
Vol. 43 No. 2 IPSJ Journal Feb. 2002

Regular Paper

QoS-based Compensation of Multimedia Objects

Motokazu Yokoyama,† Katsuya Tanaka†

and Makoto Takizawa†

In distributed applications, not only the state but also quality of service (QoS) of a mul-
timedia object is manipulated. Like the state, the QoS has to be changed by performing a
method. In this paper, we discuss how methods can be undone by performing compensating
methods. Novel types of compensating methods are defined to obtain a state and QoS of the
objects that satisfy the requirements.

1. Introduction

In distributed multimedia applications, not
only the state but also the quality of ser-
vice (QoS) of a multimedia object is manipu-
lated. In manipulating the object, an applica-
tion might want to undo a previous manipula-
tion, such as one for interactively designing and
implementing action of an application. To take
another example, the object may be rolled back
because of some fault in it. Suppose that an
application changes a colored movie object to a
monochrome one after adding a red car. Here,
the movie object is monochrome. Next, sup-
pose the application wants to undo the work.
According to the traditional ways, the movie
object is rolled back to the previous one, that
is, the colored object without the car object. If
the application is not interested in how colorful
the movie object is, only the car object can be
removed while changing the color. We therefore
discuss a novel way to compensate for methods
performed on a multimedia object where the
QoS and the state of the object are changed so
as to satisfy the user’s requirements.
In Section 2, we discuss relations among

methods. In Section 3, we discuss compensa-
tion methods. In Section 4, we classify these
methods. In Section 5, we discuss how to com-
pensate for a sequence of methods.

2. QoS-Based Relations of Methods

An object-based system is composed of
classes and objects4). A class c is composed
of attributes A1, . . . , Am (m ≥ 0) andmethods.
An object o is created from the class c by giving
values to attributes. A collection 〈v1, . . . , vm〉

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

of values is a state of the object o, where each
vi is a value taken by Ai (i = 1, . . . ,m). A
class c can be composed of component classes
c1, . . . , cn in a part-of relation. Let ci(s) de-
note a projection of a state s of the class c to
a component class ci. A state of an object is
changed by performing a method op. Let op(s)
and [op(s)] respectively denote a state and re-
sponse obtained by performing a method op on
a state s of an object o. “op1 ◦ op2” shows a
serial computation of op1 and op2.
Applications obtain service for an object o

through methods. Each service is characterized
by a quality of service (QoS). A QoS value is a
tuple of values 〈v1, . . . , vm〉 where each vi is a
value of a parameter such as frame rate. A QoS
value q1 dominates q2 (q1 � q2) iff q1 shows
a better level of QoS than q2. For example,
〈160 × 120 [pixels], 1,024 [colors], 15 [fps]〉 �
〈120×100, 512, 15〉. q1 ∪ q2 shows a least upper
bound of q1 and q2 on �. Let Q(s) be a QoS
value of a state s of an object o. Q(op(s)) is
the QoS obtained through a method op. An
application requires an object o to support some
QoS, named requirement QoS (RoS).
Suppose a class c is composed of component

classes c1, . . . , cm (m ≥ 0). An application
specifies whether each component class ci is
mandatory or optional . The following relations
exist among a pair of states st and su of a class
c 5),6):
• st is state-equivalent to su (st − su) iff st =
su.

• st is semantically equivalent to su (st ≡ su)
iff st−su or ci(st)≡ ci(su) for every manda-
tory component class ci of c.

• st is QoS-equivalent to su (st ≈ su) iff st −
su or st and su are obtained by degrading
QoS of some state s of c, i.e., Q(st) ∪ Q(su)
� Q(s).

438

Vol. 43 No. 2 QoS-based Compensation of Multimedia Objects 439

• st is semantically QoS-equivalent to su (st

 su) iff st ≈ su or ci(st)
 ci(su) for every
mandatory component class ci of c.

• st is r-equivalent to su on RoS r (st ≈r su)
iff st ≈ su and Q(st) ∩ Q(su) � r.

• st is semantically r-equivalent to su on RoS
r (st ≡r su) iff st ≈r su or ci(st) ≡r ci(su)
for every mandatory class ci of c.

For example, a movie class is composed of
mandatory classes car and tree and an optional
class background . Each state si of the movie
object is composed of component classes car ci,
tree ti, and background bi (i = 1, 2). s1
 s2
if c1 and c2 show the same car with different
QoS and t1 and t2 indicate the same tree with
different QoS.
Let ✷α denote an α-equivalent relation

where α denotes some equivalent relation. For
example, ✷QoS (or ✷≈) denotes “≈”. State,
Sem, QoS, R, Sem-QoS, and Sem-R stand for
sets of possible state, semantically, QoS, R,
semantically QoS , and semantically R equiv-
alent relations on states of a class c, respec-
tively. Here, R is { ✷r | r is a possible QoS},
and Sem-R is { ✷≡r | r is a possible QoS}. The
relation “a → b” denotes that b is a subset of
a. That is, st ✷b su if st ✷a su for every pair of
states st and su. State → Sem, State → R,
R → Sem-RR → QoS , QoS → Sem-QoS ,
Sem-R → Sem-QoS .
Let opt and opu be a pair of methods of a class

c. “opt ✷α opu” denotes that opt(s)✷α opu(s)
for every state s of c. φ shows an empty se-
quence of methods. op✷α φ iff op(s)✷α s for
every state s of c. For example, display − φ.
Let r1 and r2 be a pair of QoS values where
r1 � r2. Here, ✷r1 → ✷r2 if r1 � r2. For
example, st ≈r1 su if st ≈r2 su.
In the traditional theories 1),2), a method opt

is compatible with another method opu on a
class c iff the result obtained by performing opt

and opu is independent of the computation or-
der. Otherwise, opt conflicts with opu.
[Definition] For every pair of methods opt and
opu of a class c, opt is α-compatible with opu

(opt ✸α opu) iff (opt ◦ opu)✷α (opu ◦ opt) where
α ∈ {State, QoS, Sem, R, Sem-QoS, Sem-R}.

✷

For example, opt is semantically compatible
with opu (opt ✸≡ opu) iff (opt ◦ opu) ≡ (opu

◦ opt). The “R-compatible relation” ✸R de-
notes a set { ✸r |r ∈ R} where R is a set
of possible QoS values. opt α-conflicts with
opu (opt �✸α opu) unless opt ✸α opu. Let State,

Sem, QoS, R, Sem-QoS, and Sem-R be sets of
possible state, semantically, QoS, R, semanti-
cally QoS, and semantically R-compatible rela-
tions on methods of a class c, respectively. ✸α
is symmetric. We assume that ✸α is transi-
tive.

3. Compensating Methods

In traditional systems 1), the state stored in
the log is restored in the system. If the system
is faulty, it is restarted. Multimedia objects
are larger and more complex than simple ob-
jects such as tables. A method that removes
the effect of another method is a compensat-
ing method 2). For example, suppose a method
paint is performed on a background object. If
erase is performed, the background object can
be restored. The method erase is a compensat-
ing method for paint . Formally, a method opu

is a compensating method for another method
opt on a class c if opt ◦ opu(s) = s for every
state s of the class c 2).
[Definition] For every pair of methods opt and
opu of a class c, opu α-compensates for opt

(opu ✄α opt) iff (opt ◦ opu) ✷α φ for α ∈ {State,
Sem, R, Sem-R, QoS, Sem-QoS}. ✷

Let (∼αop) denote an α-compensating method
for a method op with respect to the α-
compensating relation, i.e., op ◦ (∼αop) ✷α φ.
Let State, Sem, QoS, R, Sem-QoS , and Sem-

R denote sets of possible state, semantically,
QoS, R, semantically QoS , and semantically R
compensating relations of methods of a class
c. Let CR be a family of these compensating
relations, CR = {✄α}.
Suppose α1 → α2 for α1, α2 ∈ CR. For

example, Sem → Sem-R. This means that
opt Sem-r -compensates opu for RoS r in R
(opt ✄≡r

opu) if opt ✄≡ opu. Thus, opt ✄α2 opu

if opt ✄α1 opu.
[Example 1] Suppose a movie class is com-
posed of the classes car , words , music, and
background . background is furthermore com-
posed of the classes tree and cloud . A movie
state s1 shows a colored video that includes
all the components, as shown in Fig. 1. back-
ground and car in s1 are removed by del-car-bg
and then a state s2 is obtained. Then, monau-
ral is performed to obtain a monaural state s3.
Here, an application needs to undo the work
done so far by del-car-bg and monaural . stereo
is performed on s3 and then a state s′2 is ob-
tained. add-bg is a method for adding a back-
ground object where music is stereo. A state

440 IPSJ Journal Feb. 2002

ABCD

(stereo)
music

(stereo)
music

(stereo)
music

(stereo)
music

ABCD

ABCD

ABCD

ABCD

music
(monaural)

add-bg

del-car-bg
monaural

stereo

s1 s2 s3

s′
2s′

1

Fig. 1 Compensation.

s′1 is obtained by performing add-bg on s′2. If
car is optional, s′1 ≡ s1, because all the other
classes are the same as s1. Hence, add-bg is a
Sem-compensating method of del-car-bg (add-
bg ✄≡ del-bg-car). ✷

After performing op on a state s of a class c, a
state s′ is obtained by performing the compen-
sating method (∼Semop). s′ ≡ s. From the the-
orem, op can be α2-compensated for by (∼α1op)
instead of (∼α2op) if α1 → α2. For example,
add-bg is (∼≡del-car-bg) in Example 1. Sup-
pose that add-car-bg is a method by which car
and background objects are added. add-car-bg
is (∼Statedel-car-bg). A state obtained by per-
forming add-car-bg is semantically equivalent to
one obtained by performing add-bg . That is, if
op′ is (∼Stateop), op′ is (∼Semop).
[Theorem] (∼αop)✷β (∼βop) iff α→ β. ✷

4. Classification of Methods

Suppose a method op2 is performed after
op1, i.e., op1 ◦ op2. Here, op1 ◦ op2 is com-
pensated for by a sequence of compensating
methods (∼Stateop2) ◦ (∼Stateop1), i.e., [op1 ◦
op2 ◦ (∼Stateop2) ◦ (∼Stateop1)] − φ. For ex-
ample, erase is (∼Statepaint) and degrade is
(∼Stateupgrade). (∼State(paint ◦ upgrade)) −
[(∼Stateupgrade) ◦ (∼Statepaint)] − (degrade ◦
erase). Thus, the effect on the object o can
be removed by performing the compensating
methods for op1 and op2, i.e., (∼State(op1 ◦
op2)) − [(∼Stateop2) ◦ (∼Stateop1)]. Thus,
(∼State(op1 ◦ . . . ◦ opn)) − [(∼Stateopn) ◦ . . . ◦
(∼Stateop1)].
We discuss how an α-compensation (∼α(op1◦

. . .◦opn)) is α0-equivalent to a sequence of com-
pensating methods (∼αn

opn) ◦ . . . ◦ (∼α1op1),
i.e., (∼α(op1 ◦ . . . ◦ opn))✷α0 [(∼αn

opn) ◦ . . . ◦
(∼α1op1)], where α, α0, α1, . . . , αn ∈ {State,
Sem, QoS, R, Sem-QoS, Sem-R}. In this pa-
per, we consider the case α0 = α for simplicity.
There are two types of methods: state meth-

ods to change the state of the object and QoS
methods to change the QoS of the object. Sim-
ilarly, there are two types of component classes,

Table 1 Types of methods.

type S/Q M/O condition
S S
SM S M
SO S O
Q Q
QM Q M
QO Q O
R(r) Q Q(opt(s)) � r.
RM Q M Q(ci(opt(s))) � r for every
(r) mandatory component class

ci of c.
RO Q M Q(ci(opt(s))) � r for every
(r) optional component class

ci of c.

S: state Q: QoS
M: mandatory O: optional

mandatory and optional ones, as discussed pre-
viously. Hence, there are semantic and for-
mal types of methods, the former to change
mandatory component objects and the latter
to change optional objects but not mandatory
ones. According to the properties, the methods
are classified into the types shown in Table 1.
Here, let τ (op) show a type of a method op, i.e.,
τ (op) ∈ {S, SM,SO,Q,QM,QO,R,RM,RO}.
Here, S andQmean state and QoS methods, re-
spectively. R shows a QoS method by which the
QoS of an object is changed so that requirement
QoS (RoS) is satisfied. M and O respectively
indicate methods by which mandatory and op-
tional components of an object are changed.
Let α1 and α2 be a pair of compensating

relations of methods of a class c. We dis-
cuss how to compensate for op1 ◦ op2, i.e.,
(∼α(op1 ◦ op2))✷α [(∼α2op2) ◦ (∼α1op1)] holds
on the basis of method types τ (op1) and τ (op2)
for α, α1, α2 ∈ {State, Sem,QoS,R, Sem-
QoS, Sem-R}. In Fig. 2, each entry Mi(τ1, τ2)
shows a condition for which (∼α(op1 ◦
op2))✷α [(∼α2op2) ◦ (∼α1op1)] holds for types
τ1 and τ2 of methods op1 and op2 (i = 1, . . . , 5).
In the matrices, αj = φ shows “(∼αj

opj) is not
performed”. For example, if τ (op1) = SO and
τ (op2) = S, M1(SO, S) = B, i.e., (∼Sem(op1 ◦
op2)) ≡ (∼Stateop2). Since objects are manipu-
lated by op1, op1(s) ≡ s for every state s, i.e.,
(∼αop1) does not need to be performed.

Table 2 summarizes what types of QoS re-
lations, α1, α2, and α satisfy the compensation
[(∼α2op2)◦(∼α1op1)]✄α (op1◦op2). Here, “α =
- ” means any one of {State, Sem,QoS,R, Sem-
QoS, Sem-R} and “α” of αi means “αi = α”.
For example, (∼α(op1 ◦ op2)) − [(∼Stateop1) ◦
(∼Stateop2)]. This means that op1 ◦ op2 can be

Vol. 43 No. 2 QoS-based Compensation of Multimedia Objects 441

: A

: B

: C

: D

opop
1

2

SO

other
 of
others

SO other of others

M1: α = “≡”.

: L

: M

: N

: D

opop
1

2 R M R O2 2

R1 M

R1 O

R1

,,

others

othersSO

SO

R2,

M4: α = “≡r”.
: E

: F

: G

: H

opop
1

2 R M R O R2 2 2

R1 M

R1 O

R1

,,

others

others

M2: α = “≈r”.

opop
1

2

QM
QO
Q

QM QO Q : I

: J

: K

: D

R1 M
R1 O

R1

R M2 R O2 R2 ,,,,,

others

others

M3: α = “≈”.
opop

1
2

SO

QM
QO
Q

SO QM QO Q : O

: P

: Q

: D

R1 M
R1 O
R1

R M2 R O2 R2 ,,,,,,

other

other

M5: α = “
”.

A: α1, α2 ∈ {State, Sem}.
B: α1 = φ ∧ α2 ∈ {State, Sem}.
C: α1 ∈ {State, Sem} ∧ α2 = φ.
D: α1 = α2 = φ.
E: α1, α2 ∈ {State, r}.
F: α1 = φ ∧ α2 ∈ {State, r}

∧ r2 ∩Q(op1(s)) � r.
G: α1 ∈ {State, r} ∧ α2 = φ

∧ r1 ∩Q(op2(s)) � r.
H: α1 = α2 = φ ∧ r1 ∩ r2 � r.
I: α1 = α2 ∈ {State,QoS, r}.
J: α1 = φ ∧ α2 ∈ {State,QoS, r}.
K: α1 ∈ {State,QoS, r} ∧ α2 = φ.

L: α1, α2 ∈ {State, Sem, r, Sem-r}
∧ r1 ∩ r2 � r.

M: α2 ∈ {State, Sem, r, Sem-r}
∧ α1 = φ ∧ r2 ∩Q(op1(s)) � r.

N: α1 ∈ {State, Sem, r, Sem-r}
∧ α2 = φ ∧ r1 ∩Q(op2(s)) � r.

O: α1, α2 ∈ {State, Sem,QoS,R,
Sem-QoS, Sem-R}.

P: α2 ∈ {State, Sem,QoS,R, Sem-QoS,
Sem-R} ∧ α1 = φ.

Q: α1 ∈ {State, Sem,QoS,R, Sem-QoS,
Sem-R} ∧ α2 = φ.

Fig. 2 Conditions.

Table 2 Compensation.

α1 α2 α
α α -
State State -
State α -
α State -
Sem ∧ (op1 ≡ φ) α -
α Sem ∧ (op2 ≡ φ) -
R ∧ (op1 − φ) α -
α R ∧ (op2 − φ) -
State Sem-R Sem-R
Sem-R State Sem-R
R Sem Sem-R
Sem R Sem-R

compensated for by (∼stateop1)◦(∼stateop2) for
every requirement α.
[Theorem] An α-equivalent relation “(∼α(op1◦
op2))✷α [(∼α2op2) ◦ (∼α1op1)]” holds iff one of
the relations shown in Table 2 holds. ✷

5. Reduced Compensating Sequence

If op1 is State-compatible with op2, (op1
✸State op2), (op1 ◦ op2) − (op2 ◦ op1). Hence,
op1 ◦ op2 can also be compensated for by
(∼Stateop1)◦(∼Stateop2) while compensated for
by (∼Stateop2) ◦ (∼Stateop1). [(∼Stateop1) ◦

(∼Stateop2)]−[(∼Stateop2)◦(∼Stateop1)]. Thus,
if a pair of methods are α-compatible, they
can be exchanged in a sequence. For a
pair of methods op1 and op2, op1 ✸α op2
iff (∼αop1)✸α (∼αop2). By using this α-
compatibility relation, the computation order
of the methods can be changed. Let S be a
sequence S1 ◦ op1 ◦ S2 ◦ op2 ◦ S3 where S1, S2,
and S3 are subsequences of methods. Let S′
be another sequence S1 ◦ op2 ◦ S2 ◦ op1 ◦ S3.
Here, S ✷α S

′ (S is α-equivalent with S′) if
op1 ✸α op2, op ✸α op1, and op✸α op2 for every
method op in S2. It is straightforward to show
that “(∼α(S1 ◦op1 ◦S2 ◦op2 ◦S3))✷α [(∼αS3)◦
(∼αop1) ◦ (∼αS2) ◦ (∼αop2) ◦ (∼αS1)]” holds.

add ✸r grayscale, where r denotes that “the
application does not require colors”. Suppose
add is performed before grayscale, i.e., add ◦
grayscale. This sequence is r-compensated for
by (∼rgrayscale) ◦ (∼radd). However, it takes
a shorter time to perform (∼rgrayscale) after
removing a car which is added by add , i.e.,
(∼radd), because the number of objects whose
colors are to be changed is decreased. Hence,
add ◦ grayscale can be more efficiently compen-
sated by (∼radd) ◦ (∼rgrayscale).

442 IPSJ Journal Feb. 2002

ABCD

(stereo)
music

(stereo)
music

(stereo)
music

(stereo)
music

ABCD

(stereo)
music

ABCD

ABCD

ABCD

ABCD

music
(monaural)

add

delete monaural

stereo

stereo

S1 S2 S3

S′
1 S′

2

S′′
1

Fig. 3 Compensating for a sequence of methods.

Next, let us consider how to reduce the num-
ber of compensating methods to compensate for
a sequence of methods. Suppose a car object c
is deleted after being added, i.e., add ◦ delete.
Since (add ◦ delete)− φ holds, (∼Statedelete) ◦
(∼Stateadd) is not required to be performed.
Next, suppose a method paint1 that paints an
object red is performed after the object has
been painted yellow by paint2. paint2 ◦ paint1
brings the same result obtained by performing
only paint1, i.e., (paint2 ◦ paint1)− paint1. In
order to compensate for paint1 ◦ paint2, only
(∼αpaint1) can be performed. opt is an α-
identity method iff opt ✷α φ. opt α-absorbs opu

iff (opu ◦ opt) ✷α opt.
[Example 2] Let us consider a karaoke ob-
ject k shown in Fig. 3. A state s3 of k is
obtained by performing delete ◦ monaural on
a state s1. stereo is a State-compensating
method for monaural . Hence, (∼State(delete ◦
monaural))− (stereo ◦ add). In the karaoke ob-
ject k, background and car objects are optional.
A state s′′1 is obtained by performing stereo on
the state s3. s′′1 is semantically equivalent to s1
(s′′1 ≡ s1). An application considers s′′1 to be
the same as s1. Hence, delete ◦ monaural can
be undone by performing one method stereo.
(∼≡(delete ◦ monaural)) ≡ stereo. ✷

Next, we discuss how to reduce a sequence
of methods. Let S be a sequence S1 ◦ S2 ◦ S3

where S1, S2, and S3 are subsequences of meth-
ods. If S2 is an α-identity sequence, (∼α(S1 ◦
S2 ◦ S3))✷α (∼α(S1 ◦ S3)). If S3 α-absorbs S2,
(∼α(S1 ◦S2 ◦S3))✷α (∼α(S1 ◦S3)). If S2 is α-
compatible with S3 (S2 ✸α S3), (∼α(S1 ◦ S2 ◦
S3))✷α (∼α(S1 ◦ S3 ◦ S2)).
Let S be a sequence of methods performed

on an object o. S is partitioned into a sequence
of subsequences S1 ◦ . . . ◦ Sm(m ≥ 1). For ev-
ery Si = αi1 ◦ . . . ◦ αili , every pair of meth-
ods in Si are α-compatible. In addition, every
method opij α-conflicts with opi−1,li−1 in Si−1

and opi+1,li+1 in Si+1. Each subsequence Si is
reduced though the following Reduce by using
the α-identity and α-absorbing relations.
Let S be a sequence of methods performed on

an object o that are to be α-compensated for.
Let S1 and S2 be compensating sequences for
S, i.e., (S ◦ S1) ✷α φ and (S ◦ S2) ✷α φ. If it
takes a shorter time to perform S1 than S2 and
S1 consumes a smaller amount of computation
resources than S2, S1 is cheaper than S2. Since
it is not easy to define the cost , S1 is defined to
be cheaper than S2 if |S1| ≤ |S2|. Here, |Si| de-
notes the number of methods in a sequence Si.
A cheaper sequence S′ is found for a sequence
S by the following procedure:

1. Let S be a sequence S′′ ◦ op.
2. S′ = Reduce(S′′, op).

Reduce(S′, op).
1. If S′ = φ, S1 := op; return (S1);
2. Let S′ be S′′ ◦ op′.
3. If op α-absorbs op′, op′ is removed from
S′, i.e., S′ := S′′ and S1 := Reduce(S′′,
op); return (S1);

4. If op ✸α op
′, S1 := Reduce(S′′ ◦ op,

op′); S2 := Reduce(S′′, op′)◦op if |S1| <
|S2|, return (S1) else return (S2).

5. else S1 := Reduce(S′′, op′) ◦ op, re-
turn (S1);

Let |op| be a number of methods to be per-
formed. Here, |op| = 1 and |S ◦ op| = |S| + 1.
In Fig. 3, Reduce(∼≡(delete ◦ monaural)) =
stereo since |stereo ◦ add | ≥ |stereo|.

6. Concluding Remarks

In multimedia systems, the QoS of an ob-
ject is manipulated in addition to the state of
the object. In this paper, we have discussed
how the QoS of the object is manipulated by
methods. We defined semantically, QoS, RoS,
semantically QoS, and semantically RoS con-
flicting relations among methods of multime-
dia objects. By using the relations, we de-
fined compensating methods to undo the work
done by the methods. We also made clear
how types of compensating methods are related
from the QoS point of view. We discussed how
to construct a compensating sequence of meth-
ods that implies better performance.

References

1) Bernstein, P.A., Hadzilacos, V. and Goodman,
N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley Publishing

Vol. 43 No. 2 QoS-based Compensation of Multimedia Objects 443

Company (1987).
2) Korth, H.F., Levy, E. and Silberschalz, A.:

A Formal Approach to Recovery by Compen-
sating Transactions, Proc. VLDB, pp.95–106
(1990).

3) MPEG Requirements Group: MPEG-4 Re-
quirements, ISO/IEC JTC1/SC29/WG11,
N2321 (1998).

4) Stroustrup, B.: The C++ Programming Lan-
guage (2nd ed.), Addison-Wesley (1991).

5) Nemoto, N., Tanaka, K. and Takizawa, M.:
QoS-based Synchronization of Multimedia Ob-
jects, Proc. 11th Int’l Conf. on Database
and Expert Systems Applications (DEXA ’00),
pp.151–160 (2000).

6) Yokoyama, M., Tanaka, K. and Takizawa,
M.: QoS-Based Recovery of Multimedia Ob-
jects, Proc. IEEE Int’l Conf. on Parallel and
Distributed Systems (ICPADS-00) Workshops,
pp.43–48 (2000).

7) Yokoyama, M., Nemoto, N., Tanaka, K. and
Takizawa, M.: Quality-Based Approach to Ma-
nipulating Multimedia Objects, Proc.2000 Int’l
Conf. on Information Society in the 21st Cen-
tury: Emerging Technologies and New Chal-
lenges (IS2000), pp.380–387 (2000).

(Received June 7, 2001)
(Accepted November 14, 2001)

Motokazu Yokoyama was
born in 1976. He received
his B.E. degree in Computers
and Systems Engineering from
Tokyo Denki Univ., Japan, in
2000. He is now a graduate stu-
dent of the master course in the

Dept. of Computers and Systems Engineering,
Tokyo Denki Univ.. His research interests in-
clude distributed multimedia networks. He is a
member of IPSJ.

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degree in Comput-
ers and Systems Engineering
from Tokyo Denki Univ., Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is
a research associate in the Dept. of Computers
and Systems Engineering, Tokyo Denki Univer-
sity. He received the D.E. degree from Dept.
of Computers and Systems Engineering, Tokyo
Denki University, Japan, in 2000. His research
interests include distributed systems, transac-
tion management, recovery protocols, and com-
puter network protocols. He is a member of
IEEE CS and IPSJ.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. He is also now a Dean of
the graduate school of Science and Engineer-
ing, Tokyo Denki Univ. From 1989 to 1990, he
was a visiting professor of the GMD-IPSI, Ger-
many. He is also a regular visiting professor of
Keele Univ., England since 1990. He is now a
general co-chair of IEEE ICDCS-2002, Vienna.
He was a program co-chair of IEEE ICDCS-
18, 1998 and serves on the program committees
of many international conferences. He chaired
SIGDPS of IPSJ from 1997 to 1999. He is IPSJ
fellow. His research interests include commu-
nication protocols, group communication, dis-
tributed database systems, transaction man-
agement, and security. He is a member of IEEE,
ACM, and IPSJ.

