
Vol. 42 No. 12 IPSJ Journal Dec. 2001

Regular Paper

A Method for Dynamic Reorganization of a Database

Vlad Ingar Wietrzyk,
†
Katsuya Tanaka

††

and Makoto Takizawa
††

We consider the problem of on-line database reorganization. The types of reorganization
that we discuss are restoration of clustering, purging of old data, creation of a backup copy,
compaction, and construction of indexes. The contributions of this paper are both of theo-
retical and of experimental nature. We present an algorithm for maintaining the biconnected
components of a graph during a sequence of edge insertions and deletions. We complement
our algorithms with encouraging experimental results.

1. Introduction

The goal of dynamic reorganization is to ar-
rive at an optimal data layout based on ob-
served access patterns. To accomplish this, the
reorganizer must solve three problems. First,
it needs to keep track of the history of previ-
ous events. Second, it must find a layout that
would deliver near-optimal performance for the
observed access patterns, assuming that past
is a good predictor of future access patterns.
Third, it must analyze the difference between
the current layout and the desired layout and
if necessary, issue I/O requests to correct the
difference.

Given a set of objects, the links between these
objects may be represented by a labeled, di-
rected graph. We call this graph a total ob-
ject graph (TOG). The (TOG) is an abstrac-
tion which allows us to represent a complete
database as well as any subset of objects of the
database. The clustering algorithm operates on
a set of objects which consists of the objects
newly created by the transaction and those ob-
jects which have been accessed by the transac-
tion. This set is described by a Minimum Span-
ning Tree (MST) which is a subgraph of the
TOG that describes the whole database. This
(MST) represents the objects which must per-
sist at the end of the transaction. Objects are
placed in logical clusters, whose size can be un-
limited. To group as many objects as possi-
ble, we select those objects which were already
stored on disk and group some of their newly
created components with them. Objects al-

† School of Computing, University of Western Sydney
†† Department of Computers and Systems Engineer-

ing, Tokyo Denki University

ready existing on disk are reclustered—this op-
eration effectively reorganizes database on-line
with additional effect of increased performance
due to updated references.

The clustering algorithms presented so far in
the literature aim at determining a good initial
placement of an object, but none of them take
into account dynamic evolution.

Concurrent reorganization/continuous reor-
ganization of the physical data structure while
application process has full access to the
database, is an objective of our ongoing re-
search. Our objective is to dynamically adapt
physical database organizations, on-line, ac-
cording to the access patterns of the users with-
out adding significant overhead on processing
workload. Clustering is one of the most effec-
tive ways to improve the performance of ob-
ject base applications. Consequently, many re-
search proposals exist for techniques comput-
ing good object placements depending on the
application profile. However, clustering tool is
only one of many necessary to provide for on-
line database reorganization. In this paper we
have shown how to approach reorganization of
object database on-line by means of dynamic
reclustering. Our method is effective in I/O
and interruptible without loss of work. This ap-
proach is incremental, therefore system perfor-
mance improves as reorganization progresses.
Due to the fact that our method operates on-
line, it is not necessary to reserve space for a
new full copy of the database for reorganization.
Since we want to keep main operational data
structures in main memory, it is essential to be
able to reconstruct them after system failure—
we do just that by the integration of an area
of main memory, the reliable memory into a
database system. This has also a positive ef-

3144

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3145

fect in substantially redusing I/O traffic, which
results in improvements to the overall perfor-
mance of the DBMS. Our extensive fault tests
show that mapping reliable memory into the
database memory space does not substantially
hurt reliability.

To summarize, the new aspects of our ap-
proach to on-line reorganization of the database
include the following research contributions.
The novel approach to incremental on-line
maintenance of good clustering which employs
the maintenance of the minimum spanning tree
of a dynamic object graph under the presence of
concurrent additions and deletions of data ob-
jects. We designed and implemented the Large
Complex Object Manager (LCOM) on top of
the VERSANT disk manager, for managing
variable-size storage clusters. During operation
our system is incrementally saving all work al-
ready done while maintaining consistency after
system crashes.

The rest of this paper is organized as fol-
lows. Related work on on-line reorganization of
the DBMS is discussed in section 2. Section 3
introduces the VERSANT DBMS, the storage
system used in our experiments and the way
statistical profile of user application software is
captured by the mechanism that, actively inter-
face an Object Database Management System
to application programs. Section 4 describes
new algorithms designed for minimizing object
access time under the presence of concurrent
additions and deletions of objects. The appli-
cation of reliable memory for the purpose of en-
hancing reliability and performance is demon-
strated in section 5. In this section we also
discuss concurrency control and recoverability
under the operation of the reliable memory and
its possible effect on the state-of-the-art recov-
ery schemes (e.g., ARIES 11)). In section 6 we
discuss the question of optimal cluster size. Sec-
tion 7 presents preliminary experiments and re-
sults. Section 8 concludes the paper with a
summary and a short discussion of future re-
search.

2. Related Works

Though there has been much work in the area
of on-line reorganization in recent years, there
has been hardly any work that considers on-line
incremental cluster modification under concur-
rent additions and delitions of data. Perhaps
Ref. 12) is one of the few research papers that
discusses an approach for on-line index modifi-

cation. In Ref. 12) records are moved from one
location to another location one at a time. All
references and the record move operations are
encapsulated in a database transaction. How-
ever this technique is too slow for massive re-
organization of DBMS, because changes to the
secondary index pages are performed immedi-
ately which would necessitate a disk I/O for
each index leaf page that is not in the buffer
at the time of the access. In Ref. 13), an on-
line algorithm for the reorganization of key se-
quenced files is presented. Here approach used
to move a chunk of data from one disk to an-
other is to make a copy of the data on the des-
tination disk. However, updates are allowed
on only one copy, and at the correct time, a
switch is performed synchronously to transfer
the updates to the new copy. A method for re-
organization together with an algorithm specifi-
cally tailored for restoration of clustering is pre-
sented in Ref. 14). This clustering approach
sorts the records of the file in ascending or-
der of the composed key. The composed key
K1,K2, · · · ,Kk is selected such that the at-
tributes appear in nonincreasing order of their
probability of appearence in a query. Since
sorting is computionally expensive, i.e., pro-
ducing a total ordering of all records, they ap-
ply a partial-sort approach that restricts the
sorting to those records that can fit into the
buffer. However, experimental evidence has
shown that the partial-sort clustering method
performs very poorly.

A clustering algorithm may be either static
or dynamic depending upon the time at which
the clustering of objects is performed.
• A static clustering scheme, does not reclus-

ter objects after they are created. Al-
though initially this offers a good place-
ment policy for newly created complex ob-
jects, it does not consider the dynamic evo-
lution of objects.

• Dynamic clustering is done during nor-
mal database operation when objects are
accessed concurrently by user application
packages. However, dynamic clustering
can generate additional workload on the
database system, so it is important to iden-
tify when reorganization should be done.
If the reorganization is not properly man-
aged, reclustering may degrade the overall
system performance.

Some researchers propose a cost model to
evaluate the benefit and cost of reclustering. A

3146 IPSJ Journal Dec. 2001

fully dynamic reclustering scheme will reduce
the access time, and hence the overhead im-
posed on the system by reorganization could
offset the benefit. Our estimation of reorganiza-
tion cost is based on copy-and-reclaim method.
Reorganizing clusters of objects saved on phys-
ical pages is justified only if reclustering over-
head (Treorg) together with the time taken to
write all pages back to the disk (Tclus) is smaller
than the summary time of present accesses to
the related pages residing in the scattered form
(Tscat).

Treorg + Tclus < Tscat

In principle, it is not beneficial to perform
reclustering when access frequencies are small,
since the reorganization costs taken to reshuffle
scattered pages on the disk can be prohibitive.
In case that there is no contiguous space avail-
able on the disk, a total reorganization will
be necessary. Many research suggestions have
been made to consider reclustering of objects in
ODBMS; however the proposed solutions are
not practically dynamic. In reality, they only
control placement of objects when objects are
modified.

Based on our research, we believe that dy-
namic reorganization is important and neces-
sary while at the same time somewhat danger-
ous since disk space reorganization may take
prohibitive costs to stabilize and prove too
costly. Before reclustering, costs and benefits
must be precisely estimated. However, to col-
lect the whole set of statistics for every ob-
ject, especially during the whole object life may
prove to be very expensive and quite unrealis-
tic.

The task of clustering in an on-line, inter-
ruptible and adaptive manner has largely been
ignored. The majority of known cluster analy-
sis algorithms in the literature are static and,
therefore, cannot adapt to changes in usage pat-
terns6). None of the adaptive algorithms ad-
dress the problem of performing reclustering
on-line. Our research is concerned with creat-
ing a cluster analysis algorithm that is capable
of adapting variable size complex object place-
ment in the scenario of changing usage patterns
by different access methods. To keep additional
workload introduced due to reorganization as
low as possible, we perform cluster analysis only
on those objects that have been accessed since
the last reorganization and which are already in
main memory; to support that we make use of

Versant ODBMS event notification mechanism.

3. The VERSANT Storage System

We use the VERSANT database manage-
ment system developed at Versant Object Tech-
nology Corporation, California as the database
in our experiments 10). VERSANT is a fourth-
generation DBMS combining the direct model-
ing of complex graph-structured data with the
power of today’s leading object programming
languages. VERSANT has certain unique fea-
tures which are relevant to our experiments, but
our results should apply to more conventional
databases as well 4).

Optimal clustering is achieved only when
data relevant to a particular query is collocated
physically on disk. Since a particular data el-
ement can only reside in a single place within
the database, it seems unlikely that the physi-
cal location of that element will be optimal for
all patterns of access. This behavior is rein-
forced by the current lack of adaptable buffer-
ing strategies in particular buffer replacement
strategies. As a direct effect, some likely to
be used object can be swapped out because
the buffer replacement scheme does not con-
sider that referenced objects are strongly re-
lated to currently-used objects. In order to ad-
dress these issues related to clustering we de-
signed and implemented new clustering algo-
rithms.
3.1 Monitoring Objects
Statistical profile of user application soft-

ware is captured by the mechanism, which ac-
tively interfaces an Object Database Manage-
ment System to application programs. The
database monitor mechanism observes which
and how values of attributes of database ob-
jects change as a function of time. By means
of Versant SQL we can specify the derived or
stored associated attribute. The DBMS signals
that the state of derived data has changed by
invoking tracking procedures, which is a pro-
cedure triggered by the changes in a state of
the database. Possible tasks for tracking pro-
cedures include counting the number of refer-
ences between objects, or passing information
to other systems. Optimization is done by min-
imizing the amount of monitored data and by
allowing monitors to be active only while ap-
plications need them. The client localization
of monitors can be done by associating moni-
tors with client processes. When no client needs
them the system deactivates monitors. The ap-

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3147

plication may run on a client workstation other
than the database server. The system keeps
track of which application processes on which
workstations monitor which data, and automat-
ically notifies application processes when mon-
itored data change. Calling tracking proce-
dures performs notification. External calls may
interrupt client processes and execute asyn-
chronously, enabling normal operations, with-
out the ODBMS waiting for the tracking pro-
cedures to terminate.

4. Algorithms Designed for Automatic
Database Reorganization

In this section, we present the algorithm
without the details of logging and recovery.

Database accesses in an Object DBMS are
very complex due to the rich variety of type con-
structors provided. Additionally ODBMS often
use navigation-like access among object hierar-
chy, therefore inter-object references often gen-
erate random disk access if the entire database
does not fit in main memory. Dynamical hier-
archical clustering, where records remain clus-
tered in a hierarchical order after numerous in-
sertions and deletions, has generated very little
publicity, and remains an unsolved problem.
4.1 Reorganization Strategy Offered

by Commercial Object Database
Systems

Usually placement of objects on disk depends
on control information given by the database
administrator describing the placement of ob-
jects. Often physical placement of object on
disk is bounded to schema information. Strictly
speaking, the placement strategy that has been
implemented in existing commercial systems
aims at determining a good initial placement
of an object, but does not take into account
dynamic evolution. The same is relevant to the
policy of supplying user hints, which aims only
at good initial placement of objects.

Persistence is implemented by associating a
reference count with each object. When an ob-
ject becomes persistent, so do all of its compo-
nents; conversly, when the reference count of an
object drops to 0, the reference counter of each
of its subcomponents is decreased. A reference
count strategy was adopted to implement the
reachability-based persistence scheme. Other
widely known techniques, such as scavenging
and mark-and-sweep, add some overhead to
database performance. Marking schemes force
the database to be quiscent for long periods of

time because of the amount of data that have
to be tested.

Scavenging on disk brings a high performance
overhead because of the I/O costs involved
in copying and clustering on disk is compro-
mised. In our case, clustering information is
collected dynamically during database opera-
tion and promotion is delayed until transaction
commit time. This is because at update time
the object manager has only partial and incom-
plete view of the graph of objects.
4.2 Frequency of Access and Reachi-

bility Index in an OODB
Our method does not assume any prior

knowledge of user queries and their frequencies,
except that the object graph structure is avail-
able in main memory.

The clustering problem is closely related to
the partitioning problem in which a hypergraph
is to be partitioned into several disjunct sub-
graphs.

We used the cost analysis in order to de-
rive automatically an optimal object placement
graph. The naive approach, which consists in
building all the possible subgraphs and comput-
ing their cost functions on-line and then select-
ing optimal, is not tractable. Such a combina-
torial structure is exponential with respect to
the number of edges covered by the subgraphs
related to the particular methods.

Instead we used a minimum spanning tree,
computed dynamically from augmented object
graph. We make use of a path-method (pm)
which is a mechanism to retrieve information
relevant to one class, in an object-oriented
database (OODB), that is not stored with that
class but with some other class. For more in-
formation on path-method see Ref. 31). Our al-
gorithm uses numerical reacheability index be-
tween pairs of classes as a guide for the traversal
of an object graph.

Our method is greatly improved by assigning
a reachibility index value from the range [0, 1]
to each edge in the object graph. The sum of
the weights—(Di) on the n outgoing connec-
tions of a node (class) conforms to the following
constraint:

∑n
i=1 Di = 0.5 ∗ n. From this for-

mula’s sum value, each connection is assigned
a weight from the interval [0, 1], reflecting its
relative frequency of traversal. We combined
frequency of access with reachibility index. The
reacheability index of a connection from a class
calpha to a class cbeta is a measure of its sig-
nificance according to the frequency of travers-

3148 IPSJ Journal Dec. 2001

ing this connection relative to all connections
involving class calpha. To express it in a differ-
ent way; reacheability index characterizes the
strength of the connection between two classes.
The reacheability index values are assigned rel-
evant to the frequencies of use of the connec-
tions accumulated during the operation of the
database.

The importance of a path is measured by the
Access Relevance Index ARI(P). To compute
various access relevance values we utilized ap-
proach used in Ref. 31). We can obtain the
ARI(P) of a path P by applying a triangular-
norm (t-norm) to the set of reacheability in-
dexes of the edges of the path. We have chosen
the t-norm PRODUCT , for which the ARI(P)
of a path P is the product of the reacheabil-
ity indexes of all its edges. To emphasize the
fact that we are considering access weights and
not probabilities, we prefer to use the term
“weighting function” (DF) instead of the term
t-norm. By applying techniques commonly
used with fuzzy sets, we will use a co-norm to
select one of the paths connecting the pair of
nodes cα and cβ . In particular, we will use the
MAXIMUM co-norm. To compute the access
relevance-AR from cα to cβ, we are applying the
MAXIMUM function to the access relevance
indexes-ARI of all paths from cα to cβ .

Definition 1. The most significant connection
from cα to cβ is the path P with the maximum
ARI(P).

Theorem: The ARI(P) of the most signifi-
cant path P from cα to cβ is equivalent to the
AR(cα, cβ).

Proof

To choose between different paths, we are
using the MAXIMUM co-norm. Therefore
the path P that will be selected to define the
AR(cα, cβ) value is the one with the maximum
ARI(P). ✷

The generation of joins in relational data-
bases parallels the problem of pm generation.
One approach to this problem is the universal
schema interface 30) and the other is the gen-
eration of implicit join. However, there is a
fundamental difference between pm presented
in this paper and the generations of joins in
both methods described above. Execution of
the generated pm requires just the fast traver-
sal of the connections defining the path-method.
Usually, however joins are used to gather in-

Table 1 The meaning of various coefficients.

P path.
cx (x)-node of the object graph.
ARI access relevance index.
ARI(P) the access relevance index

of a path P .
D an access weight of a connection

in the OODB, where 0 ≤ D ≤ 1.
AR the access relevance–a number

reflecting the strength
of the strongest
path between two nodes.

DF weighting function expressing
the strength of connection
between two nodes.

trbcx attribute of the class (node) cx.

formation stored in different relations—which
may be huge. Normally joins require a large
overhead for deriving query-results.
Definition 2. The Access relevance AR(cα, cβ)
from a node cα to a node cβ is a number describ-
ing the strength of the strongest path between
those two nodes, including into account all the
paths from cα to cβ .

We can describe formally, that if a single path
P (cα, cβ) = cα(= ci1), ci2 , ci3 , . . . , cik(= ct)
connects two nodes calpha, cbeta, then the access
relevance index of P is computed by applying
the following formula:∑

e∈δ(V1,V2,...,Vm)

de

The access relevance of this pair of nodes, if
there are m paths P1, . . . , Pm from cα to cβ , is
expressed by the following formula:
AR(cα, cβ)=maxmj=1ARI(Pj)

=maxmj=1

∏
(cir ,cir+1)∈Pj

[
D(cir , cir+1)

]

By definition AR(cα, cα) = 1. To derive a path
with the highest product of reacheability in-
dices of all its edges, we have to maximize the
PRODUCT weighting function. Table 1 sum-
marizes the coefficients.

In what follows, we assume that, using an
efficient algorithm, access relevances-(AR) for
OODB are already computed and stored. We
shall also assume that all edge weights are non-
negative. (If not, we can add a positive value to
each edge weight to give an equivalent problem
with all edge weights nonnegative.)
4.3 The Algorithm for Maintaining

Minimum Spanning Trees in Dy-
namic Graphs

The basic idea of our dynamic clustering

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3149

method is to maintain a minimum spanning
tree, derived from weighted object graph sub-
jected to objects insertions, deletions and up-
dates. For object instances of nodes shared by
several edges, the edge with the highest weight
is selected. The object subgraph is kept in pri-
mary memory. Once a minimum spanning tree
is built, objects can be clustered dynamically
and automatically according to the frequency
of references between them. The object collec-
tion need not already exist, but can grow from
any number of insertions. Automatic cluster-
ing algorithms, which are scarcely found in the
research literature, focus usually on reorganiz-
ing an existing database in order to match most
common access patterns. Those algorithms al-
low object database clustering to degrade over
time and then to employ frequent reclustering
to improve performance. In contrast, our re-
search reported here focuses on ensuring good
initial placement followed by dynamic mainte-
nance of clusters, in the hope of making static
reorganization unnecessary. In case of frequent
changes of user’s access patterns our technique
based on reachibility index values continuously
reflect those changes in the augmented object
graph.

The application of combinatorial structures
to the theory of databases, motivated us to
study the node capacitated graph partitioning
problem. Formally, given a graph G = (V,E),
an integer L ∈ N , edge weights de for e ∈ E,
node weights ci for i ∈ V and a capacity F , the
problem is to find a partition (V1, V2, . . . , Vm) of
V with m ≤ L, ∑

i∈Vj ci ≤ F for j = 1, . . . ,m
and such that∑

e∈δ(V1,V2,...,Vm)

de

is minimized, where δ(V1, V2, . . . , Vm) denotes
the set of edges whose end nodes belong to dif-
ferent elements of the partition, typically called
a multicut. When m = 2, we also use the
notation δ(V1, V2)={e = (i, j) : i ∈ V1, j ∈
V2} even if V1 ∪ V2 ⊂ V . For convenience,
we introduce the term cluster. A cluster is
a subset of V (possibly empty). A cluster
partition (V1, V2, . . . , VL) into L disjoint clus-
ters (Vi ∩ Vj = ∅ for all i different from j,
∪Li=1Vi = V , Vi ⊆ V for all i) correspond to
a partition (V1, V2, . . . , Vm) of V , 1 � m � L,
where V1, V2, . . . , Vm are the nonempty clusters
in the cluster partition.

Throughout this paper, we shall wish to
deal with graphs that have maximum vertex
degree 3. Let us now recall from Ref. 32)
how to transform our graph into a graph in
which every vertex has degree no grater than
three. A well-known transformation in graph
theory is used. By ∞ we designate a suf-
ficiently large value, say equal to the largest
value that can be represented in a single word
of memory. For each vertex V of degree d >
3 and neighbors w0, w1, . . . , wd−1, replace V
with new vertices V0, V1, . . . , Vd−1. Add edges
{(Vi, Vi+1) | i = 0, . . . , d − 2}, each of cost
−∞, and edge (Vd−1, V0) of cost ∞, and re-
place edges {(wi, V) | i = 0, . . . , d − 1} with
{(wi, Vi) | i = 0, . . . , d − 1}, of corresponding
costs. The resulting minimum spanning tree
for the transformed graph will be a minimum
spanning tree for the original graph with every
edge of cost −∞ added. (The value −∞ is used
to ensure that these edges are not swapped out
when identifying a best swap. For the purpose
of identifying the cost of the minimum spanning
tree in the original graph, treat the −∞ as 0.)

We next define some terms that serve as the
foundation for data structures from Ref. 32)
that we wish to use. Let G = (V,E) be a con-
nected undirected graph with maximum vertex
degree at most 3, and let MST -Minimum Span-
ning Tree be a subgraph of G that is a tree.
A vertex cluster with respect to MST is a set
of vertices such that the subgraph of MST in-
duced on the cluster is connected.

Now, we will present our first design of the
clustering algorithm as follows: a clustering
algorithm takes as input a random sequence
of nodes of a configuration Directed Acyclic
Graph (DAG), and generates a clustering se-
quence of nodes. Our approach is to generate
and cluster a minimum spanning tree of the
nodes of a given object graph configuration.

Our strategy for clustering objects is mainly
based on the estimated inter-object communi-
cation volume represented by the weight be-
tween pairs of objects. In order to keep all
clusters within a reasonable size, we impose a
limit on cluster size: Pmax, which is a page size.
When the total size of objects of Px and Py is
less than Pmax; {Px + Py ≤ Pmax}, they can
be clustered together by moving objects from
Py to Px. The result of this clustering process
is a set of pages P1, P2, . . . , each of which is
a set of oi objects, {1 ≤ oi ≤ N}, and the
size of each page, Pi, satisfies the condition

3150 IPSJ Journal Dec. 2001

{1 ≤ P − i ≤ Pmax}.
Let N be the number of objects in the ob-

ject net of application software system; wv1,v2
is the weight representing totality of references
between objects v1 and v2.

In order to minimize intercluster connectivity
and maximize concurrency, the objective func-
tion can be expressed as follows:

IR = min



N−1∑
i

N∑
j

P∑
k

wv1,v2 λik(1− λjk)




where:

λik =
{

1 if object is clustered on page k
0 otherwise

{(1 ≤ i ≤ N − 1) and (1 ≤ k ≤ P)}
In the description of the first algorithm the

following notations are used, see also Ref. 4).
The edges of G are stored in the list E, i.e., E(i)
is the pair of the end vertices of the i-th edge.
The list W contains the edge weights: W (i) is
the weight of the i-th edge. ET is the set of
edges of the current forest T , p is the number
of its components, E1 is the set of minimum-
weight edges for the current forest T . In order
to improve the performance of the construction
of the minimum-weight edge sets, the follow-
ing scratchpad, auxiliary work lists are used:
COMP (j) is the index of the component of
the current forest which contains the vertex j;
MWE(i) is the index of the minimum-weight
edge for the i-th component of the growing for-
est; MW (i) is the weight of the edge MWE(i).

Algorithm Cluster Object Net
Input: Weighted, undirected graph G

with n vertices and edge list E
Output: Clustering Mapping
Compute MST (Min.WeightSpan.T ree)
{

1. Initialization step: Set ET ← Ø,
COMP (i)← i,MW (i) ← ∞ for i = 1,
2, . . . , n. p ← n.

//Operations 2− 8 gradually build-
//up the set E1 of minimum-
//weight edges for the forest T .

2. k ← 1.
3. Let E(k) = uv; i← COMP (u),

j ← COMP (v).
4. If i �= j then go to step 5,

otherwise go to step 7.
5. If w(uv) = W (k) < MW (j) then

MW (j)← w(uv),

MWE(j) = k.
6. If w(uv) = W (k) < MW (i) then

MW (i)← w(uv),
MWE(i) = k.

7. If k = |EG| then go to step 8,
otherwise k ← k + 1
and go to step 3.

//Immediately before the
//execution of step 8, the firstp
//entries of MWE contain the
//indices of edges from the
//minimum-weight set for T

8. Examine the first p elements of MWE
and create the set E1 of the minimum -
weight edges for the forest T .

9. ET ← ET ∪ E1.
//This is the edge set
//for the “new” forest T’

10. Using the depth-first search, extract
the connected components of the
“new” forest T ′ = T ′ ∪E1.

//The list COMP and the
value

//of p are updated
11. IF p = 1 then terminate

//ET is the edge set of the
//minimum spanning tree

otherwise go to step 2.
RETURN MST = {ET}

}

At the first iteration the algorithm handles
the spanning forest of a graph G consisting of
n = |G| single-vertex components. Each itera-
tion acts as follows. First, it constructs a set
M of minimum-weight edges for a forest T pro-
duced before this iteration.

This can be done during a single scan of the
set EG. Let e be the edge to be examined next:
if e induces a cycle in M , then e is discarded.
Otherwise, edge e is chosen and the new forest
will be M ∈ {e}. Then using the depth-first
search it extracts the connected components of
the graph T ′ = T + M , which is a forest. This
forest is passed to the next iteration; clearly, T ′
has fewer components than T .

Theorem:

The algorithm Cluster Object Net con-
structs a minimal spanning tree in time
θ(|EG| log2 |G|).
Proof

It is easy to see that after each iteration of

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3151

Fig. 1 Graph example.

Step 8; E1 is the set of minimum-weight edges
for the current forest T . Therefore T ′ = T +E1

is a spannig forest. This means that the al-
gorithm indeed constructs a minimal spanning
tree of G 5). Now, let us estimate the time com-
plexity of the algorithm. A single iteration of
Steps 3–6 takes θ(|EG|). This time is also suffi-
cient for Steps 8–11. Thus, the transition from
T to T ′ = T + E1; a single iteration takes time
θ(|EG|).

Now we can estimate the number of iterations
of the algorithm. Since an edge may be mini-
mal at most for two components of T , at each
iteration |E1| ≥ p(T)/2. And since T + E1 is a
forest, p(T+E1) ≤ p(T)/2; at each iteration the
number of components decreases at least twice.
This means tht the number of iterations of the
algorithm is at most θ(log2 |G|), hence the al-
gorithm constructs a minimal spanning tree in
time θ(|EG| log2 |G|). ✷

Let us apply algorithm Cluster Object
Net to the graph in Fig. 1. At the first itera-
tion we shall obtain the set E1 = {a1a2, a1a3,
a4a7, a5a8, a6a9, a9a10} of minium weight for
the forest of single-vertex components. The
spanning forests obtained at the first, second
and the third iterations are shown in Fig. 2.
The last of them is the minimal spanning tree.

To speed up this computation, the above min-
imum spanning tree algorithm is augmented
with Boruvka algorithm 2). The basic idea in
Boruvka’s algorithm is to contract simultane-
ously the minimum weight edges incident on
each of the vertices in G. Boruvka’s algorithm
thus reduces the MST problem in a |G|—vertex
graph with |EG| edges to the MST problem in a
(|G/2|)—vertex graph with at most |EG| edges.
Our final design uses randomization in conjunc-
tion with Boruvka’s algorithm, which further

improves its computational speed. First, MST
computes in θ(E) time the B-th smallest edge t
in G with a fast randomized algorithm for selec-
tion. The algorithm will recourse on subgraphs
that are not necessarily connected. When the
input graph G is not connected, a spanning tree
does not exist and we generalize the notion of a
minimum spanning tree to that of a minimum
spanning forest (MSF).

The only use of randomization in the MST
algorithm is in the use of random sampling to
identify and eliminate edges that are guaran-
teed not to belong to the MST. The random-
sampling result is the key to the (θ|EG|) bound.
Next, it computes in θ(E) the reduced set of
edges R = {e ∈ E | cost(e) ≤ cost(t)}. Consec-
utively, minimum spanning tree algorithm ap-
plies Boruvka’s algorithm to the reduced edge
set R in time θ(B logB). The forest obtained
after this step is denoted by M . If M has the
same number of connected components as G or
M is connected, then M is the minimum span-
ning tree or forest of G. Otherwise, minimum
spanning tree applies Boruvka’s algorithm to G.

Minimum spanning tree algorithm has a
worst-case running time of θ (E logE), there-
fore it is not asymptotically more efficient than
Boruvka’s algorithm in the worst case. With
the support and help of the theory of ran-
dom graphs8), the following can be observed:
If an appropriate choice of B is made—namely
B = Ω(n logn), in case of random graphs the
probability that minimum spanning tree algo-
rithm applies Boruvka’s algorithm to the entire
graph G is exceptionally low. As a consequence,
the choice of particular B = Θ(n logn) gener-
ates an average running time of θ (E+n : log2 n)
for minimum spanning tree (MST) algorithm.

We now describe a simple fully dynamic min-
imum spanning tree algorithm (DMST). DMST
is an appropriate implementation of a partially
dynamic data structure, which is itself a com-
bination of the linking and cutting trees intro-
duced by Tarjan and Sleator and our MST algo-
rithm. During its operations, DMST maintains
two data structures. It stores all the edges of
graph G in a priority queue Q according to their
cost and it also maintains the minimum span-
ning tree T of the graph G as a linking and
cutting tree.

In case when a new edge e is inserted into
object graph G, DMST updates T and Q in
time θ (log n). In case when an edge e is deleted

3152 IPSJ Journal Dec. 2001

Fig. 2 Applying the algorithm Cluster Object Net to the Graph Example.

from graph G and it is a non-tree edge, DMST
does nothing else - it only deletes e from Q in
θ (logn) time. In case when tree edge is deleted
from Q, DMST calls minimum spanning tree
(MST) algorithm on the edges in Q. As a re-
sult of those operations DMST requires θ (log n)
time plus the running time of MST in case of
a tree edge deletion. The expensive case hap-
pens with probability n/m, if the edge to be
deleted is chosen uniformly at random from ob-
ject graph G, resulting in an average running
time of θ {logn + (n/m) × (m + n log2 n)} =
θ {n + (n logn)2/m} for DMST algorithm.

The above analysis suggests that running
time of DMST will decrease as the graph den-
sity increases—this actually coincides with the
results of our experiments. The algorithm ex-
ercises a deferred and incremental approach to
make the changes in the cluster pages already
in main memory. Before the pages from the
buffer are flushed out, DMST cluster algorithm
updates object graph immediately. However,
the pending changes are stored in special mem-
ory resident tables. The buffer manager con-
sults those tables when fresh cluster pages are
brought into the buffer by a new user request.
Although there is a finite number of feasible
read sequences, it is not known if there is an
efficient algorithm for computing the optimum
sequence with minimum disk seek time. Trying

to read all the sequences in order to fined the
optimum sequence is computationally very ex-
pensive. As a result of its prohibitive expense,
research has been focusing on using heuristics.

5. Application of Reliable Memory for
Databases

Safe RAM allows systems that support reli-
able updates, such as databse and transaction
processing systems, to perform more efficiently.
Significant improvement in response time can
always be realized, and a throughput improve-
ment can be realized by limiting disk access due
to the use of the safe RAM 15). We make use
of an area of main memory, maintained by the
operating system, that buffers file system data.
Our design uses a memory interface to reli-
able memory with virtual memory protection to
protect against wild stores to dirty, commited
buffers–this approach was suggested in Ref. 16).
In our design we used reliable memory to store
the log. Keeping the log in reliable memory
removes all synchronous disk writes from the
critical path of a transaction 15). This technique
decreases transaction commit time and can help
to reduce lock contention with the resulting
benefit of increased concurrency. By storing im-
portant system information in the stable mem-
ory we can help to improve recovery time. We
did achieve reduction of time needed to scan

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3153

the log to find the last checkpoint by storing
a pointer in reliable mamory. In our experi-
ments we used the reliable memory to store the
database buffer cache. Theoretically this makes
all buffer cache changes permanent without
writing to disk. Similar to the force-at-commit
policy, this eliminates the need for checkpoints
and a redo log in recovering system crashes—
partial redo 17),18). According to Ref. 19), the
redo log is still necessary in recovering from
media failures—global redo; however, redun-
dant disk storage makes this scenario less prob-
able. Because redundant undo log records can
be purged after a transaction commits, remov-
ing the redo log has a result that no log records
need be written if memory has enough capac-
ity to contain the undo records for all current
transactions in progress 20),21). Also, accord-
ing to Ref. 20), storing the databse buffer cache
in reliable memory allows the system to begin
operation after a crash with the contents of a
warm cache, see also Ref. 22). In summary reli-
able memory also allows state-of-the-art recov-
ery schemes e.g., ARIES family of protocols 11)

to become much more simpler. Since, for exam-
ple, the need for fuzzy checkpoints is reduced
because transactions can commit faster.

We also present a new solution to an old,
yet very important problem known as the “on-
line object placement problem”, which can be
stated more precisely as the problem of choos-
ing a disk page to hold a newly allocated object.
To the best of our knowledge, the database lit-
erature contains no studies of object allocation
with the objective to optimize storage utiliza-
tion and placement performance, with the ex-
ception of excellent treatment of the subject in
Ref. 23). Since our approach provides for incre-
mental on-line clustering which allows also con-
current updates to data, the object allocation
problem is solved by our clustering algorithm
as described in Section 4 above.
5.1 Buffer Policies
In the shared disks scheme, each site broad-

casts its updates to other sites. However, a
broadcast is required only if the transaction up-
dates one or more pages.
Table 2 summarizes the parameters of our

system.
The probability that transaction requires a

broadcast, pbdcst is given by:

pbdcst = 1−
DP∏
i=1

(1− pui)
Tψi

Table 2 The parameters of our system.

pbdcst the probability that transaction requires
a broadcast.

DP number of database partitions.
pui probability of update for pages

of partition i.
T number of pages accessed per transaction.
ψi probability of accessing

ith partition.

In our experiments we validated our analysis
of buffer models and integrated system mod-
els for the response times using the Distributed
Database VERSANT.
In our experiments we used the reliable mem-

ory to store the database buffer cache. The-
oretically this makes all buffer cache changes
permanent without writing to disk. Similar to
the force-at-commit policy, this eliminates the
need for checkpoints and a redo log in recov-
ering system crashes–partial redo17),18). Ac-
cording to Ref. 19), the redo log is still neces-
sary in recovering from media failures—global
redo; however, redundant disk storage makes
this scenario less probable. Because redun-
dant undo log records can be purged after a
transaction commits, removing the redo log
has a result that no log records need be writ-
ten if memory has enough capacity to con-
tain the undo records for all current trans-
actions in progress 20),21). Also, according to
Ref. 20), storing the databse buffer cache in re-
liable memory allows the system to begin oper-
ation after a crash with the contents of a warm
cache, see also Ref. 22).

To integrate buffer management with the re-
covery model, we guarantee that a modified seg-
ment is flushed to the database only after the
log records associated with those modifications
have been written. Outside of that constraint,
the buffer manager is free to use any appropri-
ate buffer replacement policy.

Our recovery algorithm can also be extended
to deal with a site failure without performing a
complete system restart, so long as the global
lock manager data has not been lost, or can
be regenerated from the other sites. In other
case, a full site failure, as with regular system
recovery, has a redo pass, followed by rollback
of in-progress operations.

In our implementation, log flushes are trig-
gerd by the release of a lock from a site, in or-
der to support repeating of history and correct
rollback of multi-level actions during crash re-
covery. By comparison “the super fast method”

3154 IPSJ Journal Dec. 2001

of ARIES-SD, does not describe flushes to pro-
tect the early release of locks, making it un-
clear how that scheme supports logical undo
and high-concurrency operations.

In summary reliable memory also allows
state-of-the-art recovery schemes (e.g., ARIES
family of protocols 11) to become much more
simpler. For example, the need for fuzzy check-
points is reduced because transactions can com-
mit faster.

6. Variable-Size Storage Clusters

Related issue to the “on-line object place-
ment problem” is the question of optimal cluster
size. Our experimental system operates under
the assumption that the exchange granularity
between disk and main memory is the logical
cluster. To group as many objects as possi-
bly, we select those objects which were already
stored on disk and group some of the created
objects with them. In that way objects al-
ready existing on disk are reclustered, which
effectively reorganizes ODBMS on-line. Simply
using larger fix-size storage clusters is not a so-
lution because of low storage utilization. The
enlargement of storage cluster actually brings
up countercurrent perfomance issues. On the
one hand if we use a small cluster size we get
high I/O cost from the large directory structure
and the loading of numerous storage cluster and
we get high CPU cost from the composition of
highly decomposed objects. On the other hand,
if we increase the cluster size too much in or-
der to reduce object decomposition and index
size, we may end up with increased I/O cost
due to the large cluster size and increased CPU
cost due to increased cost for the search within
the storage cluster and its increased number
of objects. To overcome wasted space prob-
lem we designed storage clusters with variable
size: multi-page clusters with a varying number
of pages. When a large object is created it is
stored in a sequence of large variable-size seg-
ments, each consisting of physically contiguous
disk pages. Thus, the segments that comprise
the large object may have sizes that vary dras-
tically.

7. Preliminary Experimental Study

The clustering algorithm has been imple-
mented in our experimental system.

We would like to emphasize that at this stage
of our research efforts the study limits itself to
exploring the feasibility of the techniques we

have proposed. In order to test our method for
on-line reorganization (specifically, for restora-
tion of clustering), we conducted a series of ob-
ject clustering experiments. While performing
experiments we considered only the time that
the algorithms used in recomputing a new solu-
tion after each update; we did not measure the
time necessary for initializing the data struc-
tures and for loading the initial object graph.

For our experiments we used a Pentium
Pro 200MHz based workstation supported
by Intel-initiated PCI-ISA bus system, with
128MB main memory and two disk drives:
one 3.2 AT/S gigabyte holding the software—
VERSANT ODMS Release 5.0 and 6.4 AT/S
gigabyte accommodating the database. Both
disk drives model Quantum FireballTM ST. We
have adapted hypermodel benchmark 9) to test
our clustering algorithms. The benchmark it-
self comprises operations for:
• creating the initial test database with clus-

tering
• range queries
• incremental modifications of attributes at

a number of randomly selected n odes
• closure operations
• reference lookups (so-called group lookups)

We present in this section only a few experi-
mental results concerning our experiences with
the hypermodel benchmark.

We found that the size of workstation buffer
pool has no effect on the performance of the
sequential scan query and the results are not
included.
7.1 Processing of Multiple Queries

Concurrently
The main objective in a heavily loaded sys-

tem is to improve the average response time of
queries under a given system throughput. The
throughput is established for a given mix of
queries by the arrival rate of queries per sec-
ond. The issue concerning us is to define how
the policy of multi-page requests determines the
average response time when multiple queries
are concurrently processed at a time? This
problem is treated in direct relation between:
“multi-page clusters with a varying number of
pages” and “the citerion that the response time
of a query is bounded by its I/O time”. This
subsection presents the results of a preliminary
performance comparison of multi-page requests
which supports multi-page clusters with a vary-
ing number of pages and single-page requests
when multiple queries are processed concur-

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3155

Table 3 Query signature parameters.

QSF query signature.
PT the number of target pages.
CF the number of cylinders occupied

by a file F .
ξ the average number of

queries which arrive in one second.
QTi i-th query type.
pωi probabilty of a query being of

the i-th query type.
PTi the number of target pages of

quert type QT − i.
Ci the number of file cylinders of

query type QTi.

rently.
A query signature is defined by one or several

query types. Every query type is characterized
by the parameters listed in Table 3.

Additionally to the query types, a query sig-
nature is characterized by the arrival rate of the
queries. In our experiments we assume that the
arrivals of queries follow an exponential distri-
bition where ξ designates the average number
of queries which arrive in one second time inter-
val. Generally, a query signature QSF can be
described by the following string of parameters:

QSF = (ξ, pω1, QT1 (PT1 , C1), . . . , pωi,
QTk (Nk, Ck))

QTi is the i-th query type which executes
stream of queries with probability pωi, where
1 ≤ i ≤ k.

Firstly, we performed experiments on the fol-
lowing query signatures:

QSF1(ξ) = (ξ, 1.0, QT (15, 5))
We varied the values of parameter ξ from 1 to

20. Figure 3 shows the average response time
in ms. As can be seen from it, when ξ > 5 the
average response time per query dramatically
increases for queries using single-page requests.
However, multi-page requests still offer low re-
sponse time of the queries.

In the next group of experiments, the query
signatures are examined where parameter ξ is
varying in the range between 1 ≤ ξ ≤ 30, each
of them comprising four different query types.
It is assumed that the query type that will ac-
cess only one page will occur with probability
60%, however probability of a query that will
access 100 target pages is only 10%.

QSF2(ξ) = (ξ, 0.6, QT (1, 1), 0.1,

QT (20, 5), 0.1, QT (50, 5), 0.2, QT (100, 10))

We studied important problem related to how
the average response times of small queries
performes when all queries are executed using

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Average Number of Queries per [s] (ξ)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Experimental Results of Query Signature QS
F1

 as a function of ξ

multi−page cluster requests
single−page cluster requests

Fig. 3 Experimental results of query signature QSF1

as a function of ξ.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

Average Number of Queries per [s] (ξ)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Experimental Results of Query Signature QS
F2

 of type QT(1,1)

multi−page cluster requests
single−page cluster requests

Fig. 4 Experimental results of query signature QSF2

of type QT (1,1).

multi-page clusters with a varying number of
pages.

We addressed this question for our query sig-
nature QSF2(ξ), by plotting the average re-
sponse time of the queries of type QT (1, 1)
in Fig. 4. The query of type QT (1, 1) can-
not take advantage from multi-page cluster re-
quest. Therefore, response time show similar
results on both graphs for a small value of ξ - a
lowly loaded system. In case of a heavily loaded
system, the average response time of QT (1, 1)
queries type is distinctly lower when multi-page
cluster requests are executed in comparison to
using single-page cluster queries.
7.2 Static vs. Dynamic Reclustering
Figure 5 depicts a comparison between the

average miss rates as a function of time in case
where dynamic, on-line reclustering was active
and operational and where it was not.

Reductions in the average miss rate were gen-

3156 IPSJ Journal Dec. 2001

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 [P
ag

e
F

au
lts

/O
pe

ra
tio

n]
Static vs. Dynamic Reclustering

Time [s]

Static
Dynamic

Fig. 5 Static vs. dynamic reclustering.

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40
Reorganization Time vs. Number of Runs

R
eo

rg
an

iz
at

io
n

T
im

e
[s

]

Number of Runs

Fig. 6 Reorganization time vs. number of runs.

erally noticed in case when DMST algorithm
was active. A decreased miss rate was expected
for those user processes that utilized the part of
the database after it has been reclustered. In-
deed this effect was observed in the miss rate
results of our benchmark runs.
Figure 6 shows relationships between the

number of reorganizations and the average du-
ration of those reorganizations. With the num-
ber of reorganizations increasing during a run,
the time interval between them decreases.

This is due to the fact that as the frequency
of reorganizations increases during a particular
run, the statistics that are gathered to support
clustering cover a smaller part of the database,
since it makes references to the smaller number
of objects. This analysis is also supported by
looking at Fig. 4, showing that reorganization
duration decreases as the number of reorgani-
zations during a particular run increases. We
can deduce (from Fig. 4) that this behavior will
increase with concurrency, since user transac-

tions do not need to wait as long to gain access
to the necessary database locks.

8. Conclusion and Future Work

We believe that a wide class of applications
such as CAM and CASE systems can greatly
benefit form an on-line dynamic reorganization
via clustering since they normally use low num-
ber of competing concurrent transactions.

Since we want to keep main operational data
structures in main memory, it is essential to be
able to reconstruct them after system failure—
we do this by the integration of an area of main
memory—the reliable memory into a database
system.This has also a positive effect in sub-
stantially reducing I/O traffic, which improves
the overall performance of the DBMS. Our tests
show that mapping reliable memory into the
database memory space does not substantially
hurt reliability. Our main objective of incre-
mental on–line reorganization is to change a
part of the database without affecting on-going
transactions for very long. To perform reorga-
nization more efficiently, the ways to group to
be reorganized are examined. Our methodol-
ogy has advantages over many other proposed
or cited approaches because it does not require
any beforehand knowledge of the query frequen-
cies, nor does it trigger a reclustering process
based on trace analysis. We have also consid-
ered making online reorganization restartable.
Our method incrementally saves all work al-
ready done while maintains consistency after
system crashes.

To address the shortcomings of fixed size clus-
ters, we designed variable storage clusters, a
new clustering mechanism that supports clus-
ters whose sizes vary dynamically according to
the access patterns being observed.

We demonstrated that on-line reclustering
is possible, but more research is required to
demonstrate its suitability in many practical
situations, especially in the presence of greater
degrees of concurrently operating transactions.

For our purposes, the value of this experimen-
tal work is the comparison of the relative perfor-
mance of the new algorithms under a range of
different operational scenarios. In that sense,
the results are used to demonstrate practical
feasibility of the proposed approach.
Acknowledgments Also we would like to

acknowledge Intel Corporation for making their
tools available for our experiments. Microsoft,
Windows and Windows NT are trademarks of

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3157

Microsoft Corporation. VERSANT is a trade-
mark of Versant Technology Corporation. Intel
and Pentium are trademarks of Intel Corpora-
tion. We wish to acknowledge the anonymous
referees for their helpful comments, which led
us to an improved presentation of this paper.

References

1) Wietrzyk, V.: Performance Evaluation of
New Clustering Algorithms in Object-Oriented
Database Systems, International Conference
on Database and Expert Systems Applications,
Zurich, Switzerland (Sep. 1996).

2) Wietrzyk, V. and Orgun, M.A.: A Foundation
for High Performance Object Database Sys-
tems, Databases for the Millennium 2000 in
Proc. 9th International Conference on Manage-
ment of Data, Hyderabad (Dec. 1998).

3) Wietrzyk, V.: Effective Clustering and Data
Caching in Client-Serve DBMS Architecture,
Trends in Information Technology in Proc. In-
ternational Conference on Information Tech-
nology, Bhubaneswar (Dec. 1998).

4) Wietrzyk, V. and Orgun, M.A.: VERSANT
Architecture: Supporting High-Performance
Object Databases, International Database
Engineering and Applications Symposium,
IDEAS98, Cardiff, U.K., July, IEEE Computer
Society Press, Los Alamitos, CA (1998).

5) Wietrzyk, V.I. and Orgun, M.A.: Dynamic
reorganization of Object Databases, Interna-
tional Database Engineering and Applications
Symposium, IDEAS99, Montreal, Canada, Au-
gust, IEEE Computer Society Press, Los
Alamitos, CA (1999).

6) Bancilon, F., Delobel, C. and Kanellakis, P.:
Building an Object-Oriented Database System:
The Story of O2, Morgan Kaufmann, San Ma-
teo, CA (1992).

7) DeWitt, J.D., Maier, D., Futtersack, P. and
Velez, F.: A Study of Three Alternative
Workstation-Server Architectures for Object
Oriented Database Systems, Proc. 16th VLDB
Conference, Brisbane, Australia (1990).

8) Andrasfai, B.: Graph Theory, Techno House,
New York, NY, USA (1991).

9) Anderson, T.L., Berre, A.J., Mallison, M.,
et al.: The Hypermodel Benchmark in Ban-
cilhon, Thanos, Tsichritzis (Eds.), Advances
in Database Technology—EDBT’90, LNCS 416
(1990).

10) VERSANT System Manual.: VERSANT Re-
lease 5.0 (Feb. 1997).

11) Mohan, C., Haderle, D., Lindsay, B., Pira-
hesh, H., et al.: ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead

Logging, ACM Trans. Database Syst., Vol.17,
No.1, pp.94–162 (1992).

12) Salzberg, B. and Dimock, A.: Principles of
transaction-based on-line reorganization, Proc.
18th Intl. Conf. Very Large Databases, pp.511–
520, San Mateo, CA, Morgan Kaufmann Pub-
lishers (Aug. 1992).

13) Smith, G.S.: Online reorganization of key-
sequenced tables and files, Tandem System Re-
view, Vol.6, No.2, pp.52–59 (1990).

14) Jakobsson, M.: Reducing block accesses in in-
verted files by partial clustering Inform, Syst.,
Vol.5, No.1–5 (1980).

15) Copeland, G., Keller, T., Krishnamurthy, R.
and Smith, M.: The Case for Safe RAM, Proc.
15th Intl. Conf. Very Large Databases, pp.327–
335, Amsterdam, The Netherlands, Morgan
Kaufmann Publishers (Aug. 1989).

16) Sullivan, M. and Stonebraker, M.: Using write
protected data structures to improve software
fault tolerance in highly available database
management systems, Proc. 1991 Intl. Conf.
Very Large Data Bases (VLDB), pp.171–180
(Sept. 1991).

17) Haerder, T. and Reuter, A.: Principles of
transaction-Oriented Database Recovery, ACM
Computing Surveys, Vol.15, No.4, pp.287–317
(1983).

18) Akyurek, S. and Salem, K.: Management of
partially safe buffers, IEEE Trans. Comput.,
Vol.44, No.3, pp.394–407 (1995).

19) Chen, P.M., Lee, E.K., Gibson, G.A.,
Katz, R.H. and Patterson, D.A.: RAID:
High Performance, Reliable Secondary Stor-
age, ACM Computing Surveys, Vol.26, No.2,
pp.145–188 (1994).

20) Wee Teck, N.G., Aycock, C.M., Rajmani, G.
and Chen, P.M.: Comparing Disk and Mem-
ory’s resistance to Operating system crashes,
International Symposium on Software Reliabil-
ity Engineering (1996).

21) Agrawal, R.A. and Jagadish, H.V.: Recov-
ery Algorithms for database Machines with
Nonvolatile main memory, Database Machines
Sixth International Workshop, IWDM’89 Proc.
(June 1989).

22) Sullivan, M. and Chillarege, R.: A Compar-
ison of Software Defects in Database Man-
agement Systems and Operating Systems,
Proc. 1992 International Symposium on Fault-
Tolerant Computing, pp.475–484 (July 1992).

23) McAuliffe, M.L., Carey, M.J. and Solomon,
M.H.: Towards Effective and Efficient Free
Space Management, Proc.1996 ACM SIGMOD
International Conference on Management of
Data, pp.389–400 (1996).

24) McAuliffe, M.L., Carey, M.J. and Solomon,

3158 IPSJ Journal Dec. 2001

M.H.: Vclusters: A Flexible, Fine-Grained Ob-
ject Clustering Mechanism, Proc. 1998 ACM
SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applica-
tions (OOPSLA’98), Vol.33, No.10 (1998).

25) Dröge, G. and Schek, Hans-Jörg: Query-
Adaptive data Space Partitioning using
Variable-Size Storage Clusters, Proc. Third
International Symposium, SSD’93, Singapore
(June 1993).

26) Weikum, G.: Set oriented disk access to large
complex objects, Proc. Int. Conf. on Data En-
gineering, 1989, pp.426–433 (1989).

27) Hutflesz, A., Six, H.W. and Widmayer, P.:
Proc. Int. Conf. on Data Engineering, 1988,
pp.572–579 (1989).

28) Knuth, D.E.: The Art of Computer Program-
ming, Addison-Wesley (1997).

29) Kotch, P.D.: Disk File Allocation Based on
The Buddy System, ACM Trans.Comput.Syst.,
Vol.5, No.4 (1987).

30) Maier, D. and Ullman, J.D.: Maximal Ob-
jects and the Semantic of Universal Relation
Databases, ACM Trans. Database Syst., Vol.8,
No.1, pp.1–14 (1983).

31) Mehta, A., Geller, J., Perl, Y. and Neuhold,
E.J.: The OODB Path-Method Generator
(PMG) Using Precomputed Access Relevance,
Proc. 2nd Int’l Conference on Information
and Knowledge Management, Washington DC,
pp.596–605 (1993).

32) Frederickson. G.N.: Data Structures for On-
Line Update of Minimum Spanning Trees,
with Applications, SIAM J.Computing, Vol.14,
No.4, pp.781–798 (1985).

(Received July 19, 2001)
(Accepted October 16, 2001)

Vlad Ingar Wietrzyk ob-
tained his M.Sc. degree from
Prague University. EU and his
Dip. in Computer Science from
UTS, Sydney. Since 1999 he
has been at the University of
Western Sydney. Since 1997 un-

til 1998 he had been a visiting researcher of
Stuttgart and Mannheim Universities. He has
publications in national and international con-
ferences and workshops. In 1999 he was a visit-
ing researcher at the Institute of Software Engi-
neering, Montreal University. He has served on
the program committees of international con-
ferences like ICPADS, IDEAS, CIT, COMAD,
ENTER. He has deliverd industrial seminars on
computing to companies like VERSANT and
ALCATEL. While at the Analytical Service
Corporation, Sydney 1987–1995 he designed
and implemented in software, a hierarchical
clustering method which was the first to sup-
port the analysis of data based on groups and
data exploration. His current research interests
are: Object Distributed Databases, Various as-
pects of Information Systems Design Method-
ologies (including Distributed Systems), Trans-
action Processing in distributed systems, Con-
currency Control, Distributed and Federated
Database Systems, and Distributed Workflow
Technology supporting Electronic Commerce.
He is a member of IEEE and AIEA.

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degree in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is an
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
He received the D.E. degree from Dept. of Com-
puters and Systems Engineering, Tokyo Denki
University, Japan, in 2000. His research in-
terests include distributed systems, transaction
management, recovery protocols, and computer
network protocols. He is a member of IEEE CS
and IPSJ.

Vol. 42 No. 12 A Method for Dynamic Reorganization of a Database 3159

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves on
the program committees of many international
conferences. He chaired SIGDPS of IPSJ from
1997 to 1999. He is IPSJ fellow. His research in-
terests include communication protocols, group
communication, distributed database systems,
transaction management, and security. He is a
member of IEEE, ACM, and IPSJ.

