TH I 23 CRR T FE) EE A2

277

2C-5

On Designing the Method of Syntax Descriptions for Logics

Toshiro Minami*, Hajime Sawamura*, Kyoko Ohashi**, and Kaoru Yokota™

1. Introduction

This paper deals with the feature of describ-
ing the syntax of logical expressions for the
general-purpose (i.e. logic-independent) rea-

soning assistant system EUODHILOSP., 1t is -

a system which assists us in reasoning in a va-
riety of universes of discourse. This is why we
call it general-purpose, and it follows that we
have to define the logic to be dealt with at
the beginning. It also gives us supports in the
proofs of the theorems in the defined logic.

In the system, a logic consists of language
and derivation systems. The former consists of
making fonts for new symbols and of describ-
ing the syntax of logical expressions. The lat-
ter consists of axioms with two kinds of rules;
inference and rewriting rules. In the current
version, the style of inference rules is fixed like
that of natural deduction. Rewriting rules are
also given similarly. Therefore we have to take
care mainly on the syntax description.

At the rest of this paper, we show how the
syntax is described in the current version and
some ideas to improve it.

2. Description Method

On designing the description method for
logical expressions, we considered it from the
following two points of view:

e Easiness for description
Since the syntax is described by users,
it must be simple and easily understand-

*International Institute for Advanced Study of So-
cial Information Science(IIAS-SIS), FUJITSU LIM-
ITED, 140 Miyamoto, Numazu, 410-03, JAPAN.
Email: minami%iias.fujitsu.co.jpCuunet.uu.net

**Software Development Lab., FUJITSU LABORA-
TORIES LIMITED, 1015 Kamikodanaka Nakahara-
ku, Kawasaki, 211, JAPAN

able.

e Expressiveness
Some logics may be complex and could
not be expressed in a context-free gram-
mar. So context-sensitive conditions
should be expressed in the language.

As the description” method which satisfies
these conditions, we have chosen DCG (Def-
inite Clause Grammar)ll. It is based on
the context-free grammar style of description,
augmented with argument attaching and pro-
log predicate call features. Using these fea-
tures, we can express the context-sensitive re-
strictions to the syntax. In addition to these,
it also has a well-known parsing algorithm
named BUPU

In order to make more convenient to the
system, we have modified DCG by augmenting
the following two features.

e Operator declaration
e “Or”-notation

The former is added for automated genera-
tions of a parser and an unparser from the de-
scription. The parser is used to translate from
the expression given by the user as a string to
the internal representation which is used in
the system, and the unparser translates in the
opposite direction. An example of description
is shown in Figure 1.

3. Some Improvements on the

Current Version

As noted in the previous section, the DCG-
based description method has many advan-
tages. Though it still remains some problems
for our purpose. For example:

278

formula --> formulal, ‘‘=’’, formulail;

formula --> formulal;

formulatl --> formulai, ‘‘Vv’’, formula2;
formulal --> formula2;

formula2 --> formula2, ‘‘A’’, formula3;
formula2 --> formula3;

formula3d --> ¢¢(’?, formula, ‘¢)’’;
formula3 --> ff=?’?, formula3;

formula3 --> basic_formula;

operator

‘l=>”; ltv)); (‘A’); (t_|:,;
Figure 1: An example description in the cur-
rent version.

(i) Operator precidence are described both
in the syntax description and in the op-
erator declarartion.

(ii) It is impossible to express the functions
which have arbitrary number of argu-
ments.
(iii) In the general framework of DCG, any
prolog predicates can be invoked during
parsing. This makes it difficult to analyze
the description. So we want to restrict
the description style so that the descrip-
tion becomes clearer.

To solve the the first problem, we can take
the way of omitting the description of operator
precidence in the syntax description part. So
the user describe the operator recidence only
in the operator declaration part. For the sec-
ond one, we may introduce the “...”-notation.
And for the last one, by introducing the fea-
tures such as automated parser/unparser gen-
eration, the necessity of calling prolog predi-
cates will decrease.

As the result of using the first one, (and
also using the “or”-notation,) the desciption
in Figure 1 becomes simpler as in Figure 2.

4. Further Improvements

For the future work, we present here an is-
sue about learning feature in syntax descrip-
tion. In the process of reasoning, the user may

formula --> formula, ‘‘=>’’, formula |

formula, ‘‘V’?, formula |
formula, ‘‘A’?’, formula |
€22 formula |

basic formula;

basic_formula --> “¢(’’, formula, “‘)’’|

operator
Cem 2. Oy oft; ‘A ?:left;

t(_|,’;

Figure 2: An simplified description for the ex-
ample in Figure 1.

change the descriptions many times. In the
current description style, even when adding a
new notation, one has to see all the descrip-
tions and to remake all of them. If the system
makes some modifications automatically, the
user may teach the system by saying to add
such and such a notation. The modification
becomes much easier than that in the current
situation.

References

[1] Matsumoto, Y., et al.: BUP: A Bottom-
Up Parser Embedded in Prolog, New

Generation computing 1, pp.145-158,
1983.
[2] Minami, T., Sawamura, H., Satoh,

K., and Tsuchiya, K.: EUODHILOS:
A General-Purpose Reasoning Assistant
System—Concept and Implementaion-,
ITAS Research Report No. 84, FUJITSU
LIMITED, 1988.

Pereira, F.C.N., et al.: Definite Clause
Grammars for Language Analysis—A Sur-
vey ‘of the Formalism and a Comparison
with Augmented Transition Networks, Al
Journal 13, pp.231-278, 1980.

This work is a part of the major research and de-
velopment of FGCS project conducted under the pro-
gram set up by MITL

