the definition of the modulo in-
terval, [a, b]n(r) + z is expressed as the set of
integers {x = m + z | m ∈ [a, b]n(r)}. This set
is reduced to a modulo interval as follows.

{x = m+ z | m ∈ [a, b]n(r)}
= {x = m+ z | m = nu+ r, u ∈ Z,

a ≤ m ≤ b}
= {x | x = nu+ r + z, u ∈ Z,

a+ z ≤ x ≤ b+ z}
= [a+ z, b+ z]n(r+z)

This proves the first relation concerning addi-
tion of a modulo interval and an integer.
The other relations are proved likewise. ✷

Note that the relations described in Prop-
erty 3 are given as equivalent relations.
Exponentiation on modulo intervals has

Property 4. Although exponentiation does not
appear frequently in array subscripts of real
programs, induction variable elimination for
parallelization transforms subscripts of triangu-
lar packed matrices, appeared in BLAS 10), into
quadratic expressions 7) for example .

Property 4 The relation below holds for
exponentiation on modulo intervals where z is
a non-negative integer.
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[a, b]zn(r) ⊆




[az, bz]n(rz)

(if a ≥ 0 or z is odd)
[bz, az]n(rz)

(if b < 0 and z is even)
[0,max{az, bz}]n(rz)

(otherwise)

PROOF. Trivial. This property is proved by
the property concerning exponentiation on in-
tervals described in Section 2 and Property 1.
　 ✷

If the modulus of a modulo interval is a prime
number, the following property holds.

Property 5 The relation below holds for
exponentiation on modulo intervals where n is
a non-negative prime number.

[a, b]nn(r) ⊆




[an, bn]n(r)

(if a ≥ 0 or n is odd)
[bn, an]n(r)

(if b < 0 and n is even)
[0,max{an, bn}]n(r)

(otherwise)

PROOF. Trivial. This property is proved by
Fermat’s Theorem 4) and Property 4. Fermat’s
Theorem, which is well-known as a fundamen-
tal theorem of public key cryptography, is the
theorem states that ap ≡ a (mod p) holds for
any integer a where p is a prime number. ✷

3.3 Set Operations
Since a modulo interval is a set of integers,

set operations are defined on modulo intervals.
Intersection of modulo intervals has the fol-

lowing property.
Property 6 The intersection of modulo in-

tervals [a, b]m(r) and [c, d]n(s) is given as below
where z is an integer which is divisible by m
with a remainder of r and by n with a remain-
der of s.

[a, b]m(r) ∩ [c, d]n(s)

=




[max{a, c},min{b, d}]lcm(m,n)(z)

(if s− r is divisible by
gcd(m,n).)

∅
(if s− r is not divisible by
gcd(m,n).)

PROOF. [a, b]m(r)∩ [c, d]n(s) is expressed as fol-
lows.

[a, b]m(r) ∩ [c, d]n(s)

= {x | x = mu+ r = nv + s, u, v ∈ Z,

max{a, c} ≤ x ≤ min{b, d}}

The above expression includes a Diophantine
equation mu+r = nv+s with variables u and v.
The Diophantine equation has integer solutions
if and only if s − r is divisible by gcd(m,n).
Thus [a, b]m(r) ∩ [c, d]n(s) = ∅ if s − r is not
divisible by gcd(m,n).
If s − r is divisible by gcd(m,n), the Dio-

phantine equation has the following general in-
teger solutions where u0 and v0 are the particu-
lar integer solutions of a Diophantine equation
mu − nv = gcd(m,n) and t is an arbitrary in-
teger.

u = ((s− r)u0 + nt)/ gcd(m,n)
v = ((s− r)v0 +mt)/ gcd(m,n)

mu+r and nv+s are expressed as follows where
k = (s− r)/ gcd(m,n).

mu+ r
= (mu0(s− r) +mnt)/ gcd(m,n) + r

= lcm(m,n)t+mku0 + r
nv + s
= (nv0(s− r) +mnt)/ gcd(m,n) + s

= lcm(m,n)t+ nkv0 + s

Since (mku0+r)−(nkv0+s) = k(mu0−nv0)−
(s−r) = (s−r)/ gcd(m,n)∗gcd(m,n)−(s−r) =
0, mku0+r and nkv0+s are equal to an integer
and thus mu+r = nv+s. Let z denote the inte-
ger. The above mu+r and nv+s are included in
[max{a, c},min{b, d}]lcm(m,n)(z) if max{a, c} ≤
mu + r = nv + s ≤ min{b, d}. z is divisible
by m with a remainder of r and by n with a
remainder of s. Thus [a, b]m(r) ∩ [c, d]n(s) =
[max{a, c},min{b, d}]lcm(m,n)(z) if s−r is divis-
ible by gcd(m,n). ✷

It is required to find an integer z which is di-
visible bym with a remainder of r and by n with
a remainder of s to obtain [a, b]m(r) ∩ [c, d]n(s)
by Property 6. z is found by the following al-
gorithm.

Algorithm 1 The algorithm below finds an
integer which is divisible by m with a remain-
der of r and by n with a remainder of s. This is
a simplified version of the algorithm which ap-
pears in Ref. 2) as Extended Euclid’s Algorithm.
( 1 ) (x1, c1) := (1, |m|), (x2, c2) := (0, |n|).
( 2 ) If c2 = 0, z := m(s− r)(sig(m)x1)/c1 + r

and terminate the algorithm.
( 3 ) q := c1 div c2.
( 4 ) (tx, tc) := (x1, c1) − q(x2, c2), (x1, c1) :=

(x2, c2), (x2, c2) := (tx, tc).
( 5 ) Go to ( 2 ).
PROOF. See Ref. 2). ✷
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Union of modulo intervals has the following
property.

Property 7 The relation below holds for
modulo intervals and a positive integer z.

[a, b]n(r) =
z−1⋃
k=0

[a, b]nz(kn+r)

PROOF. Let x denote an integer in [a, b]n(r). x
is expressed as x = nu+ r with an appropriate
integer u and reduced as follows.

x = nu+ r
= n{z(u div z) + u%z}+ r

u div z and u%z are integers. If 0 ≤
u%z < z, x is expressed as follows and x ∈⋃z−1

k=0 [a, b]nz(kn+r) holds.

x = n{z(u div z) + u%z}+ r

= nz(u div z) + n(u%z) + r

If −z < u%z < 0, x is expressed as follows
and x ∈ ⋃z−1

k=0 [a, b]nz(kn+r) holds since 0 < z +
u%z < z.

x = nz(u div z) + n(u%z) + r

= nz(u div z − 1) + n(z + u%z) + r

Let y denote an integer in
⋃z−1

k=0 [a, b]nz(kn+r).
y is expressed as y = nzv + kn+ r with appro-
priate integers v and k such that 0 ≤ k < z−1.
y is reduced as follows.

y = nzv + kn+ r
= n(zv + k) + r

zv + k is an integer. Thus y ∈ [a, b]n(r) holds.
Consequently, [a, b]n(r) =

⋃z−1
k=0 [a, b]nz(kn+r) is

proved. ✷

Property 7 is useful to reduce errors produced
by modulo interval calculations. For example,
the result of [3, 15]4(3) + [5, 8]3(2) is given as a
subset of [8, 23]1(0) by Property 1. However, by
equalizing moduli of operand modulo intervals
to their least common multiple with Property 7,
the result is given as a smaller, namely more
accurate, subset as follows.

[3, 15]4(3) + [5, 8]3(2)
= ([3, 15]12(3) ∪ [7, 7]12(7) ∪ [11, 11]12(11))

+ [5, 8]3(2)
⊆ [8, 23]3(2) ∪ [12, 15]3(0) ∪ [16, 19]3(1)

3.4 Division
Division of a modulo interval by an integer

has the following property.
Property 8 The relations below hold for

division of a modulo interval by an integer
where z is a non-zero integer which divides the
modulus of the modulo interval.

[a, b]n(r) div z

= [min{a div z, b div z},
max{a div z, b div z}]n div z(r div z)

[a, b]n(r) %z = r%z
PROOF. Let x denote an integer in [a, b]n(r). x
is expressed as x = nu+ r with an appropriate
integer u. The quotient of x divided by z is
represented as follows.

x/z = (nu+ r)/z
= (n/z)u+ r/z

Since n is divisible by z, n/z is an integer and
equal to n div z. x div z is represented as fol-
lows.

x div z = (n div z)u+ r div z
This proves the first relation concerning the
quotient of a modulo interval divided by an in-
teger.
On the other hand, x%z is represented as fol-

lows.

x%z = (nu+ r)%z

= (nu%z + r%z)%z

Since n is divisible by z, nu%z is zero and x%z
is equal to r%z. This proves the second relation
concerning the remainder of a modulo interval
divided by an integer. ✷

In case n is not divisible by z, Property 7
enables division by multiplying the modulus of
a modulo interval by z as follows.

[2, 70]7(2) div 3
= ([2, 23]21(2) ∪ [9, 30]21(9) ∪ [16, 16]21(16))

div 3
= [0, 7]7(0) ∪ [3, 10]7(3) ∪ [5, 5]7(5)

4. Application to Program Analysis

In this section modulo interval arithmetic is
applied to program analysis performed by par-
allelizing compilers. The examples shown in
this section deal with only single loops and one-
dimensional arrays for simplicity without loss
of generality. The discussion in this section can
be applied to multiple nested loops and multi-
dimensional arrays. Although some devices are
possibly desired to improve accuracy of analy-
sis, such devices will be discussed in our future
papers.

4.1 Array Reference Analysis
Since remote memory access or inter-

processor communication is a dominant over-
head for parallel computing on distributed-
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L1: DO I=1, 1000
... = A(3I-1) + A(3I) + A(3I+1)

EndDO
L2: DO I=1, 999, 2

... = A(3I-1) + A(3I) + A(3I+1)
EndDO

Fig. 1 Array reference analysis (example).

memory multiprocessors, parallelizing com-
pilers for distributed-memory multiprocessors
must perform array reference analysis for par-
titioning and distributing arrays on distributed
memories to reduce remote memory accesses or
inter-processor communications. The modulo
interval can be employed as a subarray repre-
sentation for array reference analysis and its
arithmetic operations are useful to obtain sub-
arrays referenced in loops.
The index I of Loop L1 shown in Fig. 1 takes

integers in [1, 1000]1(0). The subscript of Array
A takes the set of integers evaluated as follows
by using modulo interval arithmetic in execu-
tion of L1.

(3 ∗ [1, 1000]1(0) − 1) ∪ (3 ∗ [1, 1000]1(0))
∪(3 ∗ [1, 1000]1(0) + 1)
= ([3, 3000]3(0) − 1) ∪ ([3, 3000]3(0))

∪([3, 3000]3(0) + 1)

= [2, 2999]3(2) ∪ [3, 3000]3(0) ∪ [4, 3001]3(1)
= [2, 3001]1(0)

Thus A(2 : 3001) will be referenced in L1.
The index I of Loop L2 shown in Fig. 1 takes

integers in [1, 999]2(1). The subscript of Array
A takes the set of integers evaluated as follows
in execution of L2.

(3 ∗ [1, 999]2(1) − 1) ∪ (3 ∗ [1, 999]2(1))
∪(3 ∗ [1, 999]2(1) + 1)
= ([3, 2997]6(3) − 1) ∪ ([3, 2997]6(3))

∪([3, 2997]6(3) + 1)
= [2, 2996]6(2) ∪ [3, 2997]6(3) ∪ [4, 2998]6(4)

Thus A(2 : 4), A(8 : 10), A(14 : 16), ..., and
A(2996 : 2998) will be referenced in L2.

4.2 Data Dependence Analysis
For two tasks T1 and T2 of a program, T1 and

T2 cannot run in parallel if T1 or T2 reads the
value of a variable written by the other task,
that is, there exists a data dependence between
T1 and T2. Let O(T1) denote the set of variables
written by T1 and I(T2) the set of variables read

L3: DO I=4, 1000, 4
A(I) = ...

EndDO
L4: DO I=1, 999, 2

... = A(3I-1) + A(3I) + A(3I+1)
EndDO

Fig. 2 Data dependence analysis (example 1).

L5: DO I=4, 1000, 4
A(I) = ...

EndDO
L6: DO I=1, 999, 2

... = A(3I)
EndDO

Fig. 3 Data dependence analysis (example 2).

by T2. If O(T1)∩ I(T2) = ∅, T1 and T2 can run
in parallel since there exists no data dependence
between T1 and T2 (Bernstein’s condition5)).
Consider whether Loops L3 and L4 in Fig. 2

can run in parallel or not. The subscript of Ar-
ray A takes the set of integers in [4, 1000]4(0)
in execution of L3 and the set of integers in
[2, 2996]6(2) ∪ [3, 2997]6(3) ∪ [4, 2998]6(4) in exe-
cution of L4. (L2 and L4 are the identical loop.
The set of integers taken by the subscript of Ar-
ray A is evaluated in Section 4.1.) The inter-
section of these modulo intervals is not empty
as follows.

[4, 1000]4(0)
∩ ([2, 2996]6(2)∪[3, 2997]6(3)∪[4, 2998]6(4))
= ([4, 1000]4(0)∩[2, 2996]6(2))
∪ ([4, 1000]4(0)∩[2, 2997]6(3))
∪ ([4, 1000]4(0)∩[2, 2998]6(4))
= [8, 992]12(8)∪[4, 1000]12(4)
�= ∅

Since the intersection shown above is given as
the exact set not as a superset, it is concluded
that L3 and L4 cannot run in parallel abso-
lutely.
Next, consider whether Loops L5 and L6 in

Fig. 3 can run in parallel or not. The mod-
ulo intervals representing sets of integers taken
by subscripts of Array A in executions of L5
and L6 are [4, 1000]4(0) and [3, 2997]6(3), respec-
tively. The intersection of the modulo intervals
is empty as follows by Property 6.

[4, 1000]4(0) ∩ [3, 2997]6(3) = ∅
Since there exists no dependence between L5
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L7: DO I=4, 1000, 4
S: A(3I) = ...
T: ... = A(2I-1)

EndDO

Fig. 4 Data dependence analysis (example 3).

and L6, the loops can run in parallel. If inter-
val arithmetic is used for this analysis instead
of modulo interval arithmetic, a false data de-
pendence between L5 and L6 will be reported
as follows.

[4, 1000] ∩ [3, 2997] = [4, 1000] �= ∅
Modulo interval arithmetic is effective for data
dependence analysis in loops with strides.
Finally, consider whether iterations of Loop

L7 in Fig. 4 can run in parallel or not. If there
exist i and i′ included in [4, 1000]4(0) such that
3i = 2i′−1, the array element written by State-
ment S at I = i is read by Statement T at I = i′
or the array element read by Statement T at
I = i′ is written by Statement S at I = i. Since
a flow dependence and an anti-dependence exist
between S and T in the former and the latter
cases, respectively, iterations of Loop L7 can-
not run in parallel. To check if there exist such
i and i′, it is enough to check whether the set
of integers taken by 3i−2i′+1 includes zero or
not. i and i′ take integers in [4, 1000]4(0) and
thus the set of integers taken by 3i− 2i′ + 1 is
evaluated as follows.

3 ∗ [4, 1000]4(0) − 2 ∗ [4, 1000]4(0) + 1
= [12, 3000]12(0) − [8, 2000]8(0) + 1
= [−1987, 2993]4(1)

Obviously, 0 �∈ [−1987, 2993]4(1). This proves
iterations in L7 can run in parallel.
These data dependence analysis by modulo

interval arithmetic are equivalent to the famous
GCD test.

4.3 Value Range Analysis
It is often required to analyze value ranges

taken by expressions or variables at specified
points of a given program for parallelization
and code optimization. Value range informa-
tion of array subscripts is useful for data de-
pendence analysis. Value range information of
a variable is useful to reduce memory consump-
tion by demoting the variable to a smaller data
type. Especially in recent years researchers in
silicon compilation tackle with value range anal-
ysis to reduce silicon area or power consump-
tion 14),17),20).

Modulo interval arithmetic is also useful for
value range analysis and can provide more de-
tailed value range information than value range
analysis with interval arithmetic. In our prelim-
inary work 13) value range analysis with mod-
ulo intervals is modeled as a problem of the
monotone data flow system 21). Value range in-
formation of variables at arbitrary points of a
given program is represented by modulo inter-
vals and propagated in the control flow graph of
the program. At each node of the control flow
graph, propagated value range information are
merged with modulo interval set operations and
the merged information is processed with mod-
ulo interval arithmetic operations correspond-
ing to ordinary arithmetic operations included
in the assignment statement of the node. This
procedure is performed iteratively at every node
until value range information held at every node
converges.

5. Related Works

The idea of the modulo interval is motivated
by a previous work of our research project
on loop parallelization and processor assign-
ment 8). In the work a set of loop iteration in-
dex values is represented by a coset , denoted by
nZ + r, a set of integers which are divisible by
n with a remainder of r. The coset is used only
for representation and no operation is defined
on cosets in the work.
Paek, et al.15) proposes Linear Memory Ac-

cess Descriptor, or LMAD, as an array reference
descriptor. The following is a formal descrip-
tion of LMAD.

Aδi1 ,δi2 ,...,δid
σi1 ,σi2 ,...,σid

+ τ

LMAD represents multi-dimensional subarrays
by linearizing the original multi-dimensional ar-
rays which include them. δik

is the stride of
array scanning by the loop of nest level k. σik

is the span of array scanning by the loop of
nest level k, that is, the difference of the off-
sets of the leftmost and the rightmost elements
scanned by the loop of nest level k. τ is the
offset of the leftmost element scanned by the
loop nest. The modulo interval itself has less
capability than LMAD to represent a subar-
ray. However, the modulo interval represents a
subarray equivalently to LMAD by represent-
ing the residue with a modulo interval recur-
sively. Although most mathematical properties
on modulo intervals still hold on such recursive
modulo intervals, recursive modulo intervals are
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outside the scope of this paper.
Most subarray representations, including

LMAD, have only set operations and operations
to simplify their representations, since they are
specially designed for array reference analysis.
On the other hand, the modulo interval has
simple and well-defined arithmetic operations
based on the number theory and interval arith-
metic as well as set operations. These oper-
ations have no difficulty for implementation.
Array reference analysis and data dependence
analysis require set operations. Scalar analysis,
such as value range analysis, requires arithmetic
operations for static evaluation of expressions.
Program information obtained or required by
these analyses is interrelated. Since the mod-
ulo interval has both arithmetic operations and
set operations, the modulo interval is advanta-
geous as a universal representation for program
information handled by various program anal-
ysis techniques. Moreover, the modulo interval
can be combined with existing subarray repre-
sentations for more accurate analysis due to its
simplicity, generality and manageability.

6. Conclusion

In this paper the modulo interval and its
mathematical properties have been presented.
Since the modulo interval is a subset of the
interval, the modulo interval has mathemati-
cal properties similar to ones of the interval.
The modulo interval represents a set of inte-
gers more accurately than the interval with ad-
ditional information to intervals, namely the
modulus and the residue. The modulus and
the residue of the modulo interval are useful to
represent integers taken by loop indices or array
subscripts.
Modulo interval arithmetic is an extension of

interval arithmetic and contains arithmetic op-
erations and set operations. Both arithmetic
operations and set operations have interesting
mathematical properties derived from the num-
ber theory. The modulo interval is dealt with
as numbers or as sets depending on context of
program analysis. Moreover, this paper has
demonstrated how to apply modulo interval
arithmetic to program analysis performed by
parallelizing compilers: array reference analy-
sis, data dependence analysis and value range
analysis.
Most properties of modulo interval arithmetic

described in Section 3 are provided as inclusion
relations not as equivalent relations. Moreover,

an arithmetic operation of modulo intervals of
different moduli provides a subset of a modulo
interval whose modulus is the greatest common
divisor of the moduli of operand modulo inter-
vals as a result. The result of modulo interval
arithmetic can be estimated bigger than the ex-
act result. This degrades accuracy of program
analysis and reduces opportunity of paralleliza-
tion and code optimization. A sophisticated ap-
plication of modulo interval arithmetic should
be performed to keep the result of modulo in-
terval arithmetic tightly close to the exact re-
sult. It is a future work to develop an algorithm
of performing modulo interval arithmetic with
smaller errors. See Ref. 16) for a partial work
to reduce errors of modulo interval arithmetic.
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