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1. Introduction. Hierarchical clustering (HC)
amounts to finding a cluster tree that minimizes an ob-
jective function defined recursively over the tree. In the
case of a binary tree ¢t for example, HC seeks to min-
imize e(t) where e(t) = 0 when t = NIL and e(t) =
f(t)+e(l)+e(r) when ¢ has child subtrees ! and . The
value of e(t) is called energy. The question of whether a
particular minimization procedure finds a global versus
a local optimum arises often in discussions of HC under
general objective functions f(t). When f(t) = d(l,r) is
the nearest-neighbor distance between the sets S(I) and
S(r) (the leaf nodes of subtrees I and r respectively), the
agglomerative algorithm (e.g. [1]) is known to yield the
global optimum solution. Pitt and Reincke [2] showed
general conditions under which agglomeration finds an
optimal level clustering, and pointed out other cases in
which finding the optimal clustering is NP-hard. This
paper summarizes experiments designed to compare two
suboptimal algorithms, agglomeration and NIHC (Nu-
merical Iterative Hierarchical Clustering)[3], with an op-
timal clustering found by a brute-force procedure.
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Figure 1: Random data and its optimal cluster tree. The
tree is depicted by line segments connecting the mean
values of the sets represented by each pair of sibling
nodes.

The number of unique cluster tree for n > 1 points is

=35 (Z) c(k)e(n — k) = oy L (1)

k=1

a number larger than n! when n > 6. We wrote a combi-
natoric procedure that actually generates all c(n) clus-
ter trees and measures their energies. This program
exhausts memory on a Sun-4 when n = 9 and in any
case is very slow. But at least for the smallest set sizes
n, it became possible to pinpoint the global minimum
cluster tree. Thus, we proceeded to compare empirically
the locally optimal trees found by efficient heuristic pro-
cedures to the true global optimum.

Every internal node u of a cluster tree represents a
set having covariance C(u). When the clustering objec-
tive function is the Gaussian entropy function f(t) =
log |C(u)], where | - | is matrix determinant, we observe
that the global minimum energy cluster tree separates
clusters even in difficult cases like the “cross” pattern in
figure 1. But since the agglomerative algorithm does not
necessarily find this minimum, we experimented with
using NIHC to improve the result. The input to NIHC
is a cluster tree, such as a k-d tree or the output of
agglomeration. NIHC then iteratively rearranges sub-
trees to reduce the tree energy. Sometimes the results
of agglomeration can be improved by NIHC, without
changing the order of computational complexity.
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Figure 2: Agglomeration tree (left) and NIHC tree
(right)

Figure 3: Histogram of tree objective function and the
energies of global minimum energy tree (GM), the tree
found by NIHC (N), and the agglomerative tree (A).
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2. Experiments. We randomly generated n €
{4,...,8} points from four types of two-dimensional dis-
tributions shown in figures. Figure 3 shows a histogram
of tree energies for the set of trees constructed from the
“crossing” point set in figure 1. Note that although the
energy of this local optimum is close to the energy of
the global optimum, the two trees are quite different
topologically.

The experiments consist of running 100 random trials
like the one illustrated in figures 1 through 3. The data
are randomly selected from [0, 0] x [255, 255]. Leaf nodes
have 0zy = oyy = 1.0 and 0zy = 0.0. The data labeled
“NIHC improved agglomeration” show the number of
times that NIHC could reduce the energy of the tree
found by agglomeration. The curve “NIHC(agglom)
reached global min” is the number of times that ei-
ther agglomeration alone combined with NIHC found
the global minimum. The data called “NIHC(kd) beat
agglomeration”, “NIHC(kd) tied agglomeration”, and
“agglomeration beat NIHC” show the number of tri-
als when NIHC started with the k-d tree and found a
lower, the same, or higher energy tree than agglomera-
tion, respectively. Finally, the curve “NIHC(kd) reached
global min” shows the percentage of trials in which
NIAC found the global minimum energy cluster tree
when seeded with the k-d tree.

3. Conclusion. This research has shown that
the energy of solutions obtained by both NIHC and ag-
glomeration may be very close to the global minimum
energy, and that for minimizing the Gaussian entropy
objective function NIHC is marginally better than ag-
glomeration. While inconclusive, the data reported here
allows us to make some informed conjectures about find-
ing the global minimum HC. NIHC finds the global op-
timum when starting with the k-d tree almost as often
as when starting from the agglomerative tree. As the
number of points increases, (1) the chance of NIHC ter-
minating at the global minimum decreases. (But does
it converge to zero?) (2) the chance of NIHC improving
the result of agglomeration increases. (3) The chance
that NIHC starting from the k-d tree is better than or
equal to agglomeration increases.
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