
Vol. 42 No. 9 IPSJ Journal Sep. 2001

Regular Paper

A Hierarchical-Keyword-based Naming Scheme in File Systems

Harumasa Tada,
†
Nobutoshi Todoroki,

†
Kazufumi Fukui

†

and Masahiro Higuchi
††

Hierarchical naming has been used in file systems for the last several decades. As the
number of files stored in file systems increases, the weakness of hierarchical naming is get-
ting recognized. Some researchers have proposed hybrid naming schemes which introduce
attribute-based naming into hierarchical naming. However, they are unsatisfactory or too
complicated. In this paper, we propose a hybrid naming scheme, called HK (Hierarchical-
Keyword-based) naming. In HK naming, a file is named by a set of keywords and keywords
are organized hierarchically. It integrated hierarchical naming and attribute-based naming in
a simple way. To show the practicality of our naming scheme, we implemented the prototype
of the filename management system on UNIX file systems.

1. Introduction

With the advance of secondary storage de-
vices, the number of files stored in a file system
is rapidly increasing. It becomes a problem how
to find a necessary file among a vast amount of
files. On the other hand, files which contain
non-text data, such as images or sounds, are
popular nowadays. For such files, the content-
based search, e.g., the search with the grep
command in UNIX, is difficult or even impos-
sible. Therefore, file organization by name is
getting more important.
In traditional file systems, files are located

in tree-structured directories. A user specifies
a file by an explicit path name, i.e., an abso-
lute path name or a relative path name from
the current directory. Such a naming scheme is
called hierarchical naming 1).
Hierarchical naming has some merits, e.g., fa-

miliarity, ease of implementation, etc. On the
other hand, it has been pointed out by many
researchers 1)∼7) that it is insufficient to orga-
nize a large number of objects. Because of this
weakness, hierarchical naming is rarely used in
database systems. In most of database sys-
tems, each data item is associated with some
attributes instead of a path name. A user re-
trieves data items by queries 8). The set of
attributes of a data item can be regarded as
its name and this type of naming is called
attribute-based naming.
Some researchers introduced attribute-based

† Graduate School of Engineering Science, Osaka
University

†† School of Science and Engineering, Kinki University

naming into file systems 1)∼3). Most of their ap-
proaches are hybrid naming scheme between hi-
erarchical naming and attribute-based naming.
In these approaches, integration of two naming
schemes is rather awkward and resulting nam-
ing schemes are not necessarily easy to use. We
consider that the problem lies in the metaphor
for directories. A directory is a special file
which contains information of other files. In
hierarchical naming, directories are regarded as
containers of files—they are represented as fold-
ers in most GUI systems. The problem of pre-
vious approaches is that they tried to intro-
duce attributes while they preserve directories
as file containers. In our opinion, the notion of
file containers conflicts with file attributes and
their integration results in mere composition of
orthogonal name spaces.
We solved the problem by discarding the no-

tion of file containers. The main components
of our naming scheme are keywords. Instead of
putting files in directories, we attach keywords
to the files. Hierarchical structure is used for
organizing keywords, not files.
We call our naming scheme HK (Hierarchical-

Keyword-based) naming. In HK naming, a file
is given a filename and a set of keywords. A user
specifies files by an arbitrary ordered, possibly
incomplete, list of keywords. A keyword is a
string of characters such as /image/photo and
/article/sports/baseball. Since the set of
keywords form a keyword tree like a directory
tree, such keywords are called hierarchical key-
words. A user can find a keyword traversing the
keyword tree.
In this paper, we show how files are organized

and found in HK naming. To demonstrate the

2328

Vol. 42 No. 9 A Hierarchical-Keyword-based Naming Scheme in File Systems 2329

practicality of HK naming, we implemented a
prototype of a name management system based
on HK naming on UNIX file systems. In our
prototype, each hierarchical keyword is associ-
ated with a real directory. If a hierarchical key-
word /image/photo/child exists, there is a di-
rectory /image/photo/child. It enables easy
implementation and brings compatibility with
usual UNIX file systems.
The rest of this paper is organized as fol-

lows. In Section 2, we describe advantages of hi-
erarchical naming and attribute-based naming
and review previously proposed hybrid naming
schemes. Our naming scheme is presented in
Section 3. Section 4 describes some issues of
the implementation of HK naming on UNIX
systems and our prototype system. The con-
clusion appears in Section 5.

2. Hierarchical Naming and Attribute-
based Naming

2.1 Naming Schemes
We define a name as a string of charac-

ters which is used to specify a file or a set of
files. In usual UNIX file systems, both absolute
path names and relative path names are names.
A filename is a string of characters, such as
main.tex and fig.jpg, which is assigned to a
file so that users can identify it. In this paper,
we distinguish between names and filenames.
A naming scheme consists of syntactic repre-

sentation and semantic interpretation of names.
A set of names complying with a naming
scheme forms a name space 9).
In traditional file systems, files are organized

in tree-structured directories. A file (possibly a
directory) has a filename which is unique in the
directory which stores it. A name is defined as
a path name which is a sequence of filenames.
A path name describes where the file is located
in the directory tree. The set of these names
forms a hierarchical name space. This naming
scheme is called hierarchical naming 1).
In database systems, on the other hand, tree-

structured directories do not exist. Each data
item is associated with some attributes. Each
attribute is a pair of an attribute-name and a
value such as “author : tada”. A user retrieves
data items by queries such as (author = tada)∧
(type = text). In this case, a query can be
considered as a name which specifies a set of
data items. The set of such names forms a kind
of non-hierarchical name space. Such a naming
scheme is called attribute-based naming 1).

Keyword-based naming is a special case of
attribute-based naming. Each object is asso-
ciated with several keywords. A keyword is an
attribute of the object but it does not have an
attribute-name. A name is a list of keywords
such as “tada,text,report”. Keyword-based
naming inherits most advantages of attribute-
based naming. We adopted keyword-based
naming as the basis of our naming scheme.

2.2 Advantages of Hierarchical Nam-
ing

Hierarchical naming and attribute-based
naming have their own advantages. In Ref. 1),
advantages of hierarchical naming are men-
tioned. They are summarized as follows.
Analogy with Real World We can explain

hierarchical structure by analogy with tra-
ditional paper-based information manage-
ment in which a paper (file) is put in a
folder (directory) which is stored in a cab-
inet (parent directory). A user can under-
stand the structure of the name space in-
tuitively.

Name Scope Each directory forms a self-
contained naming context. The interpre-
tation of a component of a name is deter-
mined solely by the context in which it oc-
curs, as specified by the previous part of
the name. Therefore, the size of the search
space in name resolution is small. It en-
ables efficient implementation of the name
management system.

Sense of Place The current directory en-
ables users to specify files using relative
path names. It is useful to specify files con-
cisely. Moreover, it gives users the sense of
place. The current directory is recognized
as the directory where a user is visiting.

Navigation When a user does not know the
name of the file he needs, he can find it
by traversing the directory tree. When
a user lists the contents of a directory,
the contents of subdirectories are hidden.
This is the essence of the navigational na-
ture of hierarchical naming. If files are
well-organized in the directory tree, he can
reach the file easily. In attribute-based
naming, since attributes are not organized,
it is difficult to recall which attributes are
associated to the file.

In addition to above advantages, we consider
that the following is important.
Organization of Directories In attribute-

based naming, files are organized by at-

2330 IPSJ Journal Sep. 2001

tributes. However, attributes are not or-
ganized. If a file is attached an attribute
such as “theme : horse”, there are no infor-
mation about “horse” itself. In hierarchical
naming, directories are organized hierarchi-
cally as well as files. For example, a direc-
tory name /animal/herbivore/horse rep-
resents that the horse is a herbivore which
is a kind of animal.

2.3 Advantages of Attribute-based
Naming

Advantages of attribute-based naming men-
tioned in Ref. 1) are as follows.
Independence of Attributes In hierarchi-

cal naming, file characteristics must be ar-
ranged in fixed order even if they are logi-
cally independent. Sometimes it brings in-
conveniences. For example, suppose that
directory monochrome is a subdirectory of
/home/tada/photo/child. Though all pho-
tos of children can be listed, there is no
straightforward way to list the set of all
monochrome photos. In attribute-based
naming, all attributes are handled indepen-
dently.

Detailed Classification A very long path
name such as /home/tada/images/photo-
graph/landscape/beach/summer/yacht/
child.jpg is inconvenient in hierarchical
naming. To specify a file, a user must visit
the directory which stores the file or de-
scribe its path name. In attribute-based
naming, on the other hand, only a part
of attributes are required to specify files.
Hence any characteristics can be attached
to files as attributes. It enables detailed
classification of files.

In addition, we point out following ones.
Rapid Finding of Files Tree structure of

hierarchical naming encourages navigation
when a user is uncertain of a path name of
a file. On the other hand, if a user remem-
bers some attributes about the file, it is
troublesome to traverse the directory tree.
In attribute-based naming, he can use at-
tributes he remembers to specify a set of
likely files. In this case, he can find a file
more rapidly than in hierarchical naming.

Appropriate Organization In hierarchical
naming, there is a case in which files
cannot be organized appropriately. For
example, suppose that two directories
/home/tada/photo/dog/ and /home/tada/
photo/child/ exist. If there exists a photo-

graph of children playing with a dog, which
directory should it be located in? In this
case, it is difficult to store the file appropri-
ately. It is true that a user can make the file
accessible from both directories using (sym-
bolic or hard) links. However, management
of such links is troublesome because each
link is independent, i.e., it knows nothing
about other links of the file. In order to
remove a file, for example, a user should
find and remove its all links by himself. In
attribute-based naming, on the other hand,
any attributes can be attached freely to the
file. It enables to organize files appropri-
ately.

Flexible Organization In hierarchical nam-
ing, if a file is moved from a directory to
its subdirectory for more detailed classifi-
cation, its path name will change. This
causes a problem especially when files
are shared by two or more persons. In
attribute-based naming, even if new at-
tributes were added to files, the files can
be specified as before.

2.4 Hybrid Naming Schemes
Some researchers have tried to integrate hier-

archical naming with attribute-based naming.
Semantic File System (SFS) 2) extends usual

tree-structured file system to provide attribute-
based access to files. In SFS, files are stored
in usual tree-structured directories. Moreover,
they have some attributes and can be accessed
by queries. Attributes are automatically ex-
tracted from files by programs called transduc-
ers. SFS achieves syntactic compatibility with
existing path names by introducing the con-
cept of a virtual directory. Virtual directory
names are interpreted as queries. For example,
a query such as (author = tada) ∧ (category =
paper) is represented by the path name like
/author:/tada/category:/paper. Queries of
SFS are limited to conjunctions of atomic ex-
pressions like “attribute = value”. The main
feature of SFS is that it enables attribute-based
access through native directory commands such
as ls and cd. The drawback is that each
file characteristic should be represented as ei-
ther a directory name in a hierarchy or an at-
tribute in a flat name space. For example, con-
sider a file which contains a photograph of a
mouse on a table. Now we note the charac-
teristic “mouse”. If “mouse” is represented as
an attribute such as “subject : mouse”, there
is no way to distinguish between a small ro-

Vol. 42 No. 9 A Hierarchical-Keyword-based Naming Scheme in File Systems 2331

dent and a popular pointing device. If “mouse”
is represented as a directory name such as
/photo/animal/mouse/furniture/table, we
can recognize that the file contains a pho-
tograph of a small creature. On the other
hand, some fixed order is imposed on “animal”
and “furniture” which are logically indepen-
dent. Though SFS provides a unified syntax,
it merely provides a composition of two orthog-
onal name spaces.
In Prospero File System 3), each file has some

attributes like SFS. Prospero allows each user
to have his own tree-structured name space
which is called a virtual file system. The con-
tent of a directory is a collection of links. A link
maps a single component of a name to a file or
a directory. Each link may have an associated
function, called a filter, which yields a virtual
directory. A filter corresponds to a query in
SFS. However, a filter is an arbitrary program
written by users. It enables more flexible con-
struction of virtual directory than SFS whose
queries are conjunctions of atomic expressions.
Though Prospero provides more flexibility than
SFS, it is also a composition of two orthogonal
name spaces. The cost of writing filters is the
major drawback of Prospero.
Sechrest, et al. tried to integrate hierarchi-

cal naming with attribute-based naming using
rule-based framework in their multi-structured
naming 1). They consider component names in
a path name as attributes attached to a file with
a set of constraints upon their use in names, e.g.
they should be written in fixed order. In hierar-
chical naming, these constraints are implicit in
the hierarchical structure of a name space. In
multi-structured naming, on the other hand, a
user can express the constraints that determine
name space structure as explicit rules. For ex-
ample, consider the name hierarchy shown in
Fig. 1. Using scope rules, it is possible to spec-
ify that male and child do not introduce a
new naming context. In this case, the names
/photo/portrait/male/child/cry.jpg and
/photo/portrait/child/male/cry.jpg refer
to the same file. In addition to scope rules,
there are some types of rules, i.e., implicit value
rules, aliasing rules, etc. The details of the
way to specify such rules is not described in
Ref. 1). It is true that multi-structured naming
provides enough flexibility. However, it seems
to be too complicated for users to use. We con-
sider that the user interface is an important
and difficult issue of multi-structured naming.

photo

male child

landscape portrait

female

Fig. 1 The name hierarchy.

In multi-structured naming, the set of names
forms a kind of name tree as usual hierarchi-
cal naming. Unlike hierarchical naming, con-
straints of hierarchical structure of the tree can
be arbitrarily relaxed by users. It is a problem
what commands should be provided to traverse
such a name tree. It also seems to be difficult
for users to describe appropriate rules for each
attribute. In Ref. 1), only the framework is de-
scribed and the user interface is not mentioned.

3. HK Naming

Existing hybrid naming schemes have short-
comings as mentioned above. All of them cling
the notion that directories, whether real or vir-
tual, are containers of files. We feel that it is
not reasonable to use nested file containers and
attributes together. To solve this problem, we
consider that the notion of file containers should
be discarded. Thus we propose another hybrid
naming scheme.
We chose keyword-based naming as the basis

of our naming scheme. It provides great flexibil-
ity in finding and organizing files. Nevertheless,
we can point out two drawbacks of keyword-
based naming. First, keywords are not orga-
nized, e.g., we cannot distinguish between the
dining “table” and the multiplication “table”.
Second, keyword navigation is not provided. If
we cannot recall what keywords are attached to
the file which we needed, there is no way to nav-
igate us to such keywords. As mentioned in Sec-
tion 2.2, hierarchical structure provides these
features. This is why we introduced hierar-
chical structure to organize keywords. We call
our naming scheme HK (Hierarchical-Keyword-
based) naming.

3.1 Hierarchical Keywords
In HK naming, a file is given a filename and

attached some hierarchical keywords. A com-
ponent keyword is a nonnull string of char-
acters. A hierarchical keyword includes one
or more component keywords k1, k2, · · ·, kn

and is denoted as /k1/k2/· · ·/kn. The or-
der of component keywords in a hierarchical
keyword is meaningful, e.g., /people/child
and /child/people are regarded as distinct

2332 IPSJ Journal Sep. 2001

ones. If /k1/k2/· · ·/kn is a hierarchical key-
word, /k1/k2/· · ·/kn−1 is also a hierarchical
keyword. In this case, /k1/k2/· · ·/kn−1 is a
parent of /k1/k2/· · ·/kn and /k1/k2/· · ·/kn is
a child of /k1/k2/· · ·/kn−1. The ancestor-
descendant relation is the transitive-reflexive
closure of the parent-child relation. The set
of hierarchical keywords forms a hierarchical
structure which we call the keyword tree.

3.2 Names
A file is given a filename and attached some

hierarchical keywords. A name is a comma-
separated list of hierarchical keywords, possibly
followed by a filename after “//”. In names,
the order of hierarchical keywords is meaning-
less. For example, the meanings of two names
“/people/child,/animal/dog//f1.jpg” and
“/animal/dog,/people/child//f1.jpg” are
the same.
A full name of a file is a name which consists

of a filename and all hierarchical keywords at-
tached to the file. Since hierarchical keywords
can be listed in any order, the full name of a
file is not unique.
A hierarchical keyword matches all descen-

dants of it. For example, /animal matches
/animal, /animal/cat, /animal/dog/poodle,
etc.
A name N matches a file f if every hierarchi-

cal keyword in N matches at least one of hierar-
chical keywords attached to f and the filename
in N is the same as f ’s filename. If N does not
include a filename, N matches all files which
the keyword list in N matches. A name speci-
fies all files which it matches. If a name which is
an argument for a command matches multiple
files, all of them are passed to the command as
the case that “*” is used in the UNIX shell.
When a user describe a name in shells, he

can use meta characters such as “*” like in
usual UNIX shells. In addition, we intro-
duce another meta character “@” which matches
any sequences of component keywords. For
example, /image/@/dog matches /image/dog,
/image/photo/animal/dog, etc. More pre-
cisely, a string “/@” can be replaced with a null
string or a single slash (“/”) followed by any
slash-separated sequence of one or more com-
ponent keywords. “/@” at the last of a hier-
archical keyword such as /dog/@ has no effect
because a hierarchical keyword matches its all
descendants by default. /@/dog matches any
hierarchical keywords which includes a compo-
nent keyword dog. A name can include multiple

Table 1 Sample files.

file full name
f1 /sports//fig.jpg
f2 /sports/skate//fig.jpg
f3 /woman,/sports//fig.jpg

“@”s such as /@/dog/@/white.
3.3 Uniqueness
In file systems, it is required that every file

should be specified uniquely. In hierarchical
naming, this uniqueness is guaranteed by ab-
solute path names. In HK naming, it is guar-
anteed by full names. It is prohibited that mul-
tiple files have the same full name. However,
there are cases when the full name of a file can-
not be specify the file uniquely. For example,
consider three files shown in Table 1. f1’s full
name “/sports//fig.jpg” cannot be specify
f1 uniquely because it also matches f2 and f3.
In order to solve the problem, we intro-

duced notations using “$” and “!”. Hier-
archical keywords followed by “$” does not
match their children. For example, /animal$
matches /animal only, while /animal matches
/animal/cat, /animal/dog/poodle, etc. The
notation using “!” is used to exclude unre-
lated keywords. A hierarchical keyword k is
called unrelated to a name n when k is not
a descendant of any hierarchical keyword in
n. A name whose keyword list ends with “!”
does not match any file which is attached a
keyword unrelated to the name. For exam-
ple, the name “/animal,/image!//fig.jpg”
does not match the file whose full name is
“/animal/dog,/image,/child//fig.jpg” be-
cause it is attached /child which is unrelated
to the name. Using these notations, a user can
always specify any file uniquely. f1 in Table 1
is specified with “/sports$!//fig.jpg”.

3.4 Current Kw-List
In hierarchical naming, a user can use a rel-

ative path name from the current directory. In
HK naming, we introduce the current kw-list
which is similar to the current directory in hi-
erarchical naming. It is a list of hierarchical
keywords which specifies the set of files which a
user is currently interested in. The set is called
the current file set.
The current kw-list enables specification of

files with filenames. When the current kw-list
is “/image/photo,/sports/baseball”, a file-
name fig.jpg is interpreted as “/image/photo
,/sports/baseball//fig.jpg”. To add the
current kw-list to names which include hierar-

Vol. 42 No. 9 A Hierarchical-Keyword-based Naming Scheme in File Systems 2333

chical keywords, “,” is placed at the head of
them, e.g., “,/player/pitcher//fig.jpg”.

3.5 File Organization and Search
Here we describe how to organize and find

files using HK naming.
Files are organized by attaching (or detach-

ing) hierarchical keywords to them. A hierar-
chical keyword should be created before it is
attached to files. Hierarchical keywords which
are no longer needed can be removed. For these
purposes, we introduce following commands.
• mkkw keyword... (MaKe KeyWord)

mkkw creates a new hierarchical keyword.
• rmkw keyword... (ReMove KeyWord)

rmkw removes a hierarchical keyword.
• atkw list name... (AtTach KeyWords)

atkw attaches hierarchical keywords in list
to files specified by name.

• dtkw list name... (DeTach KeyWords)
dtkw detaches hierarchical keywords in list
from files specified by name.

When a user does not know the accurate
name of the file which he needs, he searches the
file by changing the current kw-list. Commands
used to find files are summarized as follows.
• akl list (Append to Kw-List)

akl appends hierarchical keywords in list
to the current kw-list.

• rkl list (Remove from Kw-List)
rkl removes hierarchical keywords in list
from the current kw-list.

• lsf [name] (LiSt Files)
lsf lists filenames of files specified by
name. If name is omitted, the current kw-
list is used as an argument.

• pkl (Print Kw-List)
pkl shows the current kw-list.

When a user cannot recall what keywords are
attached to the file which he needed, he searches
a keyword traversing the keyword tree. The
keyword tree can be traversed like a directory
tree. The current keyword indicates the current
place in the keyword tree. There are commands
ckw, lskw and pkw which corresponds to cd, ls
and pwd respectively. Commands for traversal
of the keyword tree are summarized as follows.
• ckw keyword (Change KeyWord)

ckw changes the current keyword to key-
word.

• lskw [keyword] (LiSt KeyWords)
lskw lists children of keyword. If keyword
is omitted, the current keyword is used as
an argument.

• pkw (Print KeyWord)

% akl /@/koala,/image/photo (1)
Keyword "/image/photo" does not exist

% pkl (2)
/@/koala

% lsf (3)
koala-life.ps koala.txt(3)

koala-map.gif voice-koala.mp3

% rkl /@/koala (4)
% pkw (5)
/

% lskw (6)
animal image sound text

% akl /animal,/image (7)
% lsf (8)
koala.jpg lion.jpg zebra.jpg

koala-map.gif panda.jpg

% xv koala.jpg (9)
[File koala.jpg is displayed.]
% atkw /animal/koala koala.jpg (10)
% ckw image (11)
% lskw (12)
map painting

% mkkw photo (13)
% atkw photo *.jpg (14)
% lsf --full koala.jpg (15)
/animal/koala,/image/photo//koala.jpg

Fig. 2 The sample session.

image textanimal sound

map paintingkoala

/

Fig. 3 The keyword tree.

pkw shows the current keyword.
We did not provide a command to create a file

explicitly. A new file is created automatically
when a user specified a nonexistent name as the
output file of a command or an application.

Fig. 2 shows an example of file searching and
organizing. The goal of the user is to find a file
which contains a photograph of a koala. Sup-
pose that the initial keyword tree is like Fig. 3.
At first, he tried to append keywords /@/koala
and /image/photo to the current kw-list (in
line 1). Since /image/photo does not exist in
the keyword tree, only /@/koala was appended
to the current kw-list (in line 2). Though he
listed files which matches /@/koala, the file he
required was not listed (in line 3)☆. Then he
deleted /animal/koala from the current kw-
list (in line 4) and searched other keywords

☆ The number after koala.txt shows that there are
three files which have the same filename koala.txt.

2334 IPSJ Journal Sep. 2001

(in line 5 and 6). He appended /animal and
/image to the current kw-list (in line 7) and
found the file (in line 8). He displayed the file
using xv (in line 9). For the convenience of fu-
ture search, he attached hierarchical keywords
to files (in line 10 and 14). Since /image/photo
did not exist in the keyword tree, he created it
beforehand (from line 11 to 13). The “--full”
option of lsf is to list full names instead of
filenames (in line 15).

3.6 Properties of HK Naming
HK naming integrated hierarchical naming

and attribute-based naming in a relatively sim-
ple way. Since it is basically an attribute-based
naming, it inherits all advantages of attribute-
based naming mentioned in Section 2.3. In
addition, it contains organizational and navi-
gational features of hierarchical naming. On
the other hand, some advantages of hierarchi-
cal naming are lost.
First, since HK naming discarded the notion

of file containers, the analogy with real world
are found no longer. In other hybrid naming
schemes, this analogy is preserved. In order to
exploit attributes, however, a user must under-
stand attribute-based search to which he is not
familiar in real world.
Second, the sense of place is lost. However,

the current kw-list enables a user to specify the
naming context in which he is interested. It
is a generalization of the current directory in
hierarchical naming. Hierarchical keywords can
be searched in the same way as the directory
search.
Third, the name resolution of HK naming

costs more than that of hierarchical naming be-
cause of lack of the name scope. This prob-
lem has been tackled in area of database sys-
tems and many optimization methods based
on indexing have been proposed, for example,
Ref. 10)∼12). We expect that such indexing can
be applied to improve name resolution time. A
rapid advance of computer hardware also di-
minishes the effect of the size of the search
space.

3.7 Name Spaces
The set of names attached to files forms a

name space. In hierarchical naming, one name
space (a directory tree) is shared by all users.
In general, a user cannot modify the name of
other users’ files. In HK naming, each user
has his own name space. Usually other users’
name spaces are invisible. A user is free to at-
tach and detach any hierarchical keyword to

any file in his name space. He cannot mod-
ify other users’ name spaces. Consider two
users A and B. A can attach /animal/dog
to B’s file /photo/child//img.jpg in A’s
name space without any permission of B. Af-
ter A attached it, B cannot specify the file
with /animal/dog//img.jpg because A’s name
space is invisible to B. If necessary, a user can
include (or exclude) other users’ name spaces
with explict declaration. A user can set the per-
mission to his name space to limit inclusion by
other users. root is also a user and has his own
name space. Including the root’s name space,
a user can access shared files such as shared li-
braries.

4. Implementation on UNIX Systems

In this section, we mention some issues which
will arise when HK naming is implemented on
UNIX environment and describe our prototype
of the name management system.

4.1 System Calls and Libraries
UNIX provides system calls for low-level file

I/O, i.e., open, read, write and close☆. Since
HK naming uses lists of keywords instead of
path names, these system calls should be mod-
ified.
Before a file is accessed, open is used to open

(or possibly create) the file and bind it to a file
descriptor. Since read, write and close ac-
cess the file using the file descriptor instead of
the path name, they need not to be modified to
adapt to HK naming. That is, only open should
be modified to accept names which include hi-
erarchical keywords.
Existing open always takes a path name of a

single file, while the modified open takes a name
which may specify multiple files. For compat-
ibility with existing applications, open should
always return a single file. For this reason,
the modified open should behave as follows.
When a name which includes no filenames, such
as “/animal/mouse,/image/photo”, is given,
open creates a temporary directory which con-
tains all files which matches the name and re-
turns the file descriptor of the directory. When
a name which includes a filename, such as
“/animal/mouse,/image/photo//f1.jpg”, is
given, open returns the file descriptor of the file
which matches the name. If multiple files match
the name, one of them is arbitrarily chosen.

☆ creat which is used to create files is made obsolete
by open.

Vol. 42 No. 9 A Hierarchical-Keyword-based Naming Scheme in File Systems 2335

This adaptation of open system call involves
modification of OS kernels and its efficient im-
plementation is a difficult issue.
Most applications do not call above system

calls directly. They access files using functions
in the stdio library such as fopen, fscanf,
fclose, etc. Since only fopen takes a path
name as an argument, it is possible to adapt
stdio library to HK naming by modifying
fopen.

4.2 The Search Path for Commands
In UNIX, command names are filenames

of executable files. In usual UNIX sys-
tem, the search path for commands is a
colon-separated list of directory names like
“/usr/X11R6/bin:/usr/local/bin:/usr/bin
:/bin”. Path names of all directories which
stores executable files should appear in the
search path. In HK naming, the search path
is a colon-separated list of names. For ex-
ample, “/local,/script:/shared,/binary”
means that files which “/local,/script”
matches are searched before those which
“/shared,/binary” matches. If the same hi-
erarchical keyword such as /executable (or its
descendant) is attached to all executable files,
a very simple search path like “/executable”
becomes possible. On the other hand, there
is a case that the given command name
matches multiple files simultaneously. For
example, a command name test matches
“/local,/executable/script//test” and
“/shared,/executable/binary//test”. In
this case, any of them are not executed im-
mediately and a user should specify the file
he want to execute using additional key-
words. To avoid this, filenames of exe-
cutable files should be unique. Of course,
adding other names to the search path
like “/local,/executable:/executable”, it
is possible to specify the search order.

4.3 File Selection in Applications
There are many interactive applications

which allow a user to select a file to open. For
example, Emacs is one of such applications.
Generally, Emacs users do not use shells to
search a file to edit.
In order to adapt such applications to HK

naming, modification of system calls mentioned
in Section 4.1 is not enough. Each application
itself needs to be modified to select a file using
HK naming. In the case of Emacs, this file se-
lection mechanism is easily implemented using
Emacs Lisp. For many applications, however,

this adaptation involves source code modifica-
tion and recompile.
Some applications, e.g., tgif, xv, ghostview,

etc., has their own GUI-based file selectors
based on hierarchical naming. For such appli-
cations, a common file selector based on HK
naming is desirable. We recognize that it is dif-
ficult for GUI in HK naming to use a real world
metaphor. Development of an appropriate GUI
is one of our future works.

4.4 Prototype on UNIX File System
To show the practicality of our naming

scheme, we implemented a prototype of the
name management system using HK naming on
UNIX file systems.
As mentioned in Section 4.1, the true imple-

mentation of HK naming involves modification
of OS kernels. We implemented the prototype
system without modifying the underlying oper-
ating system. Though it enables to easily apply
to existing UNIX environment, it is unfavor-
able from the viewpoint of performance. We
are now studying the efficient implementation
of HK naming in operating system level.

4.4.1 Architecture
The prototype system runs on an ordinary

UNIX shell. A user describes names as com-
mand arguments. The system receives com-
mands and arguments in place of the shell.
Then it translates arguments into absolute path
names and passes them with commands to the
underlying shell. The prototype system is writ-
ten in Perl and the program size is about 500
lines.

4.4.2 Management of Keywords
In our prototype system, a keyword tree is

implemented as a directory tree. That is,
each hierarchical keyword is associated with
a real directory. If a hierarchical keyword
/image/photo/child exists, there is a direc-
tory /image/photo/child. Each hierarchical
keyword has a unique ID called a keyword
ID. Keyword IDs are managed using a table
called a keyword table. An example is shown in
Table 2.
We show how hierarchical keywords are man-

Table 2 The keyword table.

ID hierarchical keyword
1 /image
2 /device
3 /animal
4 /animal/mouse
5 /image/photo
6 /device/mouse

2336 IPSJ Journal Sep. 2001

aged in our prototype system by an example.
Suppose that the keyword table is as Table 2.
Consider a file f1 whose path name is

/image/photo/fig.jpg. Though f1 is placed
in the directory /image/photo, it does not
mean that f1 is attached a hierarchical key-
word /image/photo. To attach a keyword
/image/photo to f1, a symbolic link to f1 is
placed in the directory /image/photo. In the
rest of this paper, we refer to such a link as
file-link. In this case, the name of the file-link
is “.fig.jpg#5#”. The number “5” is the key-
word ID of /image/photo (see Table 2). When
a new keyword /animal/mouse is attached to
f1, a new file-link “.fig.jpg#4,5#” is placed in
the directory /animal/mouse. “.fig.jpg#5#”
in /image/photo is renamed “.fig.jpg#4,5#”.
In this way, for any file f , f ’s file-link exists in
every directory which corresponds to f ’s hierar-
chical keyword. All f ’s file-links have the same
name which includes all IDs of f ’s hierarchi-
cal keywords. Because of this, “--full” option
of lsf (mentioned in Section 3.5) is easily im-
plemented, i.e., it just converts keyword IDs in
file-link to hierarchical keywords referring the
keyword table.

4.4.3 Temporary Directory
In our prototype system, files are handled

as file-links. It causes a problem with some
existing applications which limit filenames of
input files. For example, filenames of input
files of LaTEX should end with the extension
“.tex”. LaTEX does not accept file-links like
“.main.tex#14,25#” as inputs. In order to
deal with such cases, file-links are not passed
to commands directly. A file-link such as
“.main.tex#14,25#” is copied to the tempo-
rary directory with its filename “main.tex”
and the copy is passed to the command.

4.4.4 Name Resolution
A conversion from a name of files into file en-

tities is called name resolution. Suppose that
the keyword table is as Table 2 and a name
“/@/animal,/image” is specified by a user.
Our prototype system convert it to a set of files
as follows.
(1) The system chooses a hierarchical keyword
in the name. Suppose that /@/animal was
chosen. The system refers the keyword table
to find hierarchical keywords which /@/animal
matches. In this case, only /animal was found.
(2) The system opens all directories in the di-
rectory subtree rooted /animal and makes a set
L of all file-links in them. At this time, L con-

tains all files that any descendant of /animal
is attached to. If /@/animal matches multiple
keywords, this step is iterated for each of them
and L becomes the union.
(3) Referring the keyword table, the system
makes a set of keyword IDs of /image’s all de-
scendants. Then file-links which include no IDs
in the set are excluded from L. If the name in-
cludes more keywords, this step is iterated for
each of the rest of keywords in the name. If the
name includes a filename such as fig.jpg, each
file-link in L is checked whether its filename is
fig.jpg.
(4) For the reason mentioned in Section 4.4.3,
all file-links in the resulting L are copied to
the temporary directory such as /temp/14340
(14340 is the process ID of the undelying shell).
(5) Finally, the path name “/temp/14340/*” is
passed to the underlying shell.

4.4.5 Limitation of Prototype System
As mentioned in Section 4.3, many applica-

tion need to be modified to use with our pro-
totype system. The current system is severely
limited in usage of existing applications. An-
other limitation of the prototype system is con-
cerned with command arguments. If a com-
mand has names of files as arguments, they are
translated into UNIX path names before exe-
cution of the command. Sometimes it causes
a problem because not all command arguments
specify files. For example, the argument of man
command is not a name of a file but a com-
mand name. Since which argument specifies
files is determined by each application, there
is no way for the prototype system to know
it. The prototype system regards arguments
which starts with “/” or “,” (see Section 3.4) as
names of files, translates them into path names
and passes the path names to the command.
Other arguments are passed to the command
as it is. Therefore, each argument which starts
with “/” or “,” and is not a name of files should
be quoted.

4.4.6 Experiments
Using our prototype, we organized all files

stored in home directories of 15 users. Ab-
solute path names are converted into full
names. For example, an absolute path name
/home/tada/TeX/macros/abc.sty is converted
to a full name “/home/tada/TeX/macros//
abc.sty”. It can be specified by names such as
“/home/tada//abc.sty”, “/@/macros,/@/TeX
//abc.sty”, “/home/@/TeX//abc.sty”, etc.
Though multiple hierarchical keywords can be

Vol. 42 No. 9 A Hierarchical-Keyword-based Naming Scheme in File Systems 2337

Table 3 Response time and number of files.

Name Time (sec.) Files
/home/higuchi 10.0 15,173

/home/higuchi/Mail 3.9 6,458
/home/tada/TA/database 0.3 13

/@/database 5.5 3,751
/@/Bthesis 4.8 4,174
/@/error 0.4 30

/@/Bthesis,/@/database 3.5 6
/@/Bthesis,/@/error 0.4 15

assigned to a file, it is not performed in the ex-
periment.
The total number of files is 101,863. There

are 2,582 hierarchical keywords. There are
cases that the same component keywords may
appear in different places in the keyword tree.
For example bin appears in /home/tada/bin,
/home/higuchi/bin, etc. There are 1,233 dif-
ferent component keywords.

4.4.7 Performance
As mentioned in Section 3.5, the lsf com-

mand lists filenames of files specified with an
argument. We measured the response time for
lsf. It depends on the name given as the argu-
ment. In the experiment, files and the keyword
table are stored in the same host running Linux
2.0.36 (CPU: Pentium III 600MHz, Memory:
128MB). In the experiment, lsf for all hierar-
chical keywords are consecutively executed. It
is probable that the some directories searched in
name resolution are stored in caches. Without
directory caches, the performance shown below
is expected to decline.

Table 3 shows response times of lsf and
the numbers of specified files for some
names. For names which consist of only
one hierarchical keyword, the number of
specified files affects to the response time.
Since “/home/higuchi” specifies so many
files, its response time is very long. The
results of “/home/tada/TA/database” and
“/@/database” show that the use of “@” no-
tation may cause long response times. In case
of names including multiple hierarchical key-
words, the number of specified files does not
necessarily affect to the response time. For
example, “/@/Bthesis,/@/database”, which
specifies only 6 files, takes long time because
both “/@/Bthesis” and “/@/database” spec-
ifies many files. In this way, names with “@”
notation tend to take longer time to execute
lsf.
The reason why the response time of

“lsf /@/Bthesis,/@/database” is shorter

Table 4 Distribution of response time.

Time (sec.) Frequency Ratio (%)
0 ∼ 1 1,147 93.0
1 ∼ 2 61 4.9
2 ∼ 5 14 1.1
5 ∼ 11 0.9

than that of “lsf /@/Bthesis” or “lsf
/@/database” is as follows. For simplic-
ity, we denote “a set of files which a
name N matches” as [N]. In order to
make [/@/Bthesis,/@/database], the proto-
type system does not make [/@/Bthesis]
and [/@/database] respectively. Instead, it
makes [/@/Bthesis] first and then files which
“/@/database” matches are picked up from
[/@/Bthesis] (Step (2) in Section 4.4.4). Thus
the time to make [/@/Bthesis,/@/database]
is shorter than the sum of the time to make
[/@/Bthesis] and [/@/database]. The time
to copy all file-links to the temporary direc-
tory (Step (4) in Section 4.4.4) seriously af-
fects the execution time. This time depends on
the number of file-links in the set. The num-
ber of file-links in [/@/Bthesis,/@/database]
is much less than that of [/@/Bthesis] or
[/@/database]. As a result, the overall execu-
tion time of “lsf /@/Bthesis,/@/database”
is shorter than that of “lsf /@/Bthesis” or
“lsf /@/database”.
For any component keyword k, we executed

“lsf /@/k” and measured the response time.
Table 4 shows the distribution of the response
times. As shown in the table, for about 98% of
all cases, lsf responds in less than 2 seconds.
Though this result is owing to directory caches
as mentioned above, it is generally acceptable
in interactive use. That is, we can conclude
that our prototype system is barely useful in
relatively small-scaled environment as the ex-
ample. In a larger environment which consists
of more than a hundred users, its performance
is expected to become impractical. For such en-
vironments, implementation which involves OS
kernel modification seems to be essential.

5. Conclusion

Some researchers have proposed hybrid nam-
ing schemes between hierarchical naming and
attribute-based naming. However, they are less
flexible or difficult to use because two conflict-
ing notions, file containers and file attributes,
coexist in them. To solve the problem, we in-
troduced the notion of hierarchical keywords in-

2338 IPSJ Journal Sep. 2001

stead of file containers and proposed HK nam-
ing. We implemented a prototype of filename
management system on a UNIX file system and
showed that it is practical for a relatively small-
scaled environment.
Our current prototype is designed for attach-

ing more importance of ease of implementation
than to efficiency of name resolution. We plan
to study more efficient implementation of the
name management system. The user interface
for HK naming (including GUI) is another in-
teresting topic.

References

1) Sechrest, S. and McClennen, M.: Blending Hi-
erarchical and Attribute-Based File Naming,
Proc. 12th IEEE Intl. Conf. on Distributed
Computing Systems, Yokohama, Japan, IEEE,
pp.572–580 (1992).

2) Gifford, D., Jouvelot, P., Sheldon, M. and
O’Toole, J.: Semantic File Systems, Proc. 13th
ACM Symp. on Operating Systems Principles,
Pacific Grove, CA, ACM, pp.16–25 (1991).

3) Neuman, B.: The Prospero File System: A
Global File System Based on the Virtual Sys-
tem Model, Proc. USENIX Workshop on File
Systems (1992).

4) Gopal, B. and Manber, U.: Integrating
Content-Based Access Mechanisms with Hi-
erarchical File Systems, Proc. 3rd Symp. on
Operating Systems Design and Implementa-
tion, New Orleans, LA, USENIX, pp.265–278
(1999).

5) Bowman, M., Spasojevic, M. and Spector, A.:
File System Support for Search, Technical Re-
port, Transarc Corporation, Pittsburgh, PA
(1994).

6) Freeman, E. and Gelernter, D.: Lifestreams:
A Storage Model for Personal Data, ACM
SIGMOD Record, Vol.25, No.1, pp.80–86
(1996).

7) Neufeld, G.: Descriptive Names in X.500,
Proc. SIGCOMM ’89 Symposium, Communi-
cations, Architectures and Protocols, Austin,
Texas, ACM, ACM PRESS, pp.64–71 (1989).

8) Korth, H. and Silberschatz, A.: Database Sys-
tem Concepts, McGraw-Hill, New York, NY
(1991).

9) Terry, D.: Distributed Name Servers: Nam-
ing and Caching in Large Distributed Comput-
ing Environments, Technical Report CSL-85-1,
Xerox Palo Alto Research Center (1985).

10) Faloutsos, C.: Access Methods for Text, ACM
Comput. Surv., Vol.17, No.1, pp.49–74 (1985).

11) Sacks-Davis, R., Kent, A. and Ramamoha-
narao, K.: Multikey Access Methods Based

on Superimposed Coding Techniques, ACM
Trans.Database Syst., Vol.12, No.4, pp.655–696
(1987).

12) Moffat, A. and Zobel, J.: Self-Indexing In-
verted Files for Fast Text Retrieval, ACM
Trans. Information Syst., Vol.14, No.4, pp.349–
379 (1996).

(Received November 17, 2000)
(Accepted June 19, 2001)

Harumasa Tada received his
B.E., M.E. and Ph.D. degrees
in information and computer
sciences from Osaka University,
Osaka, Japan, in 1993, 1995 and
1998, respectively. He is cur-
rently a Research Assistant of

Graduate School of Engineering Science, Osaka
University. His current research interests are
file naming schemes and distributed program-
ming environment.

Nobutoshi Todoroki re-
ceived his B.E. and M.E. de-
grees in information and com-
puter sciences from Osaka Uni-
versity, Osaka, Japan, in 1999
and 2001, respectively.

Kazufumi Fukui received
his B.E. and M.E. degrees in
information and computer sci-
ences from Osaka University,
Osaka, Japan, in 1999 and 2001,
respectively.

Masahiro Higuchi received
the B.E., M.E. and Ph.D. de-
grees in information and com-
puter sciences from Osaka Uni-
versity, Osaka, Japan, in 1983,
1985 and 1995, respectively. In
1985 ∼ 1990, he worked for

Fujitsu Laboratories LTD. In 1991 he joined the
faculty of Osaka University. In 1995 ∼ 1999,
he was an Assistant Professor of Department
of Information and Computer Sciences, Osaka
University. Since 2000 he has been an Associate
Professor of School of Science and Engineering,
Kinki University. His current research interests
include problems of distributed system design,
and methods for protocol specification, testing
and verification.

