CYCLIC SK-FACTORIZATION ALGORITHMS OF COMPLETE BIPARTITE GRAPHS

5 K - 3

Kazuhiko USHIO and Reiji TSURUNO Kinki University

Abstract. In this paper, trivial necessary conditions and base conditions for the existence of an S_{κ} -factorization of $K_{m,n}$ are given. Cyclic S_{κ} -factorization algorithms of $K_{m,n}$ are also given.

1. Introduction. Let S_k be a star on k vertices and $K_{m,n}$ be a complete bipartite graph with partite sets V_1 and V_2 of m and n vertices each. A spanning subgraph F of $K_{m,n}$ is called an S_k -factor if each component of F is isomorphic to S_k . If $K_{m,n}$ is expressed as an edge-disjoint sum of S_k -factors, then this sum is called an S_k -factorization of $K_{m,n}$. Moreover, If we can choose a special S_k -factor F such that an S_k -factorization of $K_{m,n}$ is obtained by cyclic shifting of vertices of F, then this special factor is called a base factor and this factorization is called a cyclic S_k -factorization.

2. Cyclic Sk-factorization of Km. n.

Notations. r,t,b: number of S_k -factors, number of S_k -components of each S_k -factor, and total number of S_k -components, respectively, in an S_k -factorization of $K_{m,n}$.

 t_1 (t_2): number of components whose centers are in V_1 (V_2), respectively, among t S_k -components of each S_k -factor.

 $r_1(u)$ ($r_2(v)$): number of components whose centers are all u (v) for any u (v) in V_1 (V_2), respectively, among $b S_k$ -components.

Trivial necessary conditions. b=mn/(k-1), t=(m+n)/k, r=kmn/(k-1)(m+n), $t_1=\{(k-1)n-m\}/k(k-2)$, $t_2=\{(k-1)m-n\}/k(k-2)$, $t_1=\{(k-1)n-m\}n/(k-1)(k-2)(m+n)$, $t_2=\{(k-1)m-n\}m/(k-1)(k-2)(m+n)$, $t_3=\{(k-1)m-n\}m/(k-1)(k-2)(m+n)$, $t_4=\{(k-1)m-n\}m/(k-1)(k-2)(m+n)$, $t_4=\{(k-1)m-n\}m/(k-1)(k-2)(m+n)\}$

Base conditions. $m=r_mm_0$, $n=r_nn_0$, $r=r_mr_n$, $t_1=pm_0$, $t_2=qn_0$.

Rectangle area. Use a rectangle area of size m by n whose (i,j) entry denotes an edge joining u_1 in V_1 and v_2 in V_2 . Then an S_k -factor has t_1 H-type S_k 's and t_2 V-type S_k 's, where H-type S_k (V-type S_k) is an S_k whose center is in V_1 (V_2), respectively. Divide this rectangle area into four rectangle subareas A,B,C,D whose sizes are t_1 by $(k-1)t_1$, t_1 by t_2 , $(k-1)t_2$ by $(k-1)t_1$, and $(k-1)t_2$ by t_2 , respectively.

Base factor. Choose a special S_{κ} -factor F whose t_1 H-type S_{κ} 's are in A and t_2 V-type S_{κ} 's are in D. Shift F right cyclically step n_0 . Then we have r_n S_{κ} -factors. Shift those r_n S_{κ} -factors down cyclically step m_0 . Then we have $r_m r_n (=r)$ S_{κ} -factors. If those r S_{κ} -factors cover A,B,C,D neither too much nor too less, then this special S_{κ} -factor is a base factor. And the sum of those r S_{κ} -factors is a cyclic S_{κ} -factorization of $K_{m,n}$.

Lemma 1. Trivial necessary conditions, base conditions, and $(r_n-q)/p$ is an integer

===> Km.n has a cyclic Sk-factorization.

Proof. About vertical size and horizontal size of A it holds that $t_1=pm_0$ and $(k-1)t_1=p(k-1)m_0$ =p{ $(r_n-q)/p$ } n_0 . Since $(r_n-q)/p$ is an integer, divide A into p^2 rectangle subareas $A_{1,1}$ of size m_0 by $(k-1)m_0$ each. In $A_{1,1}$, take m_0 H-type S_k 's as following: diagonally in $A_{1,1}$, (k-1)-right diagonally in $A_{2,2}$, 2(k-1)-right diagonally in $A_{3,3}$, and so on. Then we have $pm_0(=t_1)$ H-type S_k 's in A_1 .

About vertical size and horizontal size of D it holds that $(k-1)t_2 = (k-1)qn_0 = (r_m-p)m_0$ and $t_2 = qn_0$. Divide D into (r_m-p) rectangle subareas D₁ of size m_0 by qn_0 each.

We consider three subcases as follows: (a.1) m_0/p and $\{n_0-(k-1)p\}m_0/pqn_0$ are integers, (a.2) m_0/p is an integer and $\{n_0-(k-1)p\}m_0/pqn_0$ is not an integer, (a.3) m_0/p is not an integer.

Case (a.1). m_0/p and $\{n_0-(k-1)p\}m_0/pqn_0$ are integers. In D_1 , use stepwise continuous boxes, each box is a area of size 1 by $n_0-(k-1)p$, and vertical (k-1)-lines with $n_0-(k-1)p$ wide. Take m_0 boxes which are horizontally continuous and vertically step-continuous with step p or p+1.

Then the entries on crossing points of the stepwise continuous boxes and each vertical (k-1)-line form a V-type S_k , i.e., one V-type S_k appears on each vertical (k-1)-line. In D_1 , D_2 , D_3 ,..., shift vertical (k-1)-lines right simultaneously one by one. Then we have $qn_0(=t_2)$ V-type S_k 's in D.

Case (a.2). m_0/p is an integer and $\{n_0-(k-1)p\}m_0/pqn_0$ is not an integer. In D_1 , take stepwise continuous boxes and vertical (k-1)-lines. Then similarly as in Case (a.1), we have $qn_0(=t_2)$ V-type S_k 's in D.

Case (a.3). m_0/p is not an integer. Let $(m_0,p)=d$. Put $m_0=dm_1$, $p=dp_1$, where $(m_1,p_1)=1$. In D_1 , take dm_1 horizontally continuous boxes such as first m_1 boxes started at the first row, second m_1 boxes started at the second row, ..., and last m_1 boxes started at the d-th row are vertically step-continuous with step p. Then similarly as in Case (a.1) and (a.2), we have $qn_0(=t_2)$ V-type S_K 's in D.

It can be easily checked that t_1 H-type S_k 's in A and t_2 V-type S_k 's in D form a base factor. Therefore, $K_{m,n}$ has a cyclic S_k -factorization.

Lemma 2. Trivial necessary conditions, base conditions, and $(r_m-p)/q$ is an integer ==> $K_{m,n}$ has a cyclic S_K -factorization.

Lemma 3. Trivial necessary conditions, base conditions, and $(r_n-q)/p$ and $(r_m-p)/q$ are not integers

===> Km.n has an Sk-factorization.

Theorem. Trivial necessary conditions and base conditions

===> Km.n has an Sk-factorization.

REFERENCES

- 1. H. Enomoto, T. Miyamoto and K. Ushio, C_{κ} -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- 2. K. Ushio, P3-factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- 3. K. Ushio and R. Tsuruno, Cyclic S_k -factorization of complete bipartite graphs, to appear in "Proc. Second Inter. Conf. Graph Theory, 1989, San Francisco".
- 4. K. Ushio and R. Tsuruno, P_3 -factorization of complete multipartite graphs, to appear in Graphs and Combinatorics (1989).

