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System Requirements and Formal Specifications

of Hierarchical Reactive Systems☆

Fumiaki Kanezashi† and Atsushi Togashi††

A methodology for the description of system requirements and formal specifications of
reactive systems and the synthesis of formal specifications is presented. Based on a hierarchical
structure of system properties a hierarchical assertional language is used as a requirement
language and hierarchical state transition systems are used as formal specifications. Sound
and complete formal specifications are synthesized from system requirements automatically.
Modularity and reusability are supported by the introduction of requirement and specification
modules and a partial order relation over these modules. The methodology has a practical
significance because desired specifications of reactive systems can be derived or synthesized
from user requirements on system functions in a systematic and stepwise way.

1. Introduction

A reactive system is characterized by being
event-driven and continuously reacting to ex-
ternal stimuli. For a complex reactive system,
operational descriptions of the whole system
might be too tedious to handle for rapid pro-
totyping and analysis of the system’s behavior.
In such cases, it is more convenient to express
system requirements in a functional and asser-
tional manner and to derive system specifica-
tions and implementations with different levels
of granularity in a stepwise refinement way.
In this paper, we propose a new methodol-

ogy for the description of system requirements
and formal specifications of reactive systems
and the synthesis of formal specifications. The
unique feature of our methodology is that based
on a hierarchical structure of system properties
a hierarchical assertional language is used as
a requirement language and hierarchical state
transition systems, which combine character-
istics of traditional labeled transition systems
and Kripke structures, are used as formal spec-
ifications to specify changes of both actions and
states. Formal specifications are synthesized
from system requirements automatically and
can be taken as models of system requirements.
Requirement and specification modules are in-
troduced to specify behavior of system compo-
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nents. These modules form a hierarchical struc-
ture by a partial order relation over them and is
reusable based on system context. Modularity
and reusability make it easy to specify reactive
systems succinctly and to construct prototype
systems.
The system overview of our software devel-

opment method of reactive systems is shown
in Fig. 1. Requirement acquisition systems for
obtaining system requirements and compilers
to produce programs are not contained in our
present research. The simulator15) is a graph-
ical tool for representing static structure and
simulating dynamic behavior of reactive sys-
tems with diagnosis system16). The verifier17)
is to verify that formal specifications of reac-
tive systems satisfy linear and branching time
properties based on compositional verification
methods without generation of global transition
systems. Reflection system is proposed in the
paper14). The present research is an extension
of previous work11)∼13) with hierarchical struc-
tures of system properties, requirements, and
specifications.
In the literature on reactive systems, numer-

ous formal specification methods have been pro-
posed, including Statecharts1), Modechart3),
VFSM4), SDL5), LOTOS7), and Estelle6), etc..
The conventional state machine oriented ap-
proaches such as SDL and Estelle and alge-
braic approach such as LOTOS are suitable
for the purpose of description and investigation
of total behavior of systems. Statecharts and
Modechart are also state diagrams with depth
and orthogonality concepts and broadcast com-
munication, but there are no system require-
ment definitions in these visual formalisms
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and without state interpretation and condition-
dependent decomposition, concepts like modu-
larity and reusability are not supported.
The outline of this paper is as follows: In Sec-

tion 2, based on the description of a hierarchi-
cal structure of system properties, we give the
definitions of system requirement module and
system requirement. In Section 3, after propos-
ing definitions of state transition module and
hierarchical formal specification, we discuss the
semantics of formal specification by introduc-
ing global state transition systems. In Section 4
the soundness and completeness of formal spec-
ifications with respect to system requirements
is defined in two levels: module level and sys-
tem level. Section 5 gives synthesis method of
formal specifications as hierarchical state tran-
sition systems from assertional system require-
ments. Section 6 is the conclusion.

2. Hierarchical System Requirement

2.1 System Property Structure
Requirements of a system can be described as

expressions based on propositional logic. Let
P be a set of atomic propositions. A literal
is an atomic proposition A or the negation of
an atomic proposition ¬A for A ∈ P. Each
atomic proposition describes a specific property
of the intended system under the target of de-
sign. Some atomic propositions describe gen-
eral properties of the system while some just
specify detailed or partial aspects of the system
and are dependent on the appearance of other
properties. So the system property structure
can be defined by a partial order relation over
partitions of P, and it can be seen as a hierar-
chical structure with propositions independent
of others at the topmost level.

Definition 2.1 A system property struc-
ture is a tuple S = 〈P,L,�,L0〉, where
(1) P is a finite set of all atomic propositions;

On
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Am, Fm Play, Pause

P

L0
D

Fig. 2 System overview.

(2) L is a family of subsets of P, which forms
a partition of P, i.e.
(1) P =

⋃
L∈L L,

(2) ∀Li, Lj ∈ L(i 
= j), Li ∩ Lj = ∅;
(3) �⊆ L × L is a partial order (irreflective,

transitive) relation representing the depen-
dency relation over sets of atomic proposi-
tions. If L1 � L2, then L2 is said to be
dependent on L1;

(4) L0 ⊆ L is a family of sets of propositions at
the topmost level such that for all L0 ∈ L0,
there are no L ∈ L such that L � L0. ✷

Example 2.1 A very simple cassette tape
player will be used as an example throughout
the paper to illustrate hierarchical specification
techniques proposed in the paper. The machine
can be functional only when the power is On.
The player functions as a Radio or as a cas-
sette Tape player. A switch for the selection of
Stereo or mono acts separately. If the player is
working as a Radio, band Am or Fm can be se-
lected. Cassette Tape player can Play or Pause
by pressing respective control buttons. The sys-
tem property structure of the player is shown in
the following definitions and Fig. 2.

(1) P = {On,Radio, Tape, Stereo,Am,
Fm,P lay, Pause};

(2) L = {{On}, {Radio, Tape}, {Stereo},
{Am,Fm}, {Play, Pause}};

(3) � = {({On}, {Radio, Tape}),
({On}, {Stereo}),
({Radio, Tape}, {Am,Fm}),
({Radio, Tape}, {Play, Pause})};

(4) L0 = {{On}}.
2.2 System Requirement
In a reactive system, a system function can

be specified as a transition on different condi-
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tions according to a specific system action or
input. When its pre-condition holds in the cur-
rent state, a system function can be invoked by
a specific input and executed, possibly produc-
ing some appropriate outputs. After the exe-
cution, the current state is changed into a new
one, and another function can be applicable in
the new state.

Definition 2.2 Let L be a set of proposi-
tions. A function requirement over L is a tuple
ρL = 〈id, a, fin, o, fout〉, where
(1) id is the name of the function;
(2) a is an input symbol of the function;
(3) fin is a pre-condition of the function to be

satisfied before execution, which is repre-
sented as a consistent conjunction of liter-
als of atomic propositions in L;

(4) o is an output symbol of the function;
(5) fout is a post-condition of the function to

be satisfied after execution, which is repre-
sented as a consistent conjunction of liter-
als of atomic propositions in L. ✷

When a name is omitted, a function require-
ment ρ = 〈a, fin, o, fout〉 is often abbreviated
as ρ : fin

a/o⇒ fout. In this paper we describe
system requirements as a set of system require-
ment modules with a hierarchical structure con-
structed by partial order relation over modules
to avoid the state explosion problem.

Definition 2.3 Let S = 〈P,L,�,L0〉 be a
system property structure and L ∈ L. A sys-
tem requirement module over L is a tuple RL =
〈F, γ0, B,Σ, O, C〉, where
(1) F is a set of function requirements over L;
(2) γ0 is an initial condition of the system re-

quirement module represented as a consis-
tent conjunction of literals in L;

(3) B is a background condition represented
as a consistent proposition using atomic
propositions in

⋃
Lu�L Lu;

(4) Σ is a set of input symbols of the system
requirement module. If all the system re-
quirement modules have the same set of in-
put symbols, Σ is the set of system input
symbols;

(5) O is a set of output symbols of the sys-
tem requirement module. If all the system
requirement modules have the same set of
output symbols, O is the set of system out-
put symbols;

(6) C is a set of consistent propositions which

should be satisfied by all the states of the
system requirement module. ✷

A background condition is a propositional
constraint represented by atomic propositions
of upper level system requirement modules. A
module can be activated only when its back-
ground condition is satisfied by some conditions
of upper level modules. C is used to specify local
constraints of a system requirement module.
Based on the definition of a system require-

ment module, a system requirement can be de-
fined as a hierarchical structure of system re-
quirement modules with a partial order relation
over these modules and initial modules at the
topmost level.

Definition 2.4 Let S = 〈P,L,�,L0〉 be a
system property structure. A system require-
ment on S is a tuple R = 〈R,R0, C〉, where
(1) R = { RL | L ∈ L in S } is a family of

system requirement modules over L ∈ L in
S;

(2) R0 is a family of initial system requirement
modules over elements of L0 in S;

(3) C is a set of constraints expressed by con-
sistent propositions, describing the global
properties of the system. ✷

The partial order relation � on L can be ex-
tended to the system requirement: Let R1 and
R2 be system requirement modules over L1 and
L2 in L of S respectively. R1 � R2 iff L1 � L2

in S.
Example 2.2 The system requirement mod-

ules of the Radio/Tape player described in the
previous subsection are defined as follows.
( 1 ) R{On} : Power Control

(1) F = {¬On Power⇒ On,On
Power⇒

¬On};
(2) γ0 = ¬On;
(3) B = true;
(4) Σ = {Power};
(5) O = ∅;
(6) C =∅.

( 2 ) R{Radio,Tape} : Radio and Tape Selec-
tion
(1) F = {Radio RT⇒ Tape, Tape

RT⇒
Radio};

(2) γ0 = Radio;
(3) B = On;
(4) Σ = {RT};
(5) O = ∅;
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(6) C ={Radio∨ Tape, Radio ⊃ ¬Tape,
Tapa ⊃ ¬Radio}.

( 3 ) R{Stereo} : Stereo Control

(1) F = {¬Stereo S⇒ Stereo, Stereo
S⇒

¬Stereo};
(2) γ0 = Stereo;
(3) B = On;
(4) Σ = {S};
(5) O = ∅;
(6) C =∅.

( 4 ) R{Play,Pause} : Tape Control

(1) F = {¬P lay PL⇒ Play,

P lay ∧ ¬Pause PA⇒ Pause,

P lay ∧ Pause PA⇒ ¬Pause,
P lay

Stop⇒ ¬P lay ∧ ¬Pause};
(2) γ0 = ¬P lay ∧ ¬Pause;
(3) B = Tape;
(4) Σ = {PL, PA, Stop};
(5) O = ∅;
(6) C ={Pause ⊃ Play}.

( 5 ) R{Am,Fm} : Radio Control

(1) F = {Am AF⇒ Fm,Fm
AF⇒ Am};

(2) γ0 = Am;
(3) B = Radio;
(4) Σ = {AF};
(5) O = ∅;
(6) C ={Am ∨ Fm, Am ⊃ ¬Fm, Fm ⊃

¬Am}.
The system requirement R =〈R,R0, C〉 of the
player is defined as follows.

(1) R = { R{On}, R{Radio,Tape}, R{Stereo},
R{Play,Pause}, R{Am,Fm} };

(2) R0 = {R{On}};
(3) The derived partial order relation: R{On}�

R{Radio,Tape}, R{On}�R{Stereo},
R{Radio,Tape} �R{Am,Fm}, R{Radio,Tape} �
R{Play,Pause};

(4) C ={Stereo ⊃ On, Radio ∨ Rage ⊃
On, Am ∨ Fm ⊃ Radio, P lay ∨ Pause ⊃
Tape}.

Recall that local constraints describe local
properties to be satisfied by local system speci-
fication modules. On the other hand, costraints
in a system requirement express global con-
straints to be satisfied by all system specifica-
tion modules.

3. System Specifications

In this paper hierarchical state transition sys-
tems are considered as formal specifications of
reactive systems. At first, a state transition
module is defined as the specification of a sys-
tem requirement module, then a formal speci-
fication is defined as the set of state transition
modules with the same partial order relation
as modules of system requirement. Based on
the formal specification, the global state tran-
sition system is derived for specifying dynamic
features of the entire reactive system.

3.1 State Transition Module
A partial formal specification corresponding

to each system requirement module is repre-
sented by a state transition module.

Definition 3.1 Let S = 〈P,L,�,L0〉 be
a system property structure and L ∈ L. A
state transition module over L is a tuple ML =
〈Q,Σ, O,→, q0, B〉, where
(1) Q is a set of states in which atomic propo-

sitions in L(in P) are interpreted (partially
interpreted);

(2) Σ is a set of input symbols;
(3) O is a set of output symbols;
(4) →⊂Q× Σ × O×Q is a transition relation;
(5) q0 ∈ Q is an initial or a default state;
(6) B is the background condition as a con-

sistent proposition of higher level, i.e., a
consistent proposition using atomic propo-
sitions in

⋃
Lu�L Lu. ✷

The transition relation defines the change
of states as input symbols are read. For
(p, a, o, q) ∈→, we normally write p

a/o→ q. For
simplicity, we just consider transitions inside
modules and do not discuss transitions among
different modules. Background condition speci-
fies conditions by which a state transition mod-
ule is activated and at the same time initial
state of the module is reached as one of the cur-
rent states. In each module, only one state can
be the current state. A state may activate mul-
tiple state transition modules by satisfaction of
background conditions of these modules, and a
module can be entered from states in the same
or different modules.
A partial interpretation I is a partial function
I : P → {true, false}, where true and false
are the truth values of propositions. If the truth
value of a proposition f under I is defined to
be true, i.e. I(f)=true, then we say that I
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satisfies f , denoted by I |= f . These can be
defined inductively as follows:

(1) I |= A (I 
|= A) if I is defined on A and
I(A) = true (I(A) = false), where A ∈ P.

(2) I |= ¬f (I 
|= ¬f) if I 
|= f (I |= f).
(3) I |= f ∧ g (I 
|= f ∧ g) if I |= f and I |= g

(I 
|= f or I 
|= g).
(4) I |= f ∨ g (I 
|= f ∨ g) if I |= f or I |= g

(I 
|= f and I 
|= g).
Note that the truth value of a proposition

under an interpretation is not always defined
since only partial interpretations are concerned.
We assume that for an atomic proposition A

∈ P and for a state q ∈ Q it is pre-defined
whether or not A holds (is satisfied) in q if the
truth value of A in q is defined. q |= A indi-
cates that the truth value of A in q is defined
and A holds in q. Let us define the partial in-
terpretation associated with a state q in a state
transition module or a global transition system,
denoted by I(q), in such a way that

I(q)(A)=




true if q |=A
false if q 
|=A (q |=¬A)
undefined otherwise

for all atomic propositions A ∈ P. In a similar
way, we can define the interpretation I(γ) for a
consistent conjunction of literals γ. Let Sat(q)
= {A | A ∈ P, q |= A} ∪ {¬A | A ∈ P, q |=
¬A}.

Proposition 3.1 q |= f iff f is implied
from Sat(q), i.e. every interpretation satisfy-
ing Sat(q) also satisfies proposition f .
Proof: The proof is by structural induction on
propositions f . ✷

By the completeness of propositional logic,
we have that q |= f iff Sat(q) � f , f is prov-
able from Sat(q). Two states p and q in M
are logically equivalent iff I(p) = I(q). A state
transition module M is logically reducible if
there exist distinct logically equivalent states
in M . Otherwise, the module is logically irre-
ducible. To the rest of this paper, unless stated
otherwise, a state transition module means a
logically irreducible system. Thus, p = q iff
I(p) = I(q) (Sat(p) = Sat(q)). By this assump-
tion, note that a state q in a (an irreducible)
state transition module M can be equivalently
represented as a consistent conjunction of liter-
als of set Qq, where q |= A (q |= ¬A) iff A ∈ Qq

(¬A ∈ Qq).
State transition modules can be derived by
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Fig. 3 Hierarchical system specification of the
Radio/Tape player.

synthesis method from the corresponding sys-
tem requirement modules. A formal specifica-
tion represented by hierarchical state transition
systems can be defined as follows.

Definition 3.2 Let S = 〈P,L,�,L0〉 be a
system property structure. A system specifica-
tion on S is a tuple M = 〈M,M0〉, where
(1) M = {ML|L ∈ L in S} is a family of state

transition modules;
(2) M0 = {ML0 |L0 ∈ L0 in S} (⊆ M) is a

family of initial state transition modules at
the topmost level. ✷

The partial order relation � on L can be ap-
plied to state transition modules in M in the
similar way: LetM1 andM2 be state transition
modules over L1 and L2 in L of S respectively,
M1 �M2 iff L1 � L2 in S.

Example 3.1 Based on the definitions of
system requirement of the Radio/Tape player,
the system specification represented as hierar-
chical state transition systems can be synthe-
sized from the system requirement. See sec-
tion 5 for detailed discussions. The derived hi-
erarchical system specification is illustrated in
Fig. 3.
As can been seen in the example, there are
no inconsistency in the conditions themselves,
i.e., pre-conditions, post-conditions, initial con-
ditions, background condition, and constraints
are consistent as they are. But, in the
synthesis process there may occur contradic-
tion. For example, if we add an extra con-
dition {Am ∧ Fm} as a global constraint,
then in the resulting global transition sys-
tem in Fig.4, the state with the interpretation
{On,Radio,Am, Stereo} and its related tran-
sitions are not constructed, this check can be
done in the synthesis process. Besides, the
synthesis process also checks potential inconsis-
tency via generating the global transition sys-
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tem, where global consistency is check
3.2 Global State Transition System
According to the definition of partial order

relation and background dependency, there are
mainly two kinds of relationships between state
transition modules: hierarchical and indepen-
dent. Two modules are hierarchical if the mod-
ules are related by the application of transi-
tive law of the partial order relation, otherwise
they are independent modules. For indepen-
dent modules, their relationship can be further
defined as parallel and sequential. Two inde-
pendent modules are parallel if both their back-
ground conditions in their least common upper
hierarchical module are consistent (i.e., can be
satisfied by a state in their least common upper
hierarchical module), otherwise the modules are
sequential. These kinds of relations can also be
extended to a set of state transition modules.
A module is entered when the module’s back-

ground condition is satisfied by a state of an
immediate upper hierarchical module, so a set
of parallel modules with background condition
satisfied by the same state is activated simul-
taneously. At this time, all the initial states
of these modules are the current states. Corre-
spondingly, activated parallel modules are left
at the same time because of a transition in their
common upper hierarchical modules.
Let M = 〈M,M0〉 be a given system speci-

fication on a system property structure S, and
fix to the rest of this section. To simplify the
notations for a state transition module M , its
set of states and its transition relation are de-
noted by QM and →M respectively. We apply
the same notations to other ingredients. The
global state and transition are presented by the
following constructive definitions.

Definition 3.3 A state p in a state transi-
tion moduleM in M is a basic state if there are
no M

′
in M such that M �M ′

and p |= BM ′ .
✷

Example 3.2 Basic states are states with
no dependent state transition modules. The
basic states of the player are ¬On, Am, Fm,
Stereo, ¬Stereo, {¬P lay,¬Pause},
{Play,¬Pause},
{Play, Pause}.

Definition 3.4 The set of sub-states of a
state q in a state transition module (or a state
transition module M) denoted as substates(q)
(or substates(M)) is defined inductively:
(1) If q is a basic state, substates(q)={q};

(2) If M is a state transition module,
substates(M) =

⋃
q∈M substates(q);

(3) If q is a state in a state transition mod-
ule M with immediate dependent state
transition modules M

′
such that M �

M
′
and q |= BM ′ , substates(q) =

⋃
q|=B

M
′

substates(M
′
) ∪ {q}. ✷

Definition 3.5 The set of global states of a
state q in a state transition module (or a state
transition moduleM) denoted as gstates(q) (or
gstates(M)) is defined inductively:
(1) If q is a basic state, gstates(q) = {{q}};
(2) If M is a state transition module,

gstates(M) =
⋃

q∈QM
gstates(q);

(3) If q is a state in a state transition mod-
ule M with immediate dependent state
transition modules M

′
such that M �

M
′
and q |= BM ′ , gstates(q) ={{q} ∪

{
⋃

1≤i≤nQi)|(Q1, ..., Qn) ∈ Πq|=B
M

′

gstates(M
′
)}}, where n denotes the num-

ber of M
′
such that q |= BM ′ and Π is the

set-theoretic Cartesian product operation.
✷

Definition 3.6 The set of default states of
a state q in a state transition module (or a state
transition module M) denoted as default(q) (or
default(M)) is defined inductively:
(1) If q is a basic state, default(q) = {q};
(2) If M is a state transition module with q0

as the initial state, default(M) ={q0} ∪
default(q0);

(3) If q is a state in a state transition module
M with immediate dependent state transi-
tion modules M

′
such that M � M ′

and
q |= BM ′ , default(q) =

⋃
q|=B

M
′ default(M)

∪ {q}. ✷

Sub-states of a state or module are all hierar-
chical dependent states on the state or module.
Global states of a state or module are all pos-
sible consistent configurations containing this
state or a state in this module. Default state of
a state or module is a element of its global states
and is the set of initial states of all dependent
state transition modules.

Example 3.3 In the example Radio/Tape
player, the sub-states of state Radio is
{Radio,Am, Fm}, the global states of state
Radio is {{Radio,Am}, {Radio, Fm}}, the de-
fault state of state On is {On,Radio,Am,
Stereo}.
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Definition 3.7 The global transition sys-
tem of a system specification M = 〈M,M0〉
on a system property structure S is the tuple
Mg = 〈Qg,Σg, Og,→g, qg0〉, where
(1) Qg = {(

⋃
1≤i≤nQi) |(Q1, ..., Qn) ∈

ΠM0∈M0 gstates(M0)} is the set of system
global states, where n denotes the number
of M0 in M0.

(2) Σg is the set of system input symbols. Σg

=
⋃

M∈MΣM .
(3) Og is the set of system output symbols. Og

=
⋃

M∈MOM .
(4) →g ⊂ Qg × Σg × Og × Qg is the global

state transition relation. qg
a/o→ q

′
g iff there

is a state transition module M of M such
that q

′
g = (qg - substates(q)) ∪ default(q

′
)

for some transition q
a/o→ q

′
in M , where

q ∈ qg.
(5) qg0 ∈ Qg is a global initial state. qg0 =

∪M0∈M0 default(M0). ✷

The system global states are componentwise
union of the product of global states of paral-
lel initial state transition modules. System in-
put(output) symbols are input(output) symbols
of all state transition modules. A global transi-
tion relation can be defined if there exists a pos-
sible transition in a state transition with source
state, input and output satisfied and after this
transition all the sub-states of the source state
of this transition are left and all the default
states of the target state of this transition are
reached. Global initial state is the union of ini-
tial states of all initial state transition modules.

Example 3.4 The global transition system
of the Radio/Tape player can be derived from
system specification, as it is shown in Fig. 4.

4. Soundness and Completeness

In the previous two sections, the user require-
ments and their formal specifications have been
given as system requirements and system spec-
ifications, respectively. This section is devoted
to describe the relationship between user re-
quirements and system specifications. Thus,
the definitions of soundness and completeness
of system specifications with respect to system
requirements are given. Soundness ensures that
a system specification is correct with respect to
a system requirement. On the other hand, com-
pleteness indicates that the given system speci-
fication represents entire properties given as the
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Fig. 4 Global transition system of the Radio/Tape
player.

system requirements. Because of the hierarchi-
cal structure of system properties, soundness
and completeness definitions of system speci-
fications are based on the definitions on state
transition modules.

4.1 Soundness
Definition 4.1 LetRL = 〈F, γ0, B,Σ, O, C〉

be a system requirement module over L and
ML = 〈Q,Σ, O,→, q0, B〉 be a state transi-
tion module over L. A state transition t =
〈p a1/o1→ q〉 in ML satisfies (is correct w.r.t.) a

function requirement ρ : fin
a2/o2⇒ fout in RL,

denoted as t |=L ρ, if:
(1) If a1 = a2, o1 = o2, p |= fin, then q |= fout;
(2) The partial interpretations I(p) and I(q)

are identical if atomic propositions not oc-
curring in fout are only concerned. ✷

The condition (1) means the pre-condition
and the post-condition of the function require-
ment must hold in the current state and the
next state, respectively. The condition (2)
states that for an atomic proposition A inde-
pendent of fout, p |= A iff q |= A. This means
that the truth values of independent atomic
propositions w.r.t. the post-condition remain
unchanged through the state transition.

Definition 4.2 A state transition mod-
ule ML =〈QML

,Σ, O,→, q0, BML
〉 is sound

w.r.t. a system requirement module RL =
〈F, γ0, BRL

,Σ, O, C〉, denoted as ML |= RL,
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if:
(1) I(q0) = I(γ0);
(2) For any transition t in ML, there is a func-

tion requirement ρ in RL s.t. t |=L ρ;
(3) I(BML

) = I(BRL
);

(4) ∀f ∈ C in RL, ∀q ∈ QML
, we have q |= f .

✷

A state transition module is sound with re-
spect to a system requirement module if its
initial state or condition and their background
conditions have the same partial interpreta-
tions, all transitions in the state transition mod-
ule can be satisfied and all states in the state
transition module satisfy constraints specified
in the system requirement module.
The soundness of system specification is

based on soundness of every state transition
module and satisfaction of initial state transi-
tion modules and global constraints, as is given
in the following definition.

Definition 4.3 Let S = 〈P,L,�,L0〉 be a
system property structure. A system specifi-
cation M = 〈M,M0〉 on S is sound w.r.t. a
system requirement R = 〈R,R0, C〉 on S, if
(1) ∀ M0 in M0, ∃ R0 in R0 s.t. M0 |= R0;
(2) For all state transition modules ML in M,

∃RL in R s.t. ML |= RL;
(3) If Mg is the global state transition system

obtained from M, ∀c in C of R, ∀ global
state qg in Mg, qg |= c. ✷

4.2 Completeness
Before the definition of completeness, mod-

ule level and system level simulation relations,
called homomorphisms, are first introduced.
The homomorphisms specify homomorphic re-
lationship between state transition modules and
between system specifications, respectively. A
homomorphism is isomorphic if the mapping is
a bijection. The concept of standard system is
introduced to denote sound and complete sys-
tem specifications.

Definition 4.4 LetM=〈Q,Σ, O,→, q0, B〉
and M ′ = 〈Q′,Σ, O,→′, q′0, B〉 be state transi-
tion modules with common sets of input and
output symbols and also with the same back-
ground condition. A homomorphism from M
into M ′ is a mapping ψ : Q→ Q′ such that
(1) ψ(q0) = q′0.

(2) If p
a/o→ q in M , then ψ(p)

a/o→
′

ψ(q) in M ′.
(3) p |= f implies ψ(p) |= f for all states p in

M and for all propositions f . ✷

The third condition (3) in the above defini-
tion can be equivalently relaxed:
(3’) p |= l implies ψ(p) |= l, for all states p in

M and for all literals l.
Definition 4.5 Let M = 〈M,M0〉 and M’

= 〈M′,M′
0〉 be system specifications on a com-

mon system property structure S. A homomor-
phism from M into M’ is a mapping ξ : M →
M′ such that
(1) ξ(M0) ∈ M′

0, where M0 ∈ M0.
(2) If M1 �M2 in M, then ξ(M1) � ξ(M2) in

M’.
(3) For every M in M, there is a homomor-

phism ψ from M in M to ξ(M) in M’ i.e.,
ψ : QM → Qξ(M). ✷

If a homomorphism ξ : M → M′ is a bijec-
tion, a one-to-one and onto mapping, and each
homomorphism ψ : QM → Qξ(M) is also a bi-
jection for every M in M, then ξ is called an
isomorphism. If there is an isomorphism from
M to M’, then M and M’ are isomorphic.

Definition 4.6 Let S = 〈P,L,�,L0〉 be a
system property structure. Let M be a sound
system specification on S with respect to a sys-
tem requirement R on S. M is called complete
with respect to R if there is a homomorphism
ξ from M’ to M for every sound system spec-
ification M’ with respect to R, and there is a
homomorphism ψ from M

′
in M’ to ξ(M

′
) in

M for every M
′
in M’ with the following con-

dition satisfied: For any transition p
a/o→ q in

M
′
and for any system requirement ρ in R of

R, p
a/o→ q |= ρ in M ′

implies ψ(p)
a/o→ ψ(q) |= ρ

in ξ(M
′
). ✷

Definition 4.7 A sound and complete sys-
tem specification with respect to a system re-
quirement R on a system property structure S
is called a standard system (model) of R on S.

✷

Recall that the notions soundness and com-
pleteness capture the relationship between sys-
tem requirements and system specifications.
Soundness ensures that a system specification
is correct with respect to a system requirement.
Completeness indicates that the given system
specification represents entire behaviors given
as the system requirements. So that a standard
system can be taken as a faithful realization of
a system requirement
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5. Synthesis of Formal Specification

The target of synthesis method is to derive
a sound and complete system specification as a
hierarchical state transition system M from a
given system requirement R. After we state a
transformation Tm from a system requirement
module R into a state transition moduleM , the
transformation T from a system requirement R
to a formal specification M is defined.
Let us define a state transition module

Tm(R) = 〈Q,Σ, O,→, q0, B〉 from a system re-
quirement module R=〈FR, γR0, BR,ΣR, OR, C〉
on L, where
(1) Σ = ΣR; O = OR; B = BR;
(2) q0 = γR0;
(3) Q′ = {γ | γ is a consistent conjunction of

literals in L and I(γ) |= c for each c ∈ C}
and Q = {γ ∈ Q′ | γ can be reached from
initial condition γR0 by the resulting tran-
sition relation →};

(4) For γ and γ′ ∈ Q′, γ
a/o→ γ′ iff there exists a

function requirement ρ : fin
a/o⇒ fout ∈ FR

such that
(a) I(γ) |= fin;
(b) I(γ′) |= fout;
(c) If A is an atomic proposition not oc-

curring in fout, then I(γ) |= A iff
I(γ′) |= A.

Recall that the partial interpretation associ-
ated with a state γ in Tm(R) is defined as I(γ).
It is trivial from the construction that Tm(R) is
irreducible.

Definition 5.1 Let S = 〈P,L,�,L0〉 be a
system property structure. The system specifi-
cation T (R) = 〈M,M0〉 on S is defined from a
system requirement R= 〈R,R0, C〉 on S, where
(1) M = {Tm(R) | R ∈ R};
(2) M0 = {Tm(R0) | R0 ∈ R0};
(3) Mg is the global state transition system

obtained from T (R) s.t. ∀c in C of R, ∀ qg
in Mg s.t. qg |= c.

Theorem 5.1 Given a system property
structure S, the system specification T (R) de-
rived from a system requirement R on S by T
is a standard system of R on S.
Proof:
Soundness: This property is clear from the
construction of the system specification T (R).
More difficult property is conpleteness.
Completeness: Let M = 〈M,M0〉 be a sound
system specification on S with respect to R =

〈R,R0, C〉 on S. Let us define two kinds of
mappings:
(1) a mapping ξ : MM → MT (R). Let

ML be a state transition module over L
in M which satisfies a system requirement
module RL in R. Let us define ξ(ML) =
Tm(RL).

(2) a family of mappings {ψL : QML
→

QTm(RL)| for q ∈ QML
, ML ∈ M and for

γ ∈ QTm(RL),RL ∈ R, ψL(q) = γ such that
I(q) = I(γ) }.

According to the construction, the mappings
ξ from M to MT (R) and ψL from QML

to
QTm(RL) with ML ∈ M of M and RL ∈ R
of R are well defined.
First, we will show that ψL : QML

→ QTm(RL)

is a homomorphism from a sound state transi-
tion module ML=M=〈QM ,Σ, O,→M , qM0, B〉
w.r.t. RL = T = 〈F, γ0, BRL

,Σ, O, C〉 in
M into Tm(RL) = 〈QT ,Σ, O,→T , qT0, B〉 in
T (R).
(1) It can be easily checked that ψ(qM0) = qT0

since I(qM0) = I(γ0) by the soundness of
ML and qT0 = γ0 by Tm, so I(qM0) =
I(qT0).

(2) Let p
a/o→ q be any transition in ML. Sup-

pose ρ : fin
a/o⇒ fout is a function re-

quirement in RL satisfied by this transi-
tion. So we have p |= fin and q |= fout.
By the definition of ψL, I(p)=I(ψL(p)) and
I(q)=I(ψL(q)). Thus ψL(p) |= fin and
ψL(q) |= fout, and ψL(p) |= A iff ψL(q)
|= A for every atomic proposition A not
occurring in fout because p |= A iff q |= A
for every atomic proposition A not occur-
ring in fout. Therefore, we have a transi-
tion ψL(p)

a/o→T ψL(q) in Tm(RL) and this
transition also satisfies the same function
requirement ρ.

(3) By the definition of ψL, p |= f implies
ψL(p) |= f for all propositions f . Hence, ψ
is a homomorphism fromML into Tm(RL).

Then, we will prove that ξ is a homomor-
phism from a sound system specification M =
〈M,M0〉 into T (R) = 〈M,M0〉. This is obvi-
ous from the definition of ξ. ✷

The next theorem ensures that a standard
system is unique. Thus, there exists a unique
standard system for a system requirement by
Theorem 5.1.

Theorem 5.2 A standard system of R on
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a system property structure S is unique up to
isomorphism.
Proof: Suppose M = 〈M,M0〉 is a standard
system of R on S. It is enough to show that
M and T (R) are isomorphic. Since T (R) is a
standard system by Theorem 5.1.
Let ξ : M → MT (R) be a homomorphism
with a family of homomorphism ψL : QML

→
QTm(RL) for L ∈ L in S whose constructions
are given in the proof of Theorem 5.1.
To prove the theorem, we have to show that ξ
and ψL are bijections (one to one and onto).
It is clear from the definition that ξ : M →
MT (R) is a bijection. Then, it is left to show
that ψL : QML

→ QTm(RL) are bijections.
Injectiveness (one to one) of ψL: Suppose
ψL(p) = ψL(q) for some states p and q in ML.
This means that I(p) = I(q). Thus, we have
p = q since we assume that every state transi-
tion module is irreducible.
Surjectiveness (onto) of ψL: Since both Tm(RL)
and ML are standard w.r.t. RL, there must
exist a homomorphism ψ : QTm(RL) → QML

.
Let γ be any state inQTm(RL). By construction,
γ is reachable from the initial state γ0 and there
is a transition sequence:

γ0
a1/o1→ γ1

a2/o2→ ...
an/on→ γn(= γ)

Let pi = ψ(γi) for i, 1 ≤ i ≤ n. Since ψ is a ho-
momorphism we have the following transitions
in ML.

p0
a1/o1→ p1

a2/o2→ ...
an/on→ pn

We can show that I(pi) = I(γi), i.e., ψL(pi) =
γi for all i, by mathematical induction on i.
Thus, for pn in M we have ψL(pn) = γ.
In the same way, we can also show that for any
transition γ

a/o→ δ in QTm(RL), there is a tran-

sition p
a/o→ q in ML such that ψL(γ) = p and

ψL(δ) = q.
Hence ψL is surjective. ✷

Note that the notion of logical irrreducibil-
ity is crucial to prove the theorem. If we drop
this condition, Theorem 5.2 does not hold in
general.

6. Conclusion

In this paper, we proposed a methodology for
the description of system requirements and for-
mal specifications of hierarchical reactive sys-
tems. Both system requirement modules and
formal specification modules are defined based
on the hierarchical structure of system prop-

erties. For the study of dynamic behavior of
formal specifications, global transition system
is introduced. An automatic mechanism called
synthesis system is used to derive formal spec-
ifications from system requirements, and the
soundness and completeness of synthesized for-
mal specifications is also ensured by this pro-
cess.
Future research work includes specifications

of systems with predicate conditions or time
constraints and further compositional verifica-
tion methods for verifying that system specifi-
cation satisfies both linear-time and branching-
time temporal properties. At the present time,
we are implementing a support system based on
the methodology.
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