1808 IS 20 (P RIT AR M) 2H AL

TW-2

A Class of Logic Functions
Expressible by a Polynomial-Size Binary Decision Diagram
Nagisa ISHIURA, Tetsuya TOHDO and Shuzo YAJIMA
Kyoto University

1. Introduction

Binary Decision Diagram (BDD) [1] is an
expression form of logic functions. Besides the
existence of a unique canonical form for each logic
function, many practical functions can be
expressed by a BDD of feasible size. It is easily
shown that the size of a BDD to express a logic
function is in the worst case exponential to the
number of input variables, but there have been
very few discussions on the problem what kind of
logic functions are expressed by a BDD of feasible
size. In order to make this point clear, in this
paper, we define a class of logic functions which is
expressible by a BDD whose size is bounded by a
polynomial of the number of input variables, and
we investigate the properties of the logic functions
of this class. Especially we focus on relations
between BDD’s and Turing machines.

2. Family of Binary Decision Diagrams
2.1 Binary Decision Diagram (BDD)

We define a binary decision diagram (BDD) as
follows.

Def 2.1 A binary decision diagram B is a 7-tuple B
= (V,R,N, n0,1, e0, el), where

V is an ordered set of variables,

R is a domain (R ={0, 1} in this paper),

N is a set of nodes,

nO€N is an initial node,

I: N—(VUR) represents a label of a node,

e0, el: N—(NU{nil}) represents a 0-edge and a
1-edge of a node, respectively, where

VnéN s.t. l(n)€R eO(n)=el(n)=nil,

VnéN s.t. (n)EV U(eO(n))€R \/ l(eO(n))<I(n)

Nl(el(n))€R v/ lel(n))<Un). O

The size of a BDD B, denoted as size(B), is
defined as the number of nodes. Namely, size(B)
= INi, where INI is size of the set N.

Let A be a set of assignments for V, where an

assignment a for V is a mapping a: V—{0, 1}. We
define a mapping t: A—((NUR)—(NUR)) and fB:

SERXY 1 XOZHRER T RRAJEEL FRIELA
NI 72

AR, RERT, XBF=
RRAFIFRERIFHE

A—R as follows.
tg(n) = if (n)€ER then n
else if a(l(n)) =0 then e0(n) else el(n),
fela) = U(t,'V'(n0)),
where t,1 =1, and t,;m =t,m—1lot,,

Def 2.2 We define fp as a logic function expressed
by a BDD B. O

2.2 BDD Family and Its Uniformity

In order to discuss the size of BDD’s with
respect to the number of input variables, we define
families of BDD’s:.

Def 2.3 A BDD family {B;} is a sequence of BDD’s
B,, By, Bs, -, where {V;l=i holds for every B; =
(Vi, Ri, Ni, n0;, 1, e0;, el;). O

Let {f; | fi: {0, 1}i—{0, 1}} be a sequence of logic
functions. We can consider that {f;} expresses a
language L over {0, 1} by the following
correspondense:

bibg--bn€L iff f (b3, by, -+, bp)=1.

Similarly we define a language for a BDD family.

Def 2.4 A language accepted by a BDD family {B;}

is denoted as L{p} and defined as folows.
b1bo---bn€Lp, iff fp (a)=1,

where a is an assignment for V and a(v;) =b; (v;i€V

and b;€ {0, 1}). O

In this paper, we discuss correspondense
between BDD families and Turing machines. For
this purpose we define uniformity of a BDD family
following after the uniformity of a combinational
circuit family [2].

Def 2.5 A BDD family {B;} is uniform if the
description of the n-th BDD B, can be generated
from a binary description of n by an O(log size(B;))
space bounded off-line Turing machine. O

As a class of languages accepted by a feasible
size of a BDD family, we define a class of PolyBDD.

Def 2.6 PolyBDD is a class of languages accepted
by a uniform BDD family {B;}, which satisfies
size(Bp)= poly(n), where poly(n) is an arbitrary
polynomial of n. O



1809

3. PolyBDD and Log-Space Automata (LSA)
3.1 Equivalent Class of PolyBDD

We will refer a one-way off-line Turing
machine with O(log n) bounded working tape as a
log space automata (LSA). We define an abstract
machine referred to as a log space input-size-look-
ahead automata (LSIA). LSIA is an LSA with the
ability to know the length of an input sequence
without scanning an input sequence. The length
of an input sequence is given as an initial value on
a working tape.

Def 3.1 LOGREG and LOGIREG are classes of
languages which can be accepted by a LSA and a
LSIA, respectively. O

The main result of this paper is that a class
PolyBDD is equivalent to LOGIREG.

Th 1 PolyBDD=LOGIREG
[Proof Schetch]

(LOGIREGCPolyBDD): Since an LSIA has
only log n memory, all the states of an LSIA can be
represented by p nodes where p= poly(n). Then
using pXn nodes we can construct a state
transition diagram with no loop, which is the very
n-th BDD. Since transiticns are computable by an
O(log n) space bounded Turing machine, the BDD
family is uniform.

(PolyBDDCLOGIREG): Using an O(log n)
working tape, LSIA can simulate the O(log n)
space bounded Turing machine to generate
uniform BDD. So LSIA can compute the next node
of a node for a given assigrment. Since the
number of nodes in a BDD is bounded by a
polynomial of n, O(log n) space is enough to reach
final node from initial node n0. [

3.2 Properties of PolyBDD

We can lead the following properties of
PolyBDD directly from the properties of LSIA.

(1) {0n1n} belongs to PolyBDD.
(2) {wwlw€ {0, 1}*} does not belong to PolyBDD.
(3) Symmetric functions belong to PolyBDD.

(4) Threshould functions belong to PolyBDD if
the magnitude of each weight is bounded by a
polynomial of n.

(5) {wo | lwi=Tloglwoll, int(w)=weight(a)}
and {wo | lwi=Tloglwecll, ollw!+int(w)]=1}
belongs to PolyBDD (=LOGIREG) but not to
LOGREG. Here, int(w) is an integer value of a
binary representation w, weight(c) is a number of
1’s in the sequence o, and ofk] is the k-th alphabet

of 0. This property shows that LOGREG is truely
included by PolyBDD.

Prop 3.1 LOGREG CPolyBDD. O

4. Relation between Other Classes

We also investigated the relation between
PolyBDD and other classes of logic functions. Fig.
1 is a summary of the results. REG and LOGCFL
are the classes of languages which can be accepted
by a finite automata and a push-down automata
with O(log n) bounded work tape, respectively.
NCk is a class of logic functions which can be
expressed by a (log n)k-depth combinational circuit
using gates with fan-in restriction [3].

As for the relation between PolyBDD and NCI1,
there exist a logic fanction family which belongs to
NC1! but not to PolyBDD, but we have not yet
obtainea further results. Since PolyBDD is at
least included by NC2, we can synthsize a
combinational circuit of (log n)2-depth from a
polynomial size BDD.

NC2

|
LOGCFL

\

NET PolyBDD = LOGIREG

!
LOGREG

/
REG

Fig.1 Relations among classes.

5. Conclusion

We have defined a class of logic functions
expressible by a polynomial-size BDD, and have
investigated its property. To clarify the relation
between polyBDD and NC1 remains as a future
work.

Acknowledgments

Authors would like to express their sincere
appreciation to Prof. K. Iwama, Prof. H. Yasuura,
Mr. Y. Okabe, Mr. S. Hirose and all the members
of Yajima Lab. at Kyoto University for their
discussions and valuable comments.

References

[1] R.E. Bryant: "Graph-based algorithms for
Boolean function manipulation”, IEEE Trans.
Comput., vol. C-35, no. 8, pp. 677~691 (1986).

[2] Ruzzo: "On uniform circuit complexity”,
JCSS 22, pp. 365~383 (1981).

[3] S. A. Cook: “Taxonomy of problems with
fast parallel algorithms”, Information and Control
64, pp. 2~22 (1985).



