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An MEG Data Analysis System Using Grid Technology
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Recently, the lack of computational power for analyzing scientific data, and the distribution
of knowledge (by scientists) and technologies (for advanced scientific devices) are two major
problems which are common in every scientific field. Emerging grid technology provides a
new computational platform for a variety of scientific problems. MEG (magnetoencephalog-
raphy) data analysis is an important research topic in brain science. In MEG data analysis,
the lack of computational power and the distribution of knowledge and technologies lead to
inefficient diagnoses and analyses of brain functions. In this research, we have built an MEG
data analysis system on a grid environment, simulated with Globus grid toolkit, which is an
implementation of grid technology. In this system, we attempted to reduce analysis time and
to seamlessly integrate computational resources. Our evaluation results show that the system
was highly efficient in reducing analysis time. Furthermore, we succeeded in integrating com-
puters on our grid environment to seamlessly transfer data between each other. We believe
that grid technology is effective and promising for real-life medical and scientific problems.

1. Introduction

Magnetoencephalography is a sophisticated
measurement device which dynamically cap-
tures neural activities inside the brain. Electri-
cal activity in the brain is caused by movements
of ions inside and outside cellular membranes1),
and these electrical currents give rise to mag-
netic fields. MEG has the ability to measure
the strength of the magnetic field generated by
these neural activities. The MEG measurement
is performed at multiple points around a head.

The most prominent features of MEG over
traditional measurement devices like electroen-
cephalography (EEG) and electrocorticography
(ECoG) are non-invasiveness and a high degree
of measurement accuracy. Traditionally, these
two features had a trade-off relationship. In
fact, the measurement with ECoG is intrusive
in spite of achieving a high degree of measure-
ment accuracy. This point is one reason why
MEG is promising in brain science.

However, the small number of available
MEGs poses a serious problem. Presently, only
tens of MEGs exist in the world in spite of their
prominent capability. One of the main reasons
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for this lack of worldwide MEGs is the high cost
for purchase and maintenance. Unfortunately,
many brain scientists need to go to a remote
hospital or scientific institute where an MEG is
located.

The amount of MEG data poses another se-
rious problem. In the case of a one hour
measurement with a 64-sensor MEG, the data
amount reaches 0.9GB. For clinical purposes,
an MEG measurement longer than an hour is
often performed. As it is difficult for even a
specialist to understand the meaning of com-
plex MEG data at a glance, a variety of signal
processing techniques are used for MEG data
analysis. Such techniques are categorized as a
type of computationally-intensive problem. A
great amount of time is required to adequately
analyze a large amount of MEG data with
a computationally-intensive signal processing
technique, despite the fact that early treatment
is effective for brain diseases.

Consequently, in order to support advances
in brain science, we have to solve the following
two issues:
( 1 ) Seamless integration of computational

resources
( 2 ) Fast analysis of MEG data

Today, a diversity of resources are connected
to the Internet. However, in order to use these
resources, we need to identify ourselves several
times with credentials like passwords. This sit-
uation prevents seamless transfer of data, which
results in inefficient diagnoses and analyses. In
this research, we aim to realize seamless inte-
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gration of the authentication process and the
seamless transfer of data with a grid technol-
ogy.

Furthermore, our aim is to gain enough com-
putational power to analyze a large amount of
MEG data with our analysis method, a wavelet
cross-correlation analysis. In order to make full
use of computational power, efficient parallel
processing for wavelet cross-correlation analy-
sis is also considered.

This paper is organized as follows. In Sec-
tion 2, wavelet cross-correlation analysis is ex-
plained. In Section 3, the MEG data analysis
system which has been built with grid technol-
ogy is described. In Section 4, the system is
evaluated. Section 5 concludes this paper.

2. Wavelet Cross-correlation Analysis

In this research, wavelet cross-correlation
analysis2) has been adopted as a signal pro-
cessing technique. This analysis has the ca-
pability of investigating frequency components
contained in MEG data without losing original
time information. This feature is suitable for
the analysis of non-stationary data like MEG
data.

Wavelet cross-correlation analysis is com-
posed of two types of analyses. One is wavelet
analysis, and the other is cross-correlation anal-
ysis. First, wavelet analysis investigates fre-
quency components contained in MEG data.
Next, cross-correlation analysis quantifies the
result of wavelet analysis.
Figure 1 illustrates the overview of wavelet

cross-correlation analysis. Wavelet analysis is
performed for MEG data acquired from a single
sensor. The wavelet analysis is performed based
on the following Eqs. (1)–(3).

Wf(a, b) =
∫ ∞

−∞
ga,b(t)f(t)dt (1)

ga,b(t) =
1√
a
g(

t − b

a
) (2)

g(t) = e−
t2
2 (ejΩt − e−

Ω2
2 ),Ω = 2π (3)

The function f(t) represents MEG data ac-
quired from a single sensor. The function
g(t) is a Gaussian basis which is a kind of
mother wavelets (analyzing wavelets). The up-
per images in Fig. 1 are the visualized results of
wavelet analysis. These images allow doctors to
intuitively understand a frequency distribution
map of the corresponding MEG data.

Cross-correlation analysis is performed for

Fig. 1 Overview of wavelet cross-correlation analysis.

Fig. 2 The concept of MEG data analysis (The figure
of MEG is cited from http://www.ctf.com.).

Fig. 3 Physical computational environment.

each pair of the results of wavelet analysis. This
analysis is performed based on the Eq. (4).

WC1,2(a, τ) =

lim
T→∞

1
2T

∫ T

−T

Wf1(b, a)Wf2(b + τ, a)db

(4)
Wf1 and Wf2 are the results of wavelet anal-
ysis. This analysis provides information on the
correlation of frequency distribution between
the corresponding two sensors. The bottom im-
age in Fig. 1 is the visualized result of cross-
correlation analysis. This image indicates that
a brain signal with a frequency f ′ component
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is detected in sensor B earlier than in sensor A.
This is the reason why this analysis can localize
the source of a brain signal.

However, the space of wavelet cross-
correlation analysis becomes large because of
the existence of many program parameters and
the large amount of data. Accordingly, the
wavelet cross-correlation analysis is used as fol-
lows. First, doctors select the temporal region
of the MEG data which contains a brain sig-
nal of interest to them. Next, using wavelet
analysis, doctors investigate if the MEG data
contains the frequency component of interest.
Next, using cross-correlation analysis, doctors
investigate the correlations in frequency compo-
nents contained in MEG data among all pairs
of sensors. Finally, they investigate the time-
lag of the signal’s emergence and localize the
source of the signal.

The computational workload for wavelet
cross-correlation analysis increases intensively
with the increase of MEG sensors. The use of
a 64-sensor MEG is assumed in this research.
In this case, then, cross-correlation analysis
should be ideally performed 2,016 times. Re-
cently, the number of MEG sensors tends to in-
crease. The MEG with more than 200 sensors
exists. In the case of a 200-sensor MEG, a cross-
correlation analysis should be ideally performed
19,900 times. In this research, we distribute the
computational workload for this analysis in or-
der to reduce the analysis time.

3. System

3.1 System Concept
Figure 2 illustrates the concept of the MEG

data analysis system. This concept envisages
the seamless integration of an MEG (brain
database), high performance computers such as
supercomputers and cluster systems, and a real-
time rendering system on the Internet.

Our concept can integrate not only physical
resources but also processes of MEG data anal-
ysis. MEG data analysis is composed of a data
acquisition process, a data analysis process and
an implementation process of analysis results.
Presently, these processes are rarely performed
in the same place. This situation leads to dif-
ficulties in obtaining the final results of analy-
sis and diagnosis within a realistically efficient
amount of time. This inefficiency may be fun-
damentally caused by the fact that MEG data
is often used with a magnetic storage like an
optical disk, hand to hand. In the concept,

Fig. 4 The grid architecture in our system.

the seamless sharing of MEG data is achieved
through the three processes of acquisition, anal-
ysis and implementation of analysis results.

Furthermore, our concept has the potential to
dramatically reduce the analysis of MEG data.
We plan to integrate high-performance comput-
ers which are in low load status on the Internet.
By making full use of such computers, we hope
to gain enough computational power to analyze
a large amount of MEG data.

In sum, our concept aims to achieve a seam-
less and efficient data mining method for MEG
data analysis on the Internet. Our concept
would dramatically improve the efficiency of
MEG data analysis.
3.2 Implementation
In this paper, we describe the MEG data

analysis system built on our concept. The sys-
tem has been realized on the LAN at Cyberme-
dia Center, in Osaka University. Our physical
computational environment is shown in Fig. 3.
In an initial stage of development, the num-
ber of computational resources available for our
research was limited due to an administrative
problem; hence, the simulation of a grid envi-
ronment has been performed on eight comput-
ers.

The connection of MEG to a public network
is, at present, difficult to realize in Japan. This
difficulty involves a security problem regarding
the patients’ privacy. Also, certain Japanese
conventions in the medical area may prevent
this work. Thus, we have assumed that MEG
data are already stored in the visualization
computer.

A cluster system which is composed of seven
computers B–H in Fig. 3. The cluster system
has been used as a computational engine. In
this research, the visualization computer and
the cluster system are assumed to be in differ-
ent organizations such as clinics, hospitals, and
scientific institutions.

In the system, the Globus grid toolkit3) has
been adopted as a building block for construct-
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ing the grid environment. First, in Fig. 4, a
grid architecture in our system is presented.
Next, a task distribution mechanism of wavelet
cross-correlation analysis on the grid architec-
ture is explained.
3.2.1 Grid Architecture
The Globus grid toolkit is the middleware

that embodies the concept of “grid” comput-
ing3). Generally, a grid refers to recent, ad-
vanced technology that allows scientists to eas-
ily integrate a diversity of computational re-
sources geographically distributed on the Inter-
net. These resources include supercomputers
and scientific instruments such as the MEG. In
other words, we can easily gain far more com-
putational power through the use of grid tech-
nology than through the use of traditional par-
allel computing technology. Also, the remote-
control of scientific instruments is possible using
a grid.

In order to allow end-users without special
knowledge on the Internet technology to easily
use globus, globus provides multiple complex
services essential for widely distributed paral-
lel computing on the Internet. Examples of
these services include communication, security,
and information management, to name a few.
These services are extremely difficult to imple-
ment in the Internet. This difficulty is easy
to understand if you imagine there are many
different administrative policies on the Inter-
net. However, globus has a design strategy
that offers users uniform and integrated meth-
ods to access these resources in an API (Appli-
cation Programming Interface)-based manner.
Accordingly, we can build a parallelized appli-
cation over organizations such as clinics, hos-
pitals and scientific institutions on the Internet
with relative ease.

In the system, to develop MEG data analysis
easily, MPICH-G4) has been adopted. MPICH-
G is a grid-enabled version of MPICH, which
is an implementation of MPI (Message Passing
Interface) specification for a standard library of
message passing that was originally defined by
the MPI Forum5). MPICH-G enables users to
easily access globus services via MPI APIs to
develop grid applications.

Figure 4 illustrates the grid architecture
which our system has adopted. This grid ar-
chitecture enables application developers to de-
velop grid applications without globus APIs,
by using familiar MPI APIs. Furthermore, the
best feature of this architecture is that appli-

cation developers can reuse existing MPI pro-
grams on grid environments without modifying
them.

To simulate a grid environment on the LAN,
we have installed the Globus grid toolkit and
the MPICH-G into computer A and computer
B. For computer B, MPICH also has been in-
stalled. For computers C–H, only MPICH has
been installed. Under this environment, com-
puter A and the group of computers B–H can
be placed in different domains.

In short, we have built an MEG data analy-
sis system based on this grid architecture. In
the next section, we will describe a task distri-
bution mechanism pertaining to wavelet cross-
correlation analysis on our grid environment.
3.2.2 Task Distribution Mechanism
In order to consider an efficient parallel pro-

cessing method for the wavelet cross-correlation
analysis, investigating how the wavelet cross-
correlation analysis is used and the most effi-
cient way to use it is necessary. After under-
standing the computing requirements regarding
wavelet cross-correlation analysis, we need to
design a task distribution mechanism so as to
explore the space of wavelet cross-correlation
analysis.

In wavelet cross-correlation analysis, the
wavelet analysis needs to be repeatedly per-
formed. In general, brain signals that are of
interest to doctors, such as epileptic wave sig-
nals, last for 4 to 10 seconds and such signals
appear many times. Furthermore, the emer-
gence of such signals is non-stationary. Doc-
tors need to find the data regions which contain
such signals in a large MEG data space. To
do this, doctors often perform wavelet analysis
many times, finding arbitrary temporal regions
of MEG data. This work is time and labor -
consuming. Thus, quickly finding the pertinent
brain signals is an important key to success in
diagnosing various brain diseases.

Doctors and scientists use this wavelet anal-
ysis to find brain signals by focusing on two
different regions in MEG data space. The two
regions are as follows (Fig. 5).
( 1 ) The region along the temporal axis
( 2 ) The region along the spatial axis

The first region is used where the source of
the brain signal is, to some degree, localized by
a medical test performed in advance. In this
case, the doctors’ main concern is how the fre-
quency components in the MEG data vary over
time, since doctors want to precisely localize
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Fig. 5 Two regions of interest to doctors in the MEG
data space.

 

 

Fig. 6 A parallel processing method which focuses on
the region along the temporal axis.

the source of brain signals by comparing them
among sensors. Hence, long MEG data such as
60 second data, which are acquired from only a
few sensors around the source are analyzed.

The second region is used when doctors have
no information on the source of the brain sig-
nal which interests them. In this case, in order
to observe which MEG data contains the fre-
quency components of the brain signal, doctors
need to investigate the MEG data from all sen-
sors. Here, short MEG data ranging from 1 to 4
seconds acquired from all sensors are analyzed.

In our system, two types of parallel process-
ing methods for wavelet analysis have been im-
plemented on our grid environment, based on
the previously described doctors’ needs. For
problems focusing on the region along the tem-
poral axis in the MEG data space, the work-
load of wavelet analysis itself is distributed to
computers B–H. In other words, the Eq. (1) is
computed in parallel.
Figure 6 shows the parallel processing

method which focuses on the region along the
temporal axis. This wavelet analysis result pro-
vides a 2-dimensional time-frequency map for a
single MEG data. Each row shows the result

Fig. 7 Overview of task distribution mechanism.

of a convolution operation between MEG data
f(t) and a Gaussian basis ga,b(t) with a certain
frequency response. The convolution operation
for each row can be easily performed in paral-
lel. Our system has utilized this computational
locality to distribute the workload for a single
wavelet analysis.

For the region along the spatial axis, the dis-
tribution method is simple. In this case, as
MEG data acquired from all sensors are an-
alyzed, we distribute these multiple tasks of
wavelet analysis to computers B–H. In our sys-
tem, 64 data at most are simultaneously inves-
tigated with wavelet analysis.

After wavelet analysis, cross-correlation anal-
ysis is performed for each pair of the wavelet
analysis results. When a 64-sensor MEG is
used, the number of such pairs reaches 2,016.
In our system, this computational workload for
2,016 pairs of MEG data at most is distributed
between computers B–H.

These three different parallel processing
methods for wavelet cross-correlation analysis
have been realized in an identical task distribu-
tion mechanism. Figure 7 diagrams the task
distribution mechanism in our MEG data anal-
ysis system.

The idea is simple and easy to understand.
First, MPICH-G processes are generated by
a user on computer A. Next, the user is re-
quired to identify him or herself with his or her
passphrase to the Grid Security Infrastracture
(GSI)6),7), which the Globus grid toolkit pro-
vides. We have utilized GSI to realize seam-
less integration of the authentication process in
making simultaneous use of multiple resources.
After the authentication, the MEG data on
computer A is transferred to computer B with
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Fig. 8 Data parallelism among MPICH-G processes.

MPI Send() and MPI Recv(), and then com-
puter B distributes the MEG data to comput-
ers C–H. The MEG data that will be wavelet-
transformed is transferred from computer A
to computer B. This transfer of data is per-
formed using globus services. After receiving
MEG data, a MPICH-G process on computer
B invokes MPICH processes on computers B–
H. These MPICH processes perform a compu-
tation of wavelet and cross-correlation analy-
sis in harness, according to the situation. Each
analysis which results on computer B–H is gath-
ered with an MPI Gather() and is then trans-
ferred to the visualization machine, or to com-
puter A. This task distribution mechanism is
applicable to the computational environment
which is composed of a visualization machine
and multiple high-performance computers such
as our cluster system, by simply creating differ-
ent groups of MPICH processes on such com-
puters in the same way.

At the time of writing this paper, in wavelet
cross-correlation analysis, the task distribu-
tion mechanism based on MPICH-G has been
mainly used for data parallelism. The MEG
data space is divided into the same number of
regions as the number of available clusters along
the temporal axis and each region is analyzed
on the corresponding cluster system.
Figure 8 shows that four clusters of comput-

ers are assumed to be used. The data trans-
fer to the corresponding cluster system is per-
formed at one time. Only MEG data parts
which is necessary for the one-time wavelet
analysis is transfered. After computation, the
results of the analysis are transferred back to
the visualization computer. This process is re-
peated until the analysis of the assigned data is
finished.

In addition, we plan to perform parameter
parallelism among MPICH-G processes in the
near future. Currently, for example, wavelet
cross-correlation analysis changes parameter
“a” in the Eq. (2) in 51 different ways. This set
of parameters “a” has been optimized for brain
data analysis in advanced research and controls
the frequency response of mother wavelet g(t)

from 1.0 to 50.0Hz. Nonetheless, an analysis
with more detailed resolution regarding param-
eter “a” is necessary for advanced brain science.

Brain data analysis requires the detailed in-
vestigation of analysis space. Data space and
parameter space make analysis space large. In
the future, we will also simultaneously perform
not only wavelet cross-correlation analysis but
also multiple brain data analysis methods like
ICA (Independent Component Analysis) using
grid technology.

4. Evaluation

As described in the Section 2, wavelet anal-
ysis is performed for analysis of frequency
changes in time scale. On the other hand, cross-
correlation analysis is used for the quantifica-
tion of the wavelet analysis results.

Based on the concept introduced in the sec-
tion 3, we will implement the MEG data analy-
sis system on an actual wide-area network like
the Internet. Figure 9 illustrates how a doc-
tor can analyze MEG data on the MEG data
analysis system. In the blueprint, a doctor
can obtain the result of wavelet analysis in a
user-interactive manner, by using a cluster of
high performance computers on the fast net-
work which connects his or her visualization
computer with the cluster. After that, if the
doctor would like to know the results in detail,
the doctor can use the cross-correlation analysis
to quantify the result in a batch manner. For
the cross-correlation analysis, the use of a num-
ber of high performance computers including a
supercomputer is assumed in the blueprint.

In this section, we evaluate the MEG data
analysis system from a comprehensive stand-
point, based on the viewpoint as described now.
For the purpose, the following two items are in-
vestigated:
( 1 ) Efficiency of the parallel computing using

grid technology.
( 2 ) The data transfer problems and issues.
Finally, we evaluate the effectiveness of our sys-
tem with grid technology from the viewpoint of
practical diagnosis.
4.1 A Performance Evaluation for

Wavelet Analysis
In the MEG data analysis system, two types

of parallel processing methods for wavelet anal-
ysis have been implemented. These parallel
processing methods are different in terms of the
number of MEG data that is analyzed. How-
ever, the purposes are the same, namely, the
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Fig. 9 The blueprint for practical diagnosis: a doc-
tor can simultaneously perform wavelet anal-
ysis and cross-correlation analysis in a batch-
processing manner and in a user-interactive
manner, respectively.

Fig. 10 The effect of our parallel processing method
which focuses on the region along the temporal
axis.

quick provision of the analysis results, so that
doctors can analyze frequency changes in time
scale in a user-interactive manner.
4.1.1 A Parallel Processing Method

Which Focuses on the Region
along Temporal Axis

Figure 10 shows the analysis time which
varies with the increase of MEG data length.
The data length is defined as the number of
sampling points in the figure. Graph (a) shows
the analysis time measured in the traditional
processing manner on computer B. The results
show that analysis time increases in proportion
to data length.

Graph (b) shows the effects of our paral-
lel processing method which focuses on the re-
gion along the temporal axis in the MEG data
space. The analysis time in the graph was
measured when wavelet analysis was performed
for MEG data with 5,000 sampling points (20-
second MEG data) acquired from two sensors.
The analysis time is the time from submitting
a computational request to computer A to ob-
taining the results on computer A from com-
puters B–H. The graph shows that the analysis
time decreases with the increase of processors.
In particular, the analysis time was reduced to
11.25 seconds when we used seven computers

Fig. 11 The effect of our parallel processing method
which focuses on the region along the spatial
axis.

Fig. 12 The effect of our parallel processing method
for cross-correlation analysis.

Fig. 13 The data transfer experiment over the network
between NAIST and Osaka University.

B–H from computer A for this parallel pro-
cessing method, by using the grid mechanism
shown in the Fig. 4 and the Fig. 7, compared
with the more than 60 seconds necessary when
only a single computer B was used. These re-
sults mean that an approximately 5.5-fold anal-
ysis was achieved with 7 computers as remote
computational resources and that our system
can realize near real-time analysis.
4.1.2 A Parallel Processing Method

Which Focuses on the Region
along the Spatial Axis

A parallel processing method focusing on
the region along the spatial axis in the MEG
data space distributes the workload for multi-
ple tasks of wavelet analysis. In order to eval-
uate the effect of this processing method, we
compared the analysis time in the traditional
batch-processing way with that in our parallel
processing method.

The graph (a) in Fig. 11 shows the result of
analysis time in the traditional computational
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method. The analysis time in the graph was
the time required from submitting a compu-
tational request to computer A to obtaining
the results. The horizontal axis indicates the
number of MEG data which should be simul-
taneously analyzed. The graph shows that the
analysis time doubles regardless of data length
when the number of MEG data simultaneously
analyzed doubles. It takes 56.45 seconds to an-
alyze a set of MEG data with 1,250 sampling
points acquired from eight sensors. From this
fact, we can guess that it would take approx-
imately 450 seconds (7.5 minutes) if 5-second
MEG data acquired from sixty-four sensors are
simultaneously analyzed.

Graph (b) shows that our parallel processing
method has the capability of analyzing multi-
ple MEG data in almost the same time as the
analysis time for a set of MEG data from two
sensors. The sudden jump-up when the num-
ber of MEG data reaches 16 can be explained by
the implementational reason that the computa-
tional workload is distributed to seven comput-
ers per pair of MEG data. The two graphs (a)
and (b) show that we can obtain the analysis
results of fourteen 5-second MEG data in 17.08
seconds, while 99.39 seconds is necessary to an-
alyze the MEG data with a single computer.
4.2 A Performance Evaluation for

Cross-correlation Analysis
Cross-correlation analysis, performed after

wavelet analysis is computationally-intensive.
In order to improve efficiency in the entire
wavelet cross-correlation analysis, quick pro-
vision of cross-correlation analysis is the key
to success. In this research, multiple tasks
of cross-correlation analysis are distributed to
multiple computers.

The left graph (a) in Fig. 12 shows analy-
sis time using traditional batch processing on
a single processor basis. The analysis time in-
creases on the order of n2 when the length of
MEG data is n. Also, as expected, the analysis
time increases in proportion to the number of
MEG data pairs to be analyzed.

In contrast, the right graph (b) shows analy-
sis time from submitting a computational re-
quest to computer A to obtaining the result
from computers B–H when our parallel pro-
cessing method was used on seven computers
B–H as remote computational resources. Here,
we obtained the analysis results of fifty cross-
correlation analyses for 250 sampling points,
or 1-second MEG data in 413.86 seconds (ap-

proximately 7 minutes), while 2,078.42 seconds
are required in the traditional batch process-
ing manner. We gained approximately a 5-fold
quicker analysis in comparison with traditional
batch-processing. It would be possible to ap-
ply our method to a wide-area network envi-
ronment.
4.3 Data Transfer Issues
In the preceding Sections 4.1 and 4.2, the

performance of the MEG data analysis system
which consists of eight computers using the grid
architecture as shown in Fig. 4 was evaluated.
The result showed that parallel computing us-
ing the remote cluster system is highly efficient.
However, before actually managing the system
on a wide-area network, we need to consider
several issues of data transfer.

Two major problems need to be considered in
building the MEG data analysis system on an
actual wide-area network such as the Internet:
( 1 ) network parameters
( 2 ) communication topology

Network parameters such as latency and
bandwidth become important factors for effi-
cient data analysis. In general, latency and
bandwidth in the wide-area network are larger
and narrower than in the LAN environment.
Unfortunately, these parameters are also diffi-
cult to predict.

Currently, our system transfers MEG data to
the cluster system in a peer-to-peer manner, us-
ing a mechanism shown in Fig. 8. The amount
of data which the system transfers to and from
the cluster system at one time is small.

For example, for the parallel processing
method which focuses on the region along the
temporal axis, the amount of input data reaches
nearly 120KB at most when a set of MEG data
with 15,000 sampling points (60-second MEG
data) acquired from two sensors is transferred.
On the other hand, for the parallel processing
method which focuses on the region along the
spatial axis, the amount of input data reaches
nearly 320KB when a set of MEG data with
1,250 sampling points acquired from 64 sensors
is transferred.

The amount of output data which is trans-
ferred from the cluster system varies widely ac-
cording to the type of parallel processing and
to the doctor’s request for analysis. If a set
of MEG data with 1,250 sampling points ac-
quired from eight sensors are analyzed with the
wavelet analysis on the cluster system at one
time as performed in the measurement test,
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and doctors want to see all of the results, then
the total amount of output data reaches nearly
510KB. However, if a doctor wants to see only
the final result of the wavelet cross-correlation
analysis for a set of MEG data acquired from
two sensors, the amount of data is just 408B.
This number obviously increases with the doc-
tors’ demand for data. However, in general and
under realistic conditions, only a 510KB data
output at most is required.

Approximately 510KB of data transfer im-
poses little overhead on the system’s perfor-
mance under a fast LAN environment. In our
evaluation test, the 510KB data transfer was
accomplished within nearly 60.0 milliseconds on
the LAN environment. This data transfer time
was much lower in comparison with the com-
putation time of 56.45 seconds as shown in the
previous Section 4.1.2.

In addition, we estimated the possibility of
building the MEG data analysis system on
an actual wide-area network by measuring the
data transfer timebetween the computer on the
LAN at Osaka University and the computer
on the LAN at the Nara Institute of Science
and Technology (NAIST) (Fig. 13). The slant
distance between NAIST and Osaka Univer-
sity reaches approximately 40Kilometers. For
the test, a Pentium III 866MHz computer at
NAIST and a Pentium III 500MHz computer
at Osaka University were used. These two com-
puters have been deployed with the grid archi-
tecture shown in the Fig. 4. In the measurement
test, two MPICH-G processes exchange a single
520KB message among two institutions one af-
ter the other. More specifically, the MPICH-G
process on the LAN at the Cybermedia Center
at Osaka University transfers the message with
MPI Send. The other process receives the mes-
sage and then transfer the same message back
immediately with MPI Recv. This test was re-
peated 100 times.

The result of the transfer test showed that a
round-trip of 520KB, which is a typical model
of the data communication required for the
wavelet cross-correlation analysis, takes an av-
erage of 3.2 seconds. Also, the result indicates
that the round-trip time of 520KB data is small
in comparison with the computation time of
56.45 seconds. However, we need to note that
the transfer time varied over time and that the
maximum time of each message data was 8.7
seconds. Although a long transfer time rarely
occurred, a long transfer time may result in the

lowering of a system’s performance. For this
problem, we will integrate the information ser-
vice provided by the Globus grid toolkit into the
system to predict the status of the network.

Finally, a communication topology needs to
be considered when building the system into
the Internet. As illustrated in the Fig. 9, we
will combine multiple high-performance com-
puters with the visualization computer. This
communication form affects the high workload
on the visualization computer because the vi-
sualization system needs to receive the result
data from multiple high-performance comput-
ers. For this problem, we will introduce a data
distribution method which takes the status of
the network into consideration by integrating
the information service provided by the Globus
grid toolkit.
4.4 The Effectiveness of Grid Technol-

ogy
So far, we have evaluated the performance

of grid computing on a grid simulated on the
LAN environment. We have also considered
data transfer problems and related issues. In
this section, we evaluate the effectiveness of the
system from the viewpoint of a practical anal-
ysis based on the evaluation results.

The evaluation in the preceding sections has
shown that the system achieving an approxi-
mately 5-fold quicker analysis on the grid en-
vironment in all cases of parallel processing
methods introduced in this paper. This im-
provement in performance is small due to the
number of computational resources available for
this measurement. Importantly, however, in
the results of the measurement, analysis time
is slashed by approximately one-fifth through
the use of only 7 computers as remote compu-
tational resources. In addition, the system has
the potential to gain higher performance if we
can make use of more computational resources.

MEG data analysis has the characteristic
that the amount of data to be transferred as
input and output is small and the amount of
computation time is large. This characteristic
allows doctors to analyze their patients’ data
with high efficiency. For example, a doctor can
perform the cross-correlation analysis of a pa-
tients’ MEG data in a batch manner, while the
doctor can perform the wavelet analysis of other
patients’ MEG data in a user-interactive man-
ner. In short, with multiple high-performance
computers integrated with grid technology, the
doctor can efficiently analyze his or her pa-
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tients’ MEG data without being aware of the
existence of remote computers.

For wavelet analysis, if four more clusters of
computers such as computers B–H connected
to the visualization computer with the fast net-
work are available, we would obtain the results
of wavelet analysis for a set of 5-second MEG
data acquired from 70 sensors within approxi-
mately 20 seconds. Also, it is possible to per-
form the wavelet analysis of the entire patient’s
MEG data in a batch manner and then ob-
serve all of the results after the computation.
For example, it would take 14,400 seconds (4
hours) for a doctor to analyze a set of 1-hour
MEG data acquired from 70 sensors in a batch-
processing manner, compared with 71,560 sec-
onds (20 days) in a traditional computing way.

Likewise, for cross-correlation analysis, if
nineteen more clusters like our cluster system
are available on the Internet with the Globus
grid toolkit, approximately 420 seconds (7 min-
utes) would be required to perform 2,000 pairs
of cross-correlation analysis for 5-second MEG
data. This computation time of 420 seconds
is much faster, when compared with the com-
putation time of approximately 83,140 seconds
(23 hours) performed in a traditional computa-
tional way.

In the current stage of development, it is im-
possible to realize the practical diagnosis and
analysis with the wavelet cross-correlation anal-
ysis due to the limited number of available com-
puters. Again, however, grid technology has
been developed in order to integrate a diversity
of heterogeneous high-performance computers
which are in low load status on the Internet.
Therefore, we can realize our blueprint in the
near future.

5. Conclusion

In this paper, the application of emerging
grid technology to MEG data analysis was de-
scribed. Specifically, a MEG data analysis sys-
tem has been built on a grid environment which
was simulated on the LAN at the Cybermedia
Center at Osaka University. The Globus grid
toolkit has been utilized as a grid technology
in the system. An efficient parallel process-
ing method for wavelet cross-correlation anal-
ysis was also considered.

Our evaluation shows that our system is
highly efficient in reducing analysis time for
wavelet cross-correlation analysis. In our simu-
lated grid environment, we also succeeded in in-

tegrating computational resources to seamlessly
transfer MEG data.

Through building the MEG data analysis sys-
tem, we arrived at the conviction that grid tech-
nology is effective and promising not only for
MEG data analysis, but also for other scientific
problems. We are planning to continue the re-
search pertaining to grid technology by building
an actual application system. We believe that
grid technology is essential in the further devel-
opment of various fields of science and medicine
and we hope that this research will become a
forerunner for these fields.
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