1040 L

5391 CERRTE %) EE X R

Object Migration in Object-Oriented Databases

/M-4

Mohamed El-Sharkawi Yahiko Kambayashi

Faculty of Engineering, Kyushu University

1- Introduction

Record oriented data models are not adequate to
new applications of database systems. Object-
oriented data model is promising to be used in such
applications. In this paper, we study updates on
objects in object-oriented databases. Specifically, we
study the effect of updating an object on its position
in the class lattice. An update may affect the object
such that it no longer satisfies conditions of its
current class. We consider three types of updates on
objects: (1) Adding instance variables, (2) Dropping
instance variables, and (3) Modifying instance
variables. An update may cause object migration.
That is, the updated object may change its current
class. As the new class may be different from the
class before the update, some actions have to be
taken. Our objective is to provide a procedure to
automatically perform the migration. The idea is
explained through an example. Consider the
schema shown in Fig. 1. It models people in a

OBJECT

PERSON

STUDENT STAFF

TECH

PROF O

UNDERGRAD

TA
GOOD-GRAD

O

ASS-PROF FULL-PROF
Fig.1 An example schema

university. The schema is represented by a rooted
directed graph. Nodes represent classes in the
schema. An edge from class C; to class C; means
that Ci IS-A C;j. The root of the graph is 8 system
defined class called OBJECT. Suppose that
instances of class GOOD-GRAD students are
defined to be graduate students with total marks
exceeding certain value. From this, an update that
modifies this value may cause an object to migrate
from class GRAD to class GOOD-GRAD. Such
object migration has some side effects that should
be handled by the system. If class GOOD-GRAD has
some instance variables not defined in class GRAD,
values of these instance variables have to be
provided by a user, or considered null (which
sometimes may not be possible).

Now, we can see that, as an update causes object
migration the system has to take some actions.
With respect to each update causing migration, we
give a group of actions should be taken by the
system (or in cooperation with a user).

2- Basic Concepts
In object-oriented data model, entities in the real-
world are considered as objects. Properties of an
object are divided into two parts, its status and its
behavior. Status of the object is captured through
its instance variables. Object behavior 1s
encapsulated in a set of methods associated with the
object. A method is a code that manipulates the
object's status. To manipulate an object a message
should be sent to the object. Response to a message
is done by executing a method corresponding to the
message. Objects communicate via sending
messages. Objects having similar properties are
grouped together to constitute a class. All objects
belong to a class are its instances. Classes in the
system are organized in a class hierarchy. An edge
between two classes represents IS-A relationship
between the two classes. A class inherits all
properties of its immediate superclass. It may have
also its own properties. For data modeling it is
necessary to extend the class hierarchy into a class
lattice. A class may have several immediate
superclasses and it inherits all of their
properties.The class lattice, also the class
hierarchy, is rooted such that there is no dangling
nodes. The root node is a system defined class called
OBJECT. An instance variable gets its possible
values from instances of a class in the system. The
class domain is either one of system defined basic
classes or any other user defined class. Basic classes
include INTEGER, REAL, CHAR, and BOOLEAN.
An instance variable that gets its value from one of
the basic classes is called a basic instance variable,
otherwise it is called a complex instance variable.
Some instance variables may take any value in its
domain, some others, however, have restricted
range in which the value should exist. The range R;
of instance variable IV; is a predicate which may be
undefined, a simple predicate, or simple predicates
connected by AND/OR. A s1mp1e<predxcate is:
1 R1 =IV;(OP)K, 2-R; = IV; = Ky, where
and Ky are elements of b (the domain of IV3),
andbPisoneoftheset{=, <, E,>, 2 )

3- Object Migration Procedures

In this section, we study updates in object-oriented
databases. Objects are grouped into classes,
updating instance variables of an object may affect
the position of the object in the class lattice. We
study effects of three types of updates on objects'
positions: Adding some instance variables,
Dropping some instance variables, and Modifying
some instance variables. Updates may affect the
object's position in the lattice as follows:

(1) Adding instance variables: the object will
migrate to one of the subclasses of its current class.
(2) Dropping instance variables: the object will
migrate to an appropriate one of the superclasses of
its current class.

(3) Modifying instance variables: the object may
migrate to another class.

We state actions that should be taken by the system
as an update causes object migration. These actions
depend on the update type. For each type of update,
actions should be taken are given.



1041

3-1 Dropping instance variables

(1-a) The system has to check ‘that the dropped
instance variables of object O in class C; are:
all (not a subset of) unfixed non-inherited instance
variables. (A fixed instance variable does not
change its value due to object migration.)

We have the following three cases:

case 1-1: The dropped instance variables are non-
inherited and there is a unique immediate
superclass of C;.

(1-b) the object migrates into its immediate
superclass and if there is an instance variable IV;
defined for class C; of which O is an instance and IV;
overrides IVj of the superclass of Cj; after the
migration the value of IV; should be replaced by
value of IV; (the original instance variable). Same
action is also necessary in case of overridden
methods.

(1-c¢) Non-inherited methods should be dropped.
case 1-2: The dropped instance variables are non-
inherited and the class has several immediate
superclasses

(1-d) In this case, system has to consult the user in
order to determine the new class. For example, after
dropping non-inherited instance variables of an
object in class TA, the system has to consult the
user in order to determine if the object, after the
update, belongs to class STAFF or GOOD-GRAD.
The new class can be determined automatically if
there is some integrity constraint that prevents the
updated object to migrate into a specific superclass.
For example, the TA object after the update is no
longer a STAFF.
case 1-3: The dropped instance variables are the
non-inherited and those inherited from Cp, Cpisan
immediate superclass of C;. The object migrates to
class Cx, which is the immediate superclass of Cp,.

(1-e) Drop instance variables inherited from any
class Cp, Cp, is a subclass of C,, and a superclass of

1

(1-f) If C; has other immediate superclass which is
neither a super nor a subclass of C;, instance
variables inherited from this class has to be dropped
when migrating to Cx. Values of instance variables
inherited in Cyg should be provided or considered

null, The problem here, is that if C; has some fixed

instance variables inherited from a superclass
which is not in the path of C;j. The user has to be
informed with such case.

3-2 Adding instance variables

(2-a) The system has to ensure that the added
instance variables are one of those defined in one of
the subclasses of the current class. Otherwise, the
update is not correct.

(2-b) Value of any property which will be
overridden in the new class has to be modified.

(2-c) When instance variables are added to object
in class Cj and the new class is Cj such that C; has
several superclasses, values of all instance
variables defined in this set (except those of Cj)
have to be provided or assumed to be null valued.

3-3 Modification of instance variables

There are the following four cases:

case 3-1: The object's class before modification, Cj,

and the new one, Cj, have same immediate

superclasses. Following actions have to be taken:
(3-1-a) Unfixed non-inherited properties in class C;

have to be dropped from the object.

(3-1-b) Non-inherited instance variables defined in
class Cj have to be added to the object after the
update and their values should be provided or
considered to be null valued.

(8-1-c) All inherited properties that are overridden
in class C; (C;) and not so in class C; (Cj) have to be
modified in tflle object after the update.

(3-1-d) If C; has superclasses different from those of
C;, values of instance variables that are inherited
from these classes should be provided or considered
to be null valued.
case 3-2: The object's class before modification (Cj)
and the new one (Cj) have different immediate
superclass.

(3-2-a) All unfixed properties defined in class C;
will be dropped from the new object.

(3-2-b) All properties defined in class C; become
properties of the new object.
case 3-3: New class Cj is a superclass of the original
class C;. In this case, there are two possibilities, C;
has only one immediate superclass Cj and Cj has
several immediate superclasses. In the first case,
there are two situations; 1-when C; is the unique
immediate superclass of Cj, the foI]lowing actions
have to be done:

(8-3-a) Unfixed non-inherited properties have to be
dropped from the object after update.

(3-3-b) Overridden inherited properties defined in
class C; have to be modified in the new object.

The second situation when: 2- C; is not the
immediate superclass of Cj, actions (3-3-a) and (3-3-
b) have to be done in addition to the actions:

(3-3-¢) Properties inherited from any class Ci such
that Cy is a subclass (and superclass) of C; (C;) has
to be dropped.

(3-3-d) If C; has immediate superclass Cx which is
not a subclass of C;j, properties inherited from this
class has to be dropped. Same problem of fixed
instance variables inherited from a superclass
which is not in the path of C; will arise.

In the second case, when Cj has several immediate
superclasses,:

(3-3-e) All unfixed non-inherited properties
defined in C; and overridden properties originally
defined by a superclass Cix (Cx # C;j) have to be
dropped from the object after update.

(38-3-f) Values of instance variables defined in class
C; and overridden in class C; have to be modified in
the new object.
case 3-4: New class C;j is a subclass of the original
class Cj. There are two situations:
case 3-4-1: there is no class Ck such that Cy is a
superclass of C;, the following action will be taken:

(3-4-a) Properties defined in class Cj are added to
the object and values of overridden inherited
properties should be modified.
case 3-4-2: C; has superclasses other than Cj.

(3-4-b) is similar to (3-4-a).

(3-4-¢) Properties inherited will be defined and
values of inherited instance variables from these
classes must be provided or set to be null valued.

(3-4-d) All overridden inherited properties from
superclasses other than C; have to be defined in the
new object.

Using these steps system automatically performs
actions should be taken when objects are updated.

References
[1] ACM TOIS, Vol.5, No.1, Jan. 1987.
[2] Banerjee, J., et al. Proc. ACMSIGMOD, 1987.



