TR E

20N CPRE 2 R ) 2 E K& 863

PREVENTION OF

IMPLICIT DEADLOCK

BY OBJECT REALLOCATION

6H—5

Akiko HYOUDOH and Makoto TAKIZAWA

Tokyo Denki University

1. INTRODUCTION

Most database systems and distributed database
systems have adopted locking schemes as the
synchronization method of interleaved and con-
current executions of transactions. Problem is
how to resolve deadlock. In the conventional
systems, a deadlock manager detects a deadlock
by constructing a wait-for graph and finding a
directed cycle in the wait-for graph.The dead-
lock is resolved by aborting a process in the
deadlock cycle. If the objects held by the
selected process are arbitrarily allocated to
the other process, another deadlock may occur
since the other process which has waited on
object. We say such deadlock which is caused
by aborting the selected process an implicit
deadlock. In this paper, we discuss not only
how to detect the deadlock and select a
process in a deadlock cycle but also how to
allocate the objects held by the selected
process to the processes which waited on them
so as not to cause the implicit deadlock.

2. DEADLOCK
Suppose that the system has a deadlock manager
which grasps the systems state, detects a
deadlock, and then resolves it. In this paper,
we assume that the deadlock manager can obtain
a consistent system state by some mechanism
presented in [KNAP87]. A wait-for graph for
the state S is defined as follows.
[Def.] A wait-for graph Gs for a system state
S is a directed graph (Vs, Es)where
(1) Vs is a set of nodes each of which denotes
a process in the system, i.e. Vs =
{P1,...,Pa}, and
(2) Es is a set of directed edges, which in-
cludes a directed edge P;j —>x Pk for every two
different processes P; and Px in Vs if Pj
waits on an object x held by Px in S.03
let Obj(G,P) be a set of ob-
Jjects which P holds. In the one-resource model
and AND model [KNAP87], a consistent system
state S is deadlocked if and only if (iff) the
wait-for graph Gs for S contains a directed
cycle.
[Def.] Let Gs be a wait-for graph (Vs, Es) for
a system state S. Let P and @ be a process in
Gs. P is said to depend on Q (or Q is reach-
able from P) in Gs (written as P =g¢s Q) iff
(1) for every object x in Obj(Gs, Q), P =»x Q
in Gs, or

For a process P,

PREVENTION OF IMPLICIT DEADLOCK
BY OBJECT REALLOCATION

Akiko HYOUDOH and Makoto TAKIZAWA
Tokyo Denki University

(2) there exists some process R in Vs such
that P =as R and R =a6s Q.0
P - Q means that a process P depends on Q for
some object in Gs.
[Def.l For a wait-for graph Gs, a process P is
said to be deadlocked in S iff P depends on
itself or depends on some deadlocked process
in Gs. P is said to directly deadlocked iff P
depends on itself, i.e. P =ags P.OJ
Directly deadlocked processes are processes
which are included in some deadlock cycle.
Deadlocked processes which are not directly
deadlocked are said to be indirectly dead-
locked.

3. IMPLICIT DEADLOCK

In this paper, we consider the AND model

[KNAP87] where processes can request more than

one object and block until all of them are ob-

tained. Let Pj and Px be processes, and x be

an object in the system. Let S be a consistent

system state and Gs be a wait-for graph of S.

Suppose that S is deadlocked. Since the dead-

lock manager is assumed to be able to obtain

S, it constructs a wait-for graph Gs for S.

Wait(Gs, P, x) = a set of processes which
wait on an object x held by Pj.

WaitP(Gs, Pj) = a set of processes which wait
for the objects held by Pj.

DLP(Gs) = a set of directly deadlocked
processes in Gs.

LP(Gs) = a set of deadlocked processes in Gs

[Def.] Suppose that a system state S is
changed to T by aborting a process P and al-
locating the objects. Let Gs and Gr be wait-
for graphs for S and T, respectively. Let
ILP(Gs,P) be a set LP(Gr) - LP(Gs - {P}).
Processes in ILP(Gs,P) are said to be im-
plicitly deadlocked.]

> P < —_ s
Q R
@y R X
(a) Gla (b) Gib

Fig.1 Wait-for Graph

Let us consider a wait-for graph;Gla in
Fig.1(a). Suppose that a process P is directly
deadlocked. When P is selected and aborted by
the deadlock manager, a object x held by P is
released and is allocated to a process which
has waited on it. If x is allocated to Q, a
new deadlock cycle, i.e. Q> R—>Q appears as
shown in Fig.1(b). ILP(Gia,P) = LP(Gib) -
LP(Gia - {P}) = {Q,R}. Processes Q and R in



864

ILP(G1a,P) are implicitly deadlocked.
Processes in ILP(Gs,P) are processes which are
still deadlocked after the abortion of P.
However, the deadlock manager considers them
not to be deadlocked. In this paper, we would
like to present a deadlock resolution method
to prevent implicit deadlocks from occurring.
[Déf.] Let P be a deadlocked process in a
wait-for graph Gs. Let RLP(Gs, P) be a set
LP(Gs) - LP(Gs - {P}) - {P}. Let ULP(Gs, P) be
a set LP(Gs - {P}). Processes in RLP(Gs) are
said to be ones which are resolvably dead-
locked for P in Gs. Processes in ULP(Gs, P)
are said to be ones which are unresolvably
deadlocked for P in Gs.[d
A family {ULP(Gs,P), RLP(Gs,P), {P}} is a par-
tition of LP(Gs), i.e. LP(Gs) = ULP(Gs,P)U
RLP(Gs,P)U {P} and they are pairwise disjoint
[Fig.2].

RLP(Gs,P)

@:
: DLP(Gs)

ULP(Gs,P)

Fig.2 Relationships among deadlock states

There are two kinds of implicit deadlocks,
i.e. directly and indirectly implicit dead-
locks.

[Def.] Suppose that a system state is changed
from S to T by aborting a process P. Let Gs
and Gr be wait-for graphs for system states S
and T, respectively. If there exists a dead-
lock cycle Cr in Gr which includes only
processes in WaitP(Gs, P) and at least one
process in Cr is not in ULP(Gs, P), then
processes in Cr are said to be directly im-
plicitly deadlocked in Gr. Implicitly dead-
locked processes in Gr which are not directly
implicitly deadlocked are said to be in-
directly implicitly deadlocked processes.(d
[Def.] Let P be a process and x be an object
held by P in a wait-for graph Gs, i.e. x€
Obj(Gs, P). Let G’ be Gs - {P}. A process Q€
Wait(Gs, P, x) is said to be a candidate of x
in Gs iff Q is not deadlocked in a wait-for
graph G’, i.e. Q is not in LP(G’), and Q does
not depend on any processes in WaitP(Gs, P) in
G’ .0

Let Cand(Gs, P, x) be a set of processes which
are candidates of x for a process P in Gs. For
every object x held by a process, if there ex-
ists a candidate of x, we can prevent any in-
directly implicit deadlock from occurring by
allocating x to its candidate and aborting the
process. However, for some object x, unless
there exists a candidate of x, deadlocks still

exist after the process is aborted.

[Prop. 3.1] For every object x held by a
process P in a wait-for graph Gs, if there is
no candidate of x for P, every process in
Wait(Gs, P, x) is unresolvably deadlocked,
i.e. in ULP(Gs, P).

[Proof] From the definition of the candidate
process of x for P, if there is no candidate
of x, every process in Wait(Gs, P, x) depends
on a process in Wait(G’, P, x) or in DLP(Gs)
in a wait-for graph G’ = Gs - {P}. Therefore,
even if P is aborted, processes in Wait(Gs, P,
x) are still deadlocked. B

4. SELECTION AND ALLOCATION ALGORITHM

As stated before, assume that a global consis-

tent state is already held by the deadlock

manager. We show our algorithm for selecting a

process and allocating objects obtained by the

selected process to the other processes which
have waited for them.

[Selection and Allocation Algorithm (SAA)]

(1) Let Gs be a wait-for graph for a consis-
tent system state S.

(2) If LP(Gs) = ¢, i.e. no deadlock cycle in
Gs, then the SAA terminates.

(3) [Deadlock exists, i.e. LP(Gs)# ¢ ] Select
a process P in DLP(Gs), i.e. directly dead-
locked process.

(4) For every object x in Obj{(Gs, P),

(4-1) if there exists a candidate process of
x for P, i.e. Cand(Gs, P, x)# ¢, select
a candidate process Q in Cand(Gs, P, x),

(4-2) else [There is no candidate of x]
select a process Q in Wait(Gs, P, x),

(4-3) allocate x to Q, and Gs :=Gs + { U >
x Q | UE (Wait(Gs, P, x) - {Q}) } - { U
—->x P | UEWait(Gs, P, x) }.

(5) Abort P and Gs := Gs - {P}. Go to (2).0

[Theorem] Our SAA algorithm never causes im-

plicit deadlock.

5. CONCLUDING REMARKS

In this paper, we have presented how to
prevent, implicit deadlock implied by aborting
the selected process. By allocating the ob-
jects held by the selected process to the can-
didate processes which wait for the objects,
the implicit deadlock is prevented by our al-
gorithm.

REFERENCES

[CHAN83] Chandy, K. M., Misra, J., and Haas,
L. M., "Distributed Deadlock Detection,” ACM
TODS, Vol.1, No.2, 1983, pp.144-156.

[KNAP87] Knapp, E., "Deadlock Detection in
Distributed Databases," ACM Computing Sur-
veys, Vol.19, No.4, 1987, pp.303-328.

[LEIB89] Leibfried Jr., T. F., "A Deadlock
Detection and Recovery Algorithm Using the
Formalism of a Directed Graph Matrix," ACM
Operating Systems Review, Vol.27, No.2,
1989, pp.45-55.



