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Learning from Imperfect Supervisor Using Neural Network Ensemble

Pitoyo Hartono† and Shuji Hashimoto†

In training a conventional multilayer perceptron (MLP), the existence of perfect learning
data or a perfect supervisor usually has to be assumed. But in on-line training processes in
which a human expert has no direct access to the training data, it is probable that erroneous
data due to imperfection of the learning object (supervisor) or observation noise will be
included in the training data. This kind of learning data will cause a non-optimal learning
process that produces an unreliable neural network. In this paper we propose a model of a
neural network ensemble consisting of a number of MLPs in which each MLP can be trained
to obtain a unique type of expertise. On the basis of each MLP’s expertise, the ensemble will
be able to distinguish correct learning data from erroneous data and automatically assign one
of its members to be trained only on correct data, allowing an optimal learning process with
an imperfect learning supervisor. The proposed ensemble model, eliminates the requirement
to design a perfect learning supervisor to train neural networks, and can thus help to make
neural networks more widely applicable in real-world problems.

1. Introduction

One of the important factors in the success-
ful training of a neural network is the selection
of a good training set. The creation of a good
training set is less troublesome if a human ex-
pert is available. In the case of on-line training
in which the neural network has to obtain the
data by observing the behavior of a learning ob-
ject (supervisor) without the help of a human
expert, it is always possible that contradictory
or incorrect learning data may be generated as
a result of observation error or the imperfec-
tion of the supervisor. Such cases may occur
when a neural network has to undergo on-line
training to approximate the transfer function of
a plant in which reliability is not 100%. Even
if a human expert exists, he or she may make
errors when dealing with a complicated prob-
lem. Erroneous data in the training sets may
prevent the neural network from learning opti-
mally, producing an unreliable neural network.

Some work shows that injecting small amount
of noise into the teacher signal may enable
the neural network to achieve a better perfor-
mance 1). A number of papers also show that
introducing noise into the input may help the
neural network to achieve better generalization
ability 2)∼6). But to our knowledge, there has
been no research on situations involving im-
perfect supervisor that sometimes produces a
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completely wrong answer to a given problem,
even though such situations are likely to occur
in real-world problems.

There has also been some research on how
to extract a conditional distribution of learning
signals produced by a supervisor that behaves
in a probabilistic way 7), but this has not re-
sulted in a method of training a neural network
with such a supervisor without excessively com-
promising the performance.

We previously have proposed a model of a
neural network ensemble composed of a number
of multilayer perceptrons (MLP) 8). In the pro-
posed ensemble model, each member is permit-
ted to learn its own type expertise through com-
petition, and the model has a unique character-
istic not observed in previous ensemble mod-
els 9)∼14): we introduced a temperature con-
trol mechanism that automatically assigns the
member with the most relevant expertise re-
garding the given problem. Our model has
a similar structure to some existing ensemble
models 15)∼17), but it differs from them in two
respects. The first is that the proposed model
does not require a gating mechanism to select
the most relevant member with respect to the
problem to be solved, and the second is that
it is able to train each of its members to deal
with a particular problem, whereas the previ-
ous models allocate individual members to deal
only with subproblems.

The multi-neural network model proposed in
Müller, et al. 18) is also similar to ours in some
respects. The objective of this model is to re-
alize unsupervised switching to deal with non-
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stationary signals originating from different dy-
namical systems which alternate in time. Our
ensemble model is differentiated from the latter
by its switching mechanism.

As one promising application of our model, in
this paper we investigate the behavior of the en-
semble when it is trained with an imperfect su-
pervisor. We consider that the imperfect super-
visor generates two different environments (we
define an environment as a set of input patterns
with desired outputs) with a particular proba-
bility: one is a clean environment containing
correct learning data, and the other contains
only false data. It can be expected that the en-
semble will be able to assign a particular mem-
ber to learn in the correct environment while al-
locating the other members to absorb the erro-
neous one, implying that one of the members is
trained only with correct learning data, produc-
ing a neural network that is effectively trained
even if the supervisor is not completely reliable.

It should be noted that in this research we
are trying to train a neural network not with
an environment that requires a probabilistic an-
swer for a given problem, but with a deter-
ministic environment. Only the imperfection
of the supervisor causes a probabilistic relation
between the input and the desired output. Con-
sequently, the objective of the training is not to
reflect the probabilistic behavior of the training
supervisor, but to suppress the neural network’s
performance degradation due to the imperfec-
tion of the training supervisor.

In Section 2 the structure and dynamics of
the proposed neural network ensemble will be
explained. In Section 3 the details of the tem-
perature control will be given. Some experi-
mental results will be given in Section 4, and
our conclusions will be presented in the final
section.

2. Neural Network Ensemble

2.1 Structure of the Ensemble
An outline of the proposed ensemble is shown

in Fig. 1. The ensemble is composed of a num-
ber of independent MLPs. There are no restric-
tions on the number of layers in an MLP, but
in this research we use a three-layered MLP.
The ensemble is provided with an input layer
to receive input from the learning object (su-
pervisor). The input is then propagated to
each of the MLP’s input layers, to be processed
by each MLP independently. The temperature
control mechanism controls the learning inten-

Input
Responses

Supervisor
Desired output

Temperature control

Fig. 1 Neural network ensemble.

sity of each MLP on the basis of the members’
outputs and supervisor’s desired output.

The connection weights of the neurons in each
MLP are initialized randomly. Because the ob-
jective of the learning process is to train each
MLP to obtain a unique type of expertise, it is
preferable that all MLPs should also have dif-
ferent structures. The structures are diversified
by setting different number of neurons in the
middle layer of each MLP.

2.2 Ensemble’s Dynamic
In the proposed ensemble, the activation

function of neurons in the middle layer is de-
fined as follows:

Oi,mid
m =

1

1 + exp(−ui,mid
m )

, (1)

ui,mid
m =

Nin∑

n=1

wi,in
nm Oi,in

n ,

where Oi,mid
m and ui,mid

m are the output and the
potential of the m-th neuron in the middle layer
of the i-th MLP, respectively. Oi,in

n is the out-
put of the n-th neuron in the input layer and
wi,in

nm is the connection weight between the n-th
neuron in the input layer and the m-th neuron
in the middle layer of the i-th MLP. Nin defines
the number of input neurons which are common
to all the ensemble’s members.

The activation function of neurons in the out-
put layer of the i-th MLP is defined as follows:

Oi,out
k =

1

1 + exp(−ui,out
k

Ti
)
, (2)

ui,out
k =

Ni
mid∑

m=1

wi,mid
mk Oi,mid

m ,

where Oi,out
k is the output of the k-th neuron in

the output layer of i-th MLP and ui,out
k is its po-
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tential. wi,mid
mk is a connection weight between

the m-th neuron in the middle layer and the k-
th neuron in the output layer of the i-th MLP,
while N i

mid is the number of middle neurons in
the i-th MLP. Ti indicates the temperature of
the i-th MLP that is shared by all the output
neurons in the MLP.

From Eq. (2) it is clear that if the temper-
ature Ti is high enough, the neurons will al-
ways produce an output value in the vicinity
of 0.5, regardless of their potentials. In prob-
lems requiring binary responses, such an output
can be regarded as insignificant. A neuron that
gives an insignificant output can be thought of
as an inactive neuron, and consequently an en-
semble’s member containing inactive neurons is
regarded as an inactive member. On the other
hand, a member with a low temperature can
be considered to be active, because its output
is sensitive to its potential.

In the training process for the proposed en-
semble, the members with relatively low abili-
ties to learn the expertise offered by the learn-
ing supervisor can be inactivated by increasing
their temperatures.

Each MLP is trained according to the follow-
ing backpropagation training rule 19):

W i(t + 1) = W i(t) + η∆W i(t)
+ µ∆W i(t − 1), (3)

∆W i(t) = − ∂Ei(t)
∂W i(t)

,

Ei(t) =
1
2

Nout∑

k=1

(dk(t) − Oi,out
k (t))2,

where W i is the weight vector of the i-th MLP.
Ei(t) is the error of the i-th MLP at time t, re-
garding the desired output D(d1, d2, · · ·, dNout)
and the MLP output Oi,out at time t, and Nout

is the number of neurons in the output layer. η
and µ indicate the learning rate and momentum
rate, respectively.

From Eq. (3), the correction of weights be-
tween neurons in the middle and output layers
of the i-th MLP can be written as

∆wi,mid
mk = − ∂Ei

∂wi,mid
mk

(4)

=
1
Ti

Oi,mid
m δout

k ,

δout
k = (dk − Oi,out

k )Oi,out
k (1 − Oi,out

k ).

From Eq. (4), it is clear that if the tempera-
ture Ti is high enough then the weight correc-

tion can be ignored. This implies that we can
prevent the erroneous training data from de-
stroying the expertise of an MLP that is trained
with the correct data by increasing the tem-
perature of the MLP. The decision to increase
or decrease a particular MLP’s temperature is
made in accordance with the temperature con-
trol, which will be explained in the next section.

High temperature will also prevent a partic-
ular item of learning data from changing the
connection weights between neurons in the in-
put layer and middle layer, because the correc-
tion value can be written as

∆wi,in
nm = − ∂Ei

∂wi,in
nm

(5)

=
1
Ti

Oi,in
n Oi,mid

m (1 − Oi,mid
m )δmid

m ,

δmid
m =

Nout∑

k=1

wi,mid
mk δout

k .

Equations (4) and (5) show that, by increas-
ing their temperatures, the ensemble can pre-
vent members with poor learning performances
with respect to particular training data from
forwarding the learning process, while continu-
ing to train members with good learning per-
formances by keeping their temperature low.

3. Temperature Control

The temperature control is introduced to au-
tomatically activate an MLP that has a rela-
tively high ability to learn the expertise offered
by the correct learning data, and to inactivate
the other MLPs with lower abilities.

The temperature control is implemented by
decreasing the temperature of the MLP whose
output has the smallest error with respect to
the desired output, and increasing the temper-
ature of the MLP with relatively large errors.

It has to be noticed that the MLP that per-
forms well with regard to the correct learning
data will perform badly when erroneous data
are given, so the erroneous data will have no
effect on the MLP in the training process.

Because it is preferable that there should
be only one active MLP in the ensemble at
a given time, we create competition for dom-
ination among members of the ensemble, so a
particular MLP that performs well not only re-
wards itself by decreasing its own temperature
but also punishes the others by increasing their
temperatures. On the other hand, an MLP that
performs badly has to punish itself by increas-
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ing its own temperature and giving the other
MLPs chances to learn by decreasing their tem-
peratures.

The temperature control is written as follows:

Ti(t + 1) = Ti(t) + ∆Ti(t) − C, (6)
∆Ti(t) = −pself (1 − Nτ i(t))

+ pcross
N∑

j=1
j �=i

(1 − Nτ j(t)),

τ i(t) =
∑Nout

k=1 (dk − Oi,out
k )2

∑N
j=1

∑Nout

k=1 (dk − Oj,out
k )2

, (7)

where N is the number of MLPs in the ensem-
ble and pself , pcross, and C are the self-penalty,
cross-penalty, and cool-down constant, respec-
tively. τ i(t) is the error reference of the i-th
MLP, which measures how well it performs in
comparison with other MLPs at time t.

The first term of the temperature correction,
∆Ti, is the self-penalty term which will decrease
the temperature of a particular MLP if the
MLP performs relatively well, and increase it if
it performs badly. The second term is the cross-
penalty term, which will increase other MLPs’
temperatures if an MLP performs well and de-
crease them if it performs badly. The cool-down
term C is intended to speed up the temperature
competition.

The temperature is limited between 1 and
Tmax by the following limiting function:

Ti(t + 1) = Tmax if Ti(t) + ∆Ti > Tmax

Ti(t + 1) = 1 if Ti(t) + ∆Ti < 1 (8)

The Tmax in Eq. (8) is empirically determined
to ensure that the connection weights’ renewals
in Eqs. (4) and (5) are insignificant when the
performance of an MLP is below average.

From Eq. (7),

1 − τ i(t) =
N∑

j=1
j �=i

τ j(t), (9)

so the temperature renewal in Eq. (6) can be
written as

�Ti(t)=(pself +pcross)(Nτ i(t)−1) (10)

Equation (10) implies that an MLP with
good performance (low τ (t)) is rewarded by de-
creasing its temperature proportional to pself +
pcross, and penalized heavily when the perfor-
mance is bad, so that the training process has
no effect on its expertise.

To prevent the learning from getting stuck
when all of the MLPs have average perfor-
mances, a positive cool down-constant C is
needed, and to ensure that the temperature in-
creases when the performance is bad, C is set
as

0 < C � (pself + pcross)(N − 1). (11)

Furthermore, to ensure that an MLP is suffi-
ciently penalized when the performance is bad
and at the same time to prevent the cross-
penalty term from nullifying the self-penalty
term, the penalty constants are set as follows:

(pself + pcross) ≈ Tmax

N − 1
,

pcross <
pself

N − 1
. (12)

From Eq. (10) it is clear that, when at time
t a correct learning pattern is given and that
the winner is the i-th MLP, then the expected
temperature at time t + 1 is:

〈Ti(t + 1)〉 = (1 − ε)
+ ε{1 + ptot(N − 1) − C}

= 1 + ε{(N−1)ptot−C}, (13)
ptot = (pself + pcross).

Equation (13) shows that, when the super-
visor is perfect, the temperature of the winner
converges to 1, and when the ε is non-zero then
on the average the temperature of the winner
fluctuates around a small value while the tem-
peratures of the losers fluctuate around a larger
value. The center of the winner’s temperature
fluctuation is determined by the error rate ε.

The temperature control is applied only to
the neurons in the output layer, because to inac-
tivate an MLP it is sufficient to inhibit the out-
put neurons. Furthermore, the penalty given to
an MLP is considered to be a penalty for the
output neurons and not for the middle neurons.

The proposed temperature control will allow
each member of the ensemble to learn a unique
type of expertise. It can be expected that a par-
ticular ensemble member will be able to master
the input-output relation presented in correct
learning data by isolating itself from the erro-
neous data in the learning process, while letting
the other members absorb the erroneous learn-
ing data.

4. Experiment

We conducted an experiment in which the en-
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semble was trained with a supervisor that gen-
erated a particular percentage of classification
errors, where the error rate ε is defined as fol-
lows:

P (Di = Dfalse
i |xi) = ε, (14)

P (Di = Dtrue
i |xi) = 1 − ε,

0 ≤ ε ≤ 1.

Here, P (Di|xi) indicates the probability that
the supervisor will give Di as desired output
for xi input.

The reason why a single MLP will fail to
deal with the problem in Eq. (14) is shown in
Eqs. (15) and (16). For simplicity but with-
out loss of generality, an MLP with one output
neuron is considered. With an imperfect super-
visor as in Eq. (14), the expected error of the
MLP whenever input xi is given, 〈E(xi)〉, can
be written as

〈E(xi)〉=ε(O(xi)−Dfalse
i )2

+ (1−ε)(O(xi)−Dtrue
i )2. (15)

For binary problems, Eq. (15) can be developed
as

〈E(xi)〉 = [O(xi) − 〈Di〉]2
+ ε(1 − ε), (16)

〈Di〉 = εDfalse
i + (1 − ε)Dtrue

i ,

where O(xi) is the MLP’s response for input
xi and 〈Di〉 is the expected teacher signal for
input xi.

The learning process will minimize the first
term of Eq. (16), so that after the learning pro-
cess, the output of the MLP will be 〈Di〉 in-
stead of the ideal response, Dtrue

i for input xi,
implying that a single MLP is not appropriate
for dealing with the given problem.

It can be expected that through the temper-
ature control, the ensemble will be able to dis-
tinguish correct learning data from erroneous
data and automatically allocate one of its mem-
bers to learn only correct data, while letting
the other members absorb the erroneous learn-
ing data. This implies that the effect of the
supervisor’s imperfection can be reduced, be-
cause the ensemble will produce a member that
is trained only with the correct learning data. It
can be predicted that learning performance will
deteriorate along with an increase in the error
rate, because the competition inside the ensem-
ble will become frequent and consequently effec-
tive learning will rarely occur. Still, in contrast
to the case for a conventional MLP, “graceful
degradation” can be expected.

Table 1 Parameter settings for Experiment 1.

Parameter Value
Learning rate 0.4
Momentum 0.1
Self-penalty 40
Cross-penalty 5
Cool-down 20
Tmax 100
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Fig. 2 Performances of the winner and
single MLPs in XOR problem.

4.1 Experiment on Logic Function
In this experiment the ensemble was tested

on XOR problem in which the supervisor gen-
erated a particular percentage of classification
errors. The classification errors were generated
by flipping the correct desired answer accord-
ing to ε in Eq. (14). The ensemble consisted of
3 MLPs, each with 2 input neurons, 1 output
neuron and 4, 6, and 9 middle neurons, respec-
tively. Learning was iterated 40,000 times, and
each time a pattern was randomly selected. The
parameter settings are shown in Table 1.

At the end of the training process a winner,
which is the member that benefits most from
the training process, is chosen. The winner
is selected by choosing the member with the
lowest average temperature during the learning
process. We iterated the experiment by chang-
ing the error rate and evaluate the learning per-
formance of the winner with respect to errorless
learning data. The learning performance Ai of
the i-th MLP is calculated as follows:

Ai = 1 − 1
Npat

Npat∑

j

|Oi(xj) − Dtrue(xj)|,

(17)

where Npat is the number of testing patterns,
Oi(xj) is the output of the i-th MLP when
pattern xj is given, and Dtrue(xj) is the cor-
rect desired output for the given input. Fig-
ure 2 shows a comparison of the learning per-
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Fig. 3 Performances of the winner and
multi-systems in XOR problem.

formance of the winner and each of the ensem-
ble’s members provided that they are indepen-
dently trained using identical training data.

In Fig. 2, “winner” indicates the learning per-
formance degradation of the winner of the en-
semble with respect to the error rate, while
“mid:4”, “mid:6”, and “mid:9” represent the
degradation of independently trained MLP
with 4, 6, and 9 middle neurons, respectively.

Figure 3 shows a comparison of the win-
ner with two multi-neural-network systems us-
ing three independently trained neural net-
works. The first multinetwork system averages
the members’ outputs according to Eq. (18) as
system output.

Oavr =
1

Nmlp

Nmlp∑

i=1

Oi, (18)

where Oavr is the system’s output, Oi is the
output of the i-th MLP, and Nmlp is the number
of MLPs in the ensemble.

The second multinetwork system is based on
statistical calculation with the assumption that
each output represents the probability that the
response of the MLP is 1. The system output
is the probability Ovot that a majority of the
members output 1. It can be considered that
the system is a kind of majority voting system.
Since in this experiment the system contains
three members the output can be calculated as

Ovot =
3∏

i=1

Oi+
∑ 3∑

i �=j �=k

∑
OiOj(1 − Ok).

(19)
From Figs. 2 and 3 it can be seen that the

winner of the ensemble can retain more than
90% of its optimum performance until the error
rate reaches 30%. The performance of the win-
ner degrades much more gracefully than that
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Fig. 4 Performance during training.

of the conventional MLP or other multi-neural-
network systems. This experiment is reiterated
several times by changing the initial connec-
tions inside the ensemble’s members, and the
result shows that the learning ability of the en-
semble with respect to an imperfect supervisor
is independent of its initial weights, although
the training process may produce a different
winner for different initial conditions.

Figure 4 shows the winner’s performance
during the training process with respect to the
supervisor with an error rate of 0% indicated
by “err:0%” and 20% indicated by “err:20%”
respectively. The performance of the winner is
evaluated every 200 learning iterations. The os-
cillation seen in the early phase of performance
evaluation line when the error rate 0% is caused
not by the supervisor’s imperfection but by the
competition between the ensemble’s members.
Once the winner has been established the per-
formance increases smoothly. When the error
rate is 20%, the oscillation exists throughout
the whole training phase; this not only results
from the competition, but also reflects the im-
perfection of the supervisor.

Figures 5 and 6 show the fluctuations
of each member’s average temperature during
learning when the error rates are 0% and 20%,
respectively. In both graphs the temperatures
are averaged after every 100 learning iterations.
From Fig. 5, it is obvious that the tempera-
ture of the winner (MLP with 6 middle neu-
rons) converges toward 1 after the winner is es-
tablished, while the temperatures of the other
members fluctuate in the higher region. Fig-
ure 6 shows that the temperature of the win-
ner fluctuates in the low temperature region
because of the imperfection of the supervisor,
while the temperatures of the losers fluctuate
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Table 2 Learning performance for various structures.

Structure Performance
ensemble1 (1,1,1) 0.730
ensemble2 (1,6,1) 0.680
ensemble3 (2,6,1) 0.648
ensemble4 (4,5,6) 0.986
ensemble5 (4,6,9) 0.987

in a much higher temperature region. In both
cases, the proposed temperature control algo-
rithm produces a robust learning process.

We also conducted experiments on the en-
semble’s structure. In these experiments, we
trained a number of ensembles with different
structures to investigate the relation between
the structure and learning performance. En-
sembles with three members were used. Their
structures were changed by altering the number
of their middle neurons. The results of a per-
formance test with an errorless supervisor are
shown in Table 2.

The structure is represented by (), where
the numbers inside the parentheses indicate the
numbers of middle neurons in the respective
members. The numbers of input and output
neurons are fixed at 2, and 1, respectively.

Table 3 Parameter settings for Experiment 2.

Parameter Value
Learning rate 0.4
Momentum 0.1
Self-penalty 25
Cross-penalty 6
Cool-down 20
Tmax 75

From Table 2, it is clear that an ensem-
ble which has a member with only one mid-
dle neuron for which it is potentially difficult to
learn XOR problem, cannot achieve satisfactory
learning performance. We draw the conclusion
that an ensemble can perform well if each mem-
ber potentially has the ability to learn the given
problem independently. Experiments with var-
ious problems and ensemble sizes also yielded
similar results.

4.2 Experiment on Iris Data
We tested the performance of our neural net-

work ensemble on Iris classification data, which
is often used as a benchmark test problem
in neural network research. There are three
classes of Iris (iris-setosa, iris-versicolor, and
iris-virginica). Because setosa is linearly sepa-
rable, we considered the other two classes, mak-
ing it a two-class problem. The input to the
neural network is composed of four parameters,
namely, the width and length of the sepal and
the petal, respectively. All of the parameters
are expressed in continuous values in centime-
ters.

For training, 20 data (10 for each class) were
provided. Errors were generated by corrupting
the teacher signal. The number of learning it-
erations was 60000. The ensemble consists of
three members each with 4 input neurons, 1
output neuron and 6, 7, and 8 middle neurons,
respectively. The parameter settings are shown
in Table 3.

Figures 7 and 8 show that the ensemble can
tolerate a supervisor error rate of up to 30%
without degrading the learning performance in
the Iris classification problem.

In this experiment we also conducted a test
on the winner’s generalization ability. The gen-
eralization performance test was conducted by
classifying 20 test patterns (10 for each class)
that were not used in the training process. The
generalization performance comparisons with
single MLPs and multi-system-neural-networks
are shown in Figs. 9 and 10, respectively.

From this experiment it is clear that the
proposed neural network ensemble is able to
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Fig. 7 Performances of the winner and
single MLPs in the Iris problem.
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Fig. 8 Performances of the winner and
multi-systems on Iris problem.

suppress the effects of a supervisor’s imperfec-
tion to produce a member which has better
learning and generalization abilities than con-
ventional single-MLP and other multi-neural-
network systems.

5. Conclusion

We have proposed a neural network ensem-
ble model, in which each member is allowed to
learn a unique type of expertise. Temperature
control is introduced to the ensemble to real-
ize automatic selection of the most appropriate
member to deal with a given problem, allow-
ing the ensemble to run effectively in non-static
environments.

The experimental results show that the en-
semble can be trained effectively even if the su-
pervisor is imperfect, without excessively com-
promising the performance. The basic idea of
the proposed method is that we can treat the
correct input-output pairs as a particular envi-
ronment and the incorrect ones as another envi-
ronment. The ensemble can achieve good learn-
ing performance, because one of the ensemble’s
members is able to learn from correct learning
patterns although the patterns are statistically
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Fig. 9 Generalization of the winner and
single MLPs on Iris problem.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

G
en

er
al

iz
at

io
n

Error rate(%)

winner
avr

voting

Fig. 10 Generalization of the winner and
multi-systems in the Iris problem.

mixed with erroneous learning patterns. From
the experiment we conducted, it can be seen
that the proposed neural network is able not
only to learn better but also to generalize better
than conventional MLP and other multi-neural-
network systems in the presence of an imperfect
supervisor. We can also argue that the pro-
posed ensemble is superior to a single MLP with
cooling-down temperature control or an MLP
that rejects training data which generate large
error after a maturation point, because the re-
jection of training data is based only on the
performance of the single MLP, which is unre-
liable on account of the shifting of the learning
target, which also produces large errors. In the
proposed ensemble, no shifting of the learning
target occurs, so a decision by the winner to
reject training data is more reliable.

The strict requirement that errorless training
data be provided to train a neural network can
be loosened in the proposed neural network en-
semble, and thus we have more freedom in de-
signing a learning supervisor, because the en-
semble can tolerate imperfect data to some ex-
tent.

Although in this paper we have explored
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the ability of the proposed ensemble in only
two class problems, it can be easily developed
to perform multi-class classification problems
without increasing the calculation complexity.

Future applications of the proposed ensem-
ble will include on-line training, design of fault-
tolerant systems, error detection and correc-
tion, probability learning, and non-linear equal-
ization.
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