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A Framework for Gigabit-rate Packet Header Collection

to Realize Cost-effective Internet Monitoring System

Teruyuki Hasegawa,† Tomohiko Ogishi† and Toru Hasegawa†

In this paper, we present a framework for realizing low-cost Internet monitoring systems
that can handle gigabit-rate traffic without any special hardware. As a result of the spread
of Gigabit Ethernet technologies, there is a need for inexpensive solutions that can realize
Internet monitoring systems with gigabit-rate capability. However, it is quite difficult for
existing software-based systems to collect all the packet headers at a gigabit rate, even if high-
end hardware components are used. We therefore propose a novel framework for gigabit-rate
packet header collection that can be applied to most network interface cards. This framework
also provides a capability for forwarding the collected header information to other hosts via a
network, which makes it easy to integrate existing applications and to introduce load-balancing
mechanisms. The results of our performance evaluation show that our first implementation
is capable of collecting 100% of header information, even if a Gigabit Ethernet link is fully
utilized by 384-byte packets, while existing software-based systems can collect less than 50%,
even though the CPU load is more than twice as large.

1. Introduction

Recently, the traffic volume in the Internet
has been growing rapidly because of the contin-
uous increase in the number of users and the de-
velopment of various so-called broadband access
media. In order to accommodate the large vol-
ume of traffic, many Internet service providers
or enterprise networks have been using Gigabit
Ethernet (GbE ) 1) to build local-area backbone
networks. GbE is also beginning to be utilized
as an access link to wide-area IP backbone net-
works.
As a result of the spread of GbE technolo-

gies, there is a need for reasonable methods of
constructing Internet monitoring systems with
gigabit-rate capability, so that network oper-
ators or users can obtain various information
about networks such as network usage and
workload trends, or obtain the observed pack-
ets themselves. From the viewpoint of cost and
flexibility, it is very desirable to realize Such
monitoring systems by using commodity hard-
ware such as combinations of personal comput-
ers (PCs) and network interface cards (NICs)
on which some existing software is running.
However, it is quite difficult for these software-
based systems to collect all the packet headers
at a gigabit rate, even if a high-end PC system
is adopted.
In order to keep pace with gigabit-rate traffic,
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we propose a novel framework for packet header
collection to realize cost-effective Internet mon-
itoring systems. This framework is a completely
software-based solution and can be applied to
most modern NIC designs with direct memory
access (DMA) capability. The main features of
our framework are as follows:
• In order to attain gigabit-rate performance,
a special software module is introduced as
a part of the device driver of a GbE NIC.
This module extracts only header informa-
tion from received packets into a contigu-
ous kernel memory space, utilizing DMA
transfer from the NIC.

• This module can encapsulate a group of col-
lected header information into a UDP mes-
sage and forward it to remote PCs via a
network, as well as to the local PC. Because
of these capabilities, it is easy to intro-
duce load-balancing mechanisms. By using
this load-balancing mechanism, an Internet
monitoring system with gigabit-rate perfor-
mance is achieved with a few PCs.

The rest of this paper is organized as fol-
lows. Section 2 summarizes some related work
on packet collection. Section 3 enumerates some
design principles of our framework and presents
an overview and details of the design. Sec-
tion 4 describes a sample implementation of the
header collection system using the framework.
Section 5 gives some results of its performance
evaluation. Sections 6 and 7 consist of a discus-
sion and conclusions, respectively.
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2. Related Work

This section surveys existing frameworks for
packet or packet header collection using com-
modity hardware. We categorize them into the
following two approaches:

2.1 Approach with OS Functions
In order to realize a monitoring application at

the user-level, many operating systems (OSs)
contain some function applicable to user-level
packet collection. The application can inter-
act with NIC hardware and receive raw pack-
ets transferred over a network directly from the
NIC.
The BSD Packet Filter (BPF ) 2) is the best-

known framework for providing such a func-
tion. It is implemented as a kernel component
of BSD-based Unix OSs (e.g., FreeBSD and
NetBSD). Figure 1 shows an overview of BPF.
In this framework, each link-layer device driver
(e.g., a driver for Ethernet NICs) arranges the
network tap to call the BPF tap function. BPF
associates a filter and a pair of buffers in the
kernel with each application. The conditions of
a filter are given by each application via an ioctl
system call. One of these buffers, called the
Store Buffer, is used to receive packets from the
NIC. The other, called the Hold Buffer, is used
to copy the packets to the application. BPF
swaps these buffers when the Store Buffer is
full and the Hold Buffer is empty.
On the arrival of a new packet from a NIC, a

device driver first calls the tap function before
sending the packet up to the system protocol
stacks if there is any application listening on
this NIC via BPF. The tap feeds the packet to
the filter. Next, the tap copies a part of the
packet (or in some cases the whole packet) ac-
cepted by the filter to the Store Buffer. The
device driver then regains control. Since BPF
blocks the read system call from the applica-
tion while the Hold Buffer is empty or until
some buffering timeout has occurred, the appli-
cation can read several packets at a time. This
kernel buffering mechanism reduces the number
of expensive user-kernel interactions and extra
memory copies.
In SVR4-based Unix OSs (e.g., Solaris), such

a function (i.e., raw packet operation) is covered
by the Data Link Provider Interface (DLPI ) 3)

supported in link-layer device drivers based on
STREAMS 4). The Linux OS provides the
packet socket 5) mechanism for this purpose.
For the Win32 family of OSs (e.g., Windows

Fig. 1 Overview of BPF.

95, 98, NT, and 2000), a similar approach can
be used according to the Network Driver Inter-
face Specification (NDIS) 6). These frameworks
have the following features:
• Unlike BPF, these three mechanisms do
not provide kernel buffering by them-
selves. This may cause per-packet-based
user-kernel interactions and extra memory
copies.

• In DLPI and NDIS cases, it is possible to
introduce some additional kernel modules
sitting on top of a device driver to sup-
port kernel buffering. For example, the buf-
mod is provided in Solaris, and the Packet
Capture Driver has been developed as a
kernel-side component of the Windump 7)

system for the Win32 family. In these ap-
proaches, it is necessary for device drivers
to copy (or duplicate) the whole part of ev-
ery received packet in order to pass it up to
these modules in addition to system pro-
tocol stacks. This is because these mod-
ules should be scheduled independently of
the device driver’s context. Consequently,
some overheads may still remain.

To provide a uniform method for user-level
packet collection concealing OS-dependent in-
terfaces as described above, libpcap 8) has been
developed for a wide variety of UNIX OSs, and
is utilized in many monitoring applications such
as TCPdump 9).

2.2 Approach with Hardware Cus-
tomization

When 155Mbps OC3/ATM-based networks
appeared, the above approaches did not scale
for such a high rate at first, because the CPU
performance was insufficient. In order to collect
all packet headers without heavy CPU loads,
OC3MON 10) and its OC12 version OC12MON
were developed and ported to Unix (Coral
Reef 11)). Figure 2 shows overviews of them.
OC3MON adopts the following approaches to
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Fig. 2 Overview of OC3MON.

keep pace with the OC3 line rate.
• It uses an ATMNIC with an on-board CPU
for each direction. Unlike the above ap-
proaches, this ATM NIC is used only for
packet capturing.

• A special firmware running on NIC’s CPU
is introduced. It is customized to select the
first cell of an AAL5 PDU received from
an OC3/ATM line and forward it into a
contiguous kernel memory space in the host
with a timestamp. A cell accumulated in
the host memory is expected to contain a
TCP/IP header. This reduces the volume
of DMA transfer between the NIC and the
host.

• After a fixed number of cells have been
transferred, NIC’s CPU interrupts the host
CPU to inform the arrival of these cells.
This avoids the occurrence of frequent in-
terruptions, which tend to be a heavy load
on the host CPU.

3. Framework Design

In this section, we explain our framework
design for packet header collection aiming at
higher performance than the approach with OS
functions such as BPF without any hardware-
level customization.

3.1 Principles
We adopted the following design principles

for the framework:
( 1 ) The framework should be designed so

that it can be applied to various GbE
NICs including future products. In other
words, the NIC customization adopted
in OC3MON’s approach is not used, be-
cause this does not provide any scope for
choosing the NIC. This will make it pos-
sible in the future to use more powerful
NICs than those available today.

 

Fig. 3 Overview of proposed framework.

( 2 ) According to some research on analysis
of Internet backbone traffic 12),13), the
mean IP packet size is in the range be-
tween 384 and 512 bytes. Header collec-
tion should be realized at the full line
rate, even if the mean packet size is less
than 512 bytes.

( 3 ) The host CPU is required to handle
about 230,000 packets per second in each
direction if a GbE link is fully occu-
pied by 512-byte IP packets. At such
a packet rate, some optimized kernel-
buffering mechanism is indispensable in
order to save the CPU load.

( 4 ) The header collection may be so heavy
that there is no room for executing
other monitoring functions in the same
host. The header collection thus needs
to be executed independently of the other
monitoring functions. This means that it
is necessary for some function to forward
collected headers to other hosts. Obvi-
ously this header forwarding should be
provided without significant processing
overheads.

3.2 Overview
Figure 3 shows an overview of our frame-

work. In accordance with the above principles,
header collection is realized by a combination
of a 64-bit, 66-MHz PCI GbE NIC with DMA
(i.e., PCI Bus Master) capability and a cus-
tomized device driver. Although this NIC is
used only for the header collection on the re-
ceiving side, it is still possible to transmit a
packet normally.
The driver customization is applied to receive

side routines so that the first N -byte field of ev-
ery received packet can be extracted to the data
region of an OS-specific network buffer (e.g.,
mbuf 14) in BSD, sk buff 15) in Linux) contigu-
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ously. Here, the value of N is configured by a
user in 8-byte multiples according to the pur-
pose of the monitoring application. For exam-
ple, N = 56bytes is recommended for 40-byte
TCP/IP header collection if a 14-byte Ethernet
header is also transferred from the NIC.
This driver also provides capabilities of en-

capsulating a group of collected header infor-
mation into a UDP message and forwarding it
not only to the local host but also to remote
hosts via a network (forwarding network) sep-
arated from the network doing the monitoring
(monitoring network). The monitoring appli-
cations located on either local or remote hosts
can receive this aggregated header information
through the UDP/IP stack.

3.3 Details
3.3.1 NIC Requirements
With regard to the header collection, the re-

quirements for GbE NICs have been narrowed
down to just the following two items so that
this framework can be applied to various NIC
implementations.
( 1 ) Since our framework needs some modi-

fication of the NIC’s device driver, it is
mandatory that the driver source code
should be available.

( 2 ) The NIC must provide DMA capability
whose target host memory addresses can
be controlled by the device driver on a
per-packet basis.

Figure 4 shows an example of host-NIC in-
terface definition on the receiving side, which
satisfies the second requirement. As far as we
know, most GbE NICs use similar interfaces. In
Fig. 4, the device driver arranges several pairs
composed of a packet buffer (Buffer for short)
and its descriptor (Buffer Descriptor, BD for
short). A Buffer is a physically contiguous
memory space in which a whole packet (or oc-
casionally a part of a packet) is accommodated.
Ordinarily, the data region of an OS-specific
network buffer is used as a Buffer. A BD is
associated with a Buffer to maintain its param-
eters such as the Baddr and the Blen for DMA
transfer. These parameters indicate the phys-
ical address and the length of the associated
Buffer, respectively. A received packet is trans-
ferred from the NIC to the host according to
the following sequence:
( 1 ) The device driver arranges several

Buffer-BD pairs in advance. BDs are reg-
istered with the free BD queue, which is
accessible from the NIC via a PCI bus.

Fig. 4 Host-NIC interface example (receiving side).

Fig. 5 Chained BD queue structure.

The Baddr and the Blen fields in BDs
are set up to inform the NIC of the start-
ing address and the length limitation of
DMA transfer.

( 2 ) The NIC reads a BD from the free BD
queue to determine where and how long
a received packet can be transferred. On
arrival of a packet, the NIC consumes a
free BD and feeds the packet to a Buffer
associated with the BD. The Blen field
in the BD is updated according to the
packet length.

( 3 ) After this DMA transfer is completed,
the NIC moves the BD from the free BD
queue to the receive BD queue. Then
the NIC generates a receive interrupt di-
rected to the host so that the Buffer-
BD pair will be processed in the device
driver.

It should be noted that some NIC implemen-
tations adopt the chained BD queue structure,
in which several BDs constitute a single linked
list, as shown in Fig. 5. Although the free BD
queue is merged into the receive BD queue in
this structure, the host and the NIC can distin-
guish both queues using the Own flag arranged
in each BD. Thus we consider this structure to
be identical in nature with the one illustrated
in Fig. 4.
On the other hand, there is no requirement

for NICs with regard to the header forwarding.
Even the use of GbE NICs is not necessarily as-
sumed because the header forwarding rate may
be lower than the gigabit rate.
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Fig. 6 Header extraction mechanism.

3.3.2 Header Extraction
Figure 6 shows how packet headers can be

collected without any extra memory-to-memory
copies on the host. Our framework adopts the
following methods to extract multiple headers
contiguously to a Buffer:
( 1 ) The device driver arranges several large

Buffers. Each Buffer is associated with
multiple BDs in advance so that multi-
ple packets can be DMA-transferred into
a common Buffer. We assume that the
number of BDs per Buffer is m in the
following description.

( 2 ) The Baddr field of each BD is configured
with some gap. That is, let i (1 ≤ i ≤
m), Baddri, and Baddrstart be the order
of BD, the Baddr of the ith BD, and the
start address of the Buffer, respectively.
The value of Baddri is determined as fol-
lows:

Baddr1=Baddrstart+H+C
Baddri=Baddri−1+N+C (i≥2),

where N and C indicate the length of
header information (see Section 3.2) and
that of the control field (if any) located
just before the header information, re-
spectively. H is determined on the basis
of the length of the UDP/IP/Ethernet
header adding in the header forwarding
(see Section 3.3.3).

( 3 ) On the other hand, every Blen field is
filled with a fixed value, which is suf-
ficiently large for the associated BD to
accommodate a whole Ethernet frame
(i.e., an IP packet with Ethernet header).
For example, a Blen field must be equal
to or larger than 1514 bytes excluding
the 4-byte CRC field, if standard Eth-
ernet frames are used. The real Buffer
size Bsizereal must satisfy the following
equation:

Bsizereal ≥ m×(N+C)+H+Blen.

( 4 ) Along the sequence described in Sec-
tion 3.3.1 ( 2 ) and ( 3 ), a new packet is
DMA transferred from the NIC overlap-
ping with the previous one on a common
Buffer, except for the firstN plus C bytes
of the previous one. The latter C bytes
are reused for the control field of the new
one. As a result, the first N bytes of ev-
ery packet (i.e., packet header) are auto-
matically gathered in a contiguous mem-
ory space without CPU loads.

( 5 ) When a receive interrupt occurs, the de-
vice driver reads a BD from the receive
BD queue and coordinates the corre-
sponding control field. The contents of
the control field are specified according
to the target monitoring applications (see
Section 4). It should be noted that the
Ethernet header field is allowed to be
reused as the control field if the Ether-
net header is not a monitoring target.

( 6 ) After completing the above task for the
mth packet, the device driver feeds a
Buffer filled with collected headers up to
the IP layer according to the sequence
described in Section 3.3.3.

3.3.3 Header Forwarding
Before starting the header collection, the user

needs to decide the following parameters related
to the header forwarding.
• UDP port numbers (source and destina-
tion)

• IP addresses (source and destinations)
• IP packet size
Here, the UDP port number pair is common
to all the monitoring applications. The source
IP address is a dummy one which must be pre-
assigned for the header forwarding. The desti-
nation IP address must be set for every destina-
tion host regardless of whether the destination
is local or remote. The IP packet size should
be smaller than the MTU (maximum transfer
unit) size of the forwarding network. However,
in order to perform the header forwarding effi-
ciently, it is necessary to use a large IP packet
size (e.g., 4KB). Such a requirement is satis-
fied if forwarding packets are directed only to
the monitoring application in the local host, or
if jumbo frames 16) are supported on the for-
warding network. In both cases, the user must
set an adequate MTU size for all the NICs pre-
pared for the header collection and the header
forwarding.
In addition, it is recommended that the user
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Fig. 7 Header forwarding procedure.

creates static ARP (address resolution proto-
col) 17) entries for remote hosts in advance so
that the local host can output an IP packet
without an address resolution process which as-
sociates the IP address with an Ethernet ad-
dress according to ARP. It should be noted
that this static ARP entry creation is manda-
tory if the header forwarding is also executed
on the GbE NIC prepared for the header col-
lection. This is because the receiving side of
this NIC does not attach the forwarding net-
work and therefore cannot receive ARP reply
messages from this network.

Figure 7 illustrates the header forwarding
procedure. The header forwarding is realized
as follows:
( 1 ) The device driver allocates UDP/IP/

Ethernet header templates for the header
forwarding according to the number of
destination hosts. The contents of these
templates are configured in advance on
the basis of the above parameters, be-
cause the values of most header fields do
not need to be changed.

( 2 ) In a template, the IP checksum value
is set to a pre-calculated one to realize
IP checksum generation with minimum
overheads. On the other hand, the UDP
checksum value is set to 0 in order to
eliminate expensive UDP checksum ver-
ification performed by the UDP in the
destination hosts, as well as its genera-
tion performed by this forwarding proce-
dure.

( 3 ) When a Buffer has been filled with
collected headers as described in Sec-
tion 3.3.2, one of the above templates is
selected in turn, then the selected tem-
plate is adjusted and copied into the first
H bytes of the Buffer to be recognized as
a forwarding packet.

( 4 ) On the adjustment, the IP ID (Iden-
tification) value in the template is in-
cremented by 1 because the forwarding

Fig. 8 Control field format.

packets should have different IP IDs from
each other. As a result of this adjust-
ment, the IP checksum value must be
decremented by 1.

( 5 ) Finally, the forwarding packet is regis-
tered with an IP input queue as if a
normal UDP/IP packet had just arrived.
The packet is forwarded to an appropri-
ate destination by the IP.

4. Implementation

We have implemented a header collection sys-
tem based on the above framework as a sam-
ple system. The system was developed for
PCs with Linux 2.4 OS, because this provides
the most various GbE NIC options as regards
the condition enumerated in Section 3.3.1 (1).
There are two main components of the system:
the header collecting driver and the file record-
ing application.
The header collecting driver was developed

on the basis of the OS-bundled device driver
for the SysKonnect SK-NET GE family of GbE
NICs 18) with some customization according to
the description in Section 3. For the control
field format added to each collected header (see
Section 3.3.2 (5)), we specified the following 16-
byte fields, as shown in Fig. 8:
• rxtime: a 64-bit value for recording the
arrival time of the packet in nanoseconds.
The driver generates this value from either
the system time or the hardware timestamp
provided by the NIC. This hardware times-
tamp is a 32-bit value based on the 32,768-
kHz on-board clock 19).

• rsvd: a 16-bit reserved field for future use.
• caplen: a 16-bit value indicating the ex-
tracted data (i.e., header) length of the
packet.

• cksum: a 16-bit value proving the 16-bit
1’s complement checksum of the whole IP
packet calculated by the NIC. This field as-
sists monitoring applications to verify the
TCP/UDP checksum 20) of the packet. The
applications need only to subtract some IP
field values in the collected header from
this cksum value. If the calculated value
is equal to 0xFFFF, the corresponding
TCP/UDP checksum is correct.
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• len: a 16-bit value of the total packet
length including non-extracted data.

The driver also supports two additional types
of format in order to work together with ex-
isting monitoring applications. One is used for
libpcap-based applications such as TCPdump.
The other is used for our proprietary Internet
Performance Monitor 21) application.
On the other hand, the file recording program

is a user-level application that receives a UDP
message filled with collected headers from the
UDP/IP stack through the socket interface 22)

and stores it in file systems. This application
can be executed on either local or remote hosts.

5. Performance Evaluation

In order to evaluate the proposed framework,
we measured the performance of our header col-
lection system, using the configuration shown
in Fig. 9. We arranged two PCs (PC1 and
PC2 in Fig. 9) with 64-bit, 66-MHz PCI slots
as a platform of our system. Table 1 shows
the hardware specifications of these PCs. The
header collecting driver is introduced in PC1,
which receives packets on the monitoring net-
work via an optical splitter. PC2 is connected

              
                   

Fig. 9 Network configuration.

Table 1 Hardware specification.

PC1 PC2
Vendor Supermicro Dell
Chipset ServerWorks HE-SL
CPU Intel Pentium III Intel Pentium III

1GHz × 2 866MHz × 1
Memory 512MB 128MB
RAID system AMI Series 493 with ArenaII with

IBM DDYS-T36950 × 4 IBM DTLA-307075 ×4
NIC (collection) SysKonnect SK-9843 N/A
NIC (forwarding) Intel Pro/1000F

Table 2 System configuration.

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6
OS Linux 2.4.2 FreeBSD 4.2
Collection mechanism Proposed Packet socket BPF
Collection platform PC1
Application (AP) Proposed TCPdump with libpcap
File system (FS) RAID /dev/null RAID /dev/null
AP and FS location PC2 PC1

to PC1 through the forwarding network. The
file recording application is working on either
PC1 or PC2 in order to evaluate the effect of
the header forwarding to remote hosts. The
traffic on the monitoring network is emulated
by a commercial traffic tester (ANTARAnet
FLAME THROWER 23)), which can generate
test traffic at the full line rate of GbE in any
Ethernet frame size.
In each test, the traffic tester transmits about

10,000,000 Ethernet frames in one direction at
the full line rate of GbE. The Ethernet frame
size is fixed during a test and set to 64, 128,
256, 384, 512, 768, 1,024 or 1,518 bytes. The
first 40-byte fields of IP packets (i.e., exclud-
ing Ethernet headers) are collected using var-
ious system configurations, as shown in Ta-
ble 2, where TCPdump is adopted as an ex-
isting system for comparison with our proposed
system. TCPdump is executed with the “-w”
option by which the collected headers are sim-
ply stored in file systems, without being ana-
lyzed or displayed. In Confs. 4 and 6, null de-
vice (/dev/null) is used in order to avoid some
overheads of accessing real file systems for com-
parison with Conf. 1, where no file access occurs
in PC1. In addition, we increase the buffer size
of BPF or the socket to 4MB using the sysctl
command, so as not to drop the collected head-
ers. The MTU size assigned to every NIC is
4,124 bytes where 73 headers can be aggregated
in a forwarding packet.
As the performance indexes, we measured the

collection ratio and the CPU load. The former
indicates the ratio of the number of collected
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Fig. 10 Collection ratio.

packets to the number of transmitted packets
on the monitoring network. The latter is the
average value of CPU loads reported by the top
command every 1 second. Figures 10, 11, 12
show the results of the collection ratio, and the
CPU load observed on PC1 and PC2, respec-
tively.

6. Discussion

( 1 ) As shown in Fig. 10, the proposed header
collection system achieved higher per-
formance than existing TCPdump-based
systems. In Conf. 1, our system can col-
lect 100% of header information at the
full line rate of GbE in the case of 384-
byte and larger Ethernet frame sizes. In
Conf. 2, our system attains a 100% collec-
tion ratio when the frame size is equal to
or larger than 512 bytes. In contrast, ex-
isting systems using Linux (Confs. 3 and
4) drop some packets even in the case
of a 1,518-byte frame size. In FreeBSD
cases (Confs. 5 and 6), where BPF’s ker-
nel buffering is applied, the performance
is somewhat better than in the Linux
cases, but packet loss still remains when
784-byte (in Conf. 6) or 1,518-byte (in
Conf. 5) frames are collected. These re-
sults confirm that our framework is very
effective in improving the performance of
header collection and provides sufficient
capabilities for monitoring Internet back-
bones where the mean IP packet size is in
the approximate range between 384 and
512 bytes (see Section 3.1 ( 2 )).

( 2 ) Figure 11 shows that our framework can
also reduce the CPU load dramatically
as compared with existing frameworks.
For example, compared with Conf. 1 and
Conf. 6 in the case of a 384-byte frame,

Fig. 11 CPU load at PC1.

Fig. 12 CPU load at PC2 of Conf. 1.

our system collects 100% of headers with
a 28.2% CPU load in Conf. 1, while the
existing system collects 44.4% of headers
with an 81.7% CPU load in Conf. 6. In
the case of 1,024 bytes, where both con-
figurations can collect 100% of headers,
9.0% and 46.9% CPU loads are observed,
respectively. This improvement is very
significant, especially in the case where
a target monitoring application adopts
some sophisticated procedures. For ex-
ample, the Internet Performance Moni-
tor 21) performs real-time TCP behavior
analysis for collected headers. This real-
time analysis is considered to require a
lot of CPU power at gigabit rates.

( 3 ) According to Fig. 10, the header forward-
ing to a remote host (PC2) is effective
in improving the collection ratio at PC1.
For example, in the case of a 128-byte
frame size, the collection ratio observed
on PC1 (local host) is 56.9% in Conf. 1.
In Conf. 2, the value is 48.7%.
On the other hand, Figs. 11 and 12 show
that the CPU load at PC2 (remote host)
in Conf. 1 is always smaller than that at
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PC1 in Conf. 2 in spite of the lower CPU
performance in PC2. This implies that
the CPU load for the header collection
can be isolated from a monitoring appli-
cation, and that we can assign more CPU
power to the monitoring application by
use of the header forwarding to remote
hosts.
If further reduction of header collec-
tion overheads from a monitoring appli-
cation is required, it is possible to in-
troduce some mechanisms such as M-
VIA 24) where the forwarding packets can
bypass kernel-level operations such as
UDP processing and can be delivered
directly to user-level applications with-
out memory copies between user-space
and kernel-space. However, this is an
application-side matter, and is beyond
the scope of our framework.

( 4 ) With regard to the efficiency of PCI
bus and CPU utilization, our approach
is less optimized than OC3MON 10), be-
cause a whole packet is transferred via
PCI bus and some per-packet-based op-
erations are still remain in our approach,
while OC3MON avoids them (see Sec-
tion 2.2). However, we did not choose
OC3MON’s approach, and developed a
fully software-based approach for GbE
monitoring because of the following rea-
sons. First, as far as we know, there is
no commodity GbE NIC that provides
on-board programming facilities and suf-
ficient performance to receive small pack-
ets simultaneously. Second, it is ex-
pected that 64-bit, 66-MHz PCI provides
sufficient bandwidth for receiving whole
packets at a gigabit rate and forwarding
their headers. Moreover, advanced I/O
technologies such as PCI-X 25) or Infini-
Band 26) are ready or will soon appear:
for example, some commodity GbE NICs
support PCI-X. We therefore believe that
we should not limit the scope for NIC
choice.

( 5 ) At the header forwarding, our framework
design omits UDP checksum generation
and verification in view of its perfor-
mance penalty. Consequently, a forward-
ing packet filled with collected headers
may be corrupted. However, we believe
that there is very little possibility of the
forwarding packet being corrupted in our

system for the following reasons. First, if
a monitoring application is located on the
local host, the forwarding packet is ex-
changed within the same host. Thus, no
verification mechanism is required. Sec-
ond, in the case that monitoring applica-
tions are executed on the remote hosts,
we assume that the remote hosts are at-
tached to the same Ethernet segment.
Since Ethernet provides a 32-bit CRC
mechanism, the corruption of the for-
warding packets is detectable.
On the other hand, if a user requests
UDP checksum generation and verifica-
tion, we think that such calculations
should be performed in the NIC on a
hardware basis. This function is sup-
ported by most GbE NICs and several
Fast Ethernet NICs.

7. Conclusion

This paper has described a framework for
composing low-cost Internet monitoring sys-
tems that can handle gigabit-rate traffic with-
out any special hardware. In order to sup-
port gigabit-rate traffic, we propose a novel
framework for packet header collection that
can be applied to most commodity GbE NICs.
According to this framework, multiple packet
headers are automatically collected in a con-
tiguous kernel memory space utilizing an NIC’s
DMA transfer mechanism without any extra
memory copy on a host. The framework also
provides a capability for forwarding the col-
lected header information to other hosts via a
network, as well as the local one, which makes it
easy to introduce load-balancing mechanisms.
By means of this load-balancing mechanism,
an Internet monitoring system with gigabit-
rate performance is achieved using a few PCs.
The results of our performance evaluation show
that our first implementation can collect 100%
of header information even if a GbE link is
fully utilized by 384-byte packets, while existing
TCPdump systems can collect less than 50%,
although their CPU loads are more than twice
as heavy.
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