TR B 245 30 CRIR TR % 00) 2 E K 2 1215

4P-3

CPX — An Operating System Kemel for the CPC

Paul Spee *, Mitsuhisa Sato *, Norihiro Fukazawa *, Eiichi Goto * **

* Research Development Corporation of Japan (JRDC)
** Riken, Institute of Physical and Chemical Research, and
University of Tokyo, Department of Information Science

1. Introduction

This paper describes the basic structure and functionality of
the CPX kernel. The CPX kernel is a message passing,
object based kernel for the Cyclic Pipeline Computer (CPC),
a computer which implements a tightly coupled MIMD
multiprocessor architecture by timesharing the processor and
the main memory among a fixed number of instruction
streams.

2. Kernel functionality

The following goals were put forward in designing the CPX
kemnel:

. efficient use of the shared memory multiprocessor
structure of the CPC,

» portability to a wide range of (parallel) architectures, and
« extensibility at "user’ level.
2.1 Object oriented programming model

The CPX kernel is an object oriented kernel. It implements
several kernel defined object. Message passing is used to
implement the object oriented programming model. Sending
a message to an object represents an operation on that object.
Various object oriented operating systems have been
implemented. Most notably Hydra [WULF81], = StarOS
[JONESS87], Eden [BLACKS85] and most recently Mach.

2.2 Message passing primitives

In this section we describe the message passing primitives as
implemented in the kernel.

Communication channels

A communication channel designates the source and
destination of a message. The CPX kernel implements ports
as a communication channel. A ports allows for multiple
senders and a single receiver.

Port descriptors and capabilities

Port descriptors are handled analogous to the file descriptors
in UNIX. Each task has access to a number of ports through
port descriptors.

Associated with each port is the right to send messages to the

CPX - An Operating System Kemel for the CPC

Paul Spee *, Mitsuhisa Sato *, Norihiro Fukazawa *, Eiichi Goto * *#

* Research Development Corporation of Japan (JRDC)

Riken, Institute of Physical and Chemical Research, and University of
Tokyo, Department of Information Science

port and the right to receive messages from the port. We call
these rights the send and receive capabilities. A task may
pass the port capability to other tasks.

Send and receive primitives

The CPX kernel supports asynchronous message passing with
blocking/nonblocking send and receive. In case of blocking
sendfreceive, a time-out parameter can be specified.
Asynchronous message passing allows for a higher degree of
concurrency than synchronous message passing.

Messages

A message consists of a header and a collection of typed
values. The types are modeled after C and include basic
types such as void (ignore type), char, long, float etc.
Furthermore, it has composite types such as pointer to basic
type, range of basic type, array of basic type. A special type
is the capability type, which is used to pass port descriptors.
Reasons to implement typed messages are:

- Messages of different type can be treated differently by
the receiver.

« Representation of values can be converted when sending
messages between different machines (e.g. MC68000 and
VAX).

« The kernel can intercept messages with range types and
capability types.

3. Kernel structure

To hide the hardware from the rest of the operating system,
we define a virtual machine. The virtual machine consists of
the virtual processor (vp), the virtual space (vs) and cache.

The kernel implements virtual instructions, which can be seen
as extension of the processor instruction set, and operations
on kernel defined objects (virtual processor, virtual space, and
cache).

Virtual processor

The virtual processor is the virtualization of the real processor
and includes the registers, processor status, stack pointer, and
program counter. Its function is three fold:

» isolate nasty hardware details, such as interrupts, from the
rest of the kernel,

» extend ‘functionality’ of the hardware by providing virtual
instructions, and

« provide multi-programming, by providing a (fixed number
of virtual processors, which are scheduled using pre-
emptive scheduling.

1216

All operations related to ports and messages are implemented
as virtual instructions; that is, they are implemented as system
call wraps. All operations on kernel objects are implemented
as sending a message to the port representing that object.

instruction description

port_create create new port in virtual space
port_delete delete port

port_send send message

port_receive receive message

operation description

vp_create create new virtual processor
vp_delete delete virtual processor
vp_will_suspend vp is ready to be suspended
vp_wait suspend virtual processor
vp_resume resume virtual processor
Vs_create create new virtual space
vs_delete delete virtual space

vs_allocate allocate memory object in vs
vs_deallocate deallocate address range
cache_create create cache for memory object
cache_delete delete cache

Virtual space

Just like the virtual processor hides hardware details
concerning the processor, the virtual space hides the details of
the virtual memory implementation. The virtual space not
only provides the address space for the virtual processors, but
also holds the port capabilities created by or passed to that
virtual space.

Memory objects

CPX takes its implementation of the virtual memory system
from Mach [TEVANIANS87]. A memory object is an object
which represents an amount of data. Data can be read or
written by sending a read or write request to the memory
object. Memory objects are mapped onto the virtual space.

The kemel provides a default memory object which
represents zero filled memory. A default data manager
handles the default memory object. User provided memory
objects are managed by an user data manager. The purpose
of a data manager is to support paging.

Cache

The virtual memory is used as a very large cache for the
mapped memory objects. The function of the software cache
is similar to that of a hardware cache. The most recently
accessed pages are kept in the main memory. Other pages,
which are not required, can be paged out. To manage the
memory object and the cached pages, the virtual machine
implements a cache object, which represents the cached pages
(pages in physical memory) of the memory object. When a
page fault occurs, the kernel looks up the faulted page in the
cache object. If the page is not found, it sends a message to
the memory object, requesting the data.

4. User extensiblility

The port and the send/receive primitives provided by the
kernel are used to implement objects. How user objects are
implemented is not determined by the kernel, but is up to the
user. Each single object could be implemented using a
virtual processor. It also possible to implement an object
server, which provides the unit of execution for the instances
of the object type (super class) it defines.

By defining the kernel objects, the kernel does not constitute
an operating system. It provides the frame, wheels and motor,
but it does not provide a car. This allows us to implement
operating systems on top of the kernel with different
semantics. For example, the operating system could
implement the single-threaded UNIX process or the multi-
threaded Mach task.

The creation of a process could be defined as create new
virtual space, allocate text segment, allocate data segment,
create new virtual processor (including allocation of stack
segment).

5. Summary

In this paper we presented the CPX kemel which provides the
basic functionality for obtaining concurrency through
asynchronous message passing.

We summarize the goals as stated in section 2 and their
implementation.

- Allowing multiple virtual processors to execute in one
virtual space reduces the overhead caused by context
switching.

- Using the message passing model as concurrent
programming model allows implementation on a wide
range of parallel architectures.

« User extensibility is provided by the object oriented
model (supported by message passing).

References:

[BLACKS85]
Andrew P. Black, "Supporting Distributed Applications:
Experience with Eden", Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, Orcas
Island, Washington, 1-4 December 1985, pp. 181-193.

[JONES87]
Anita K. Jones, Robert J. Chansler Jr., Ivor Durham,
Karsten Schwans, and Steven R. Vegdahl, "StarOS, a
Multiprocessor Operating System for the Support of Task
Forces”, Proceedings of the 7th Symposium on Operating
System Principles, December 1987, pp. 117-127.

[TEVANIANSg7]
Avadis Tevanian, Jr., "Architecture-Independent Virtual
Memory Management for Parallel and Distributed
Environments: The Mach Approach”, 1987.

[WULF81}
William A. Wulf, Roy Levin, and Samual P. Harbison,
"HYDRA/C.mmp - An Experimental Computer System",
McGraw-Hill, 1981.

