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Recurrent Neural Network Synthesis
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This paper introduces a new technique of sound synthesis RNNS (Recurrent Neural Network
Synthesis) by recurrent neural network. As a model of individual neuron, a continuous-time,
continuous-variable neuron model is adopted. RNNS has two variations of sound synthesis:
One variation of sound synthesis is “hand-tuning model”, which is composed of relatively
small network and is suitable for realtime sound synthesis. And another variation of sound
synthesis is “resynthesis model”, which is made of relatively large numbers of neurons. The
latter is not only capable of learning of the original sound of the musical instruments, but is
also capable of producing a new sound by modifying parameters of the neurons after learning

process was finished.

1. Introduction

Study of sound synthesis has a long history
in computer music and many models have been
presented. One of the most famous algorithm
is the FM (Frequency Modulation) synthesis in
the early 1980s, and produced sounds by that
algorithm were worldwidely used in so many
tunes. In the 1990s, as memory prices going
down, PCM sounds became more and more
popular. In the late 1990s, software synthesis
became possible because of the fast clock speed
of CPU.

This paper introduces RNNS (Recurrent
Neural Network Synthesis), a new technique of
sound synthesis using recurrent neural network.

Recurrent neural network is a neural network
that each neuron connects recurrently. RNNS
belongs to both nonlinear sound synthesis and
software sound synthesis. Followings are some
features of RNNS:

(1) dynamics of neurons are directly used for
synthesized waveform itself,

RNNS resembles to the FM synthesis,
each neuron corresponds to each opera-
tor in the FM synthesis model,

complex waveforms are produced from
relatively small numbers of neurons,
resynthesis is also possible with relatively
large number of neurons by a learning al-
gorithm.

RNNS has two variations, one is “hand-
tuning model”, which is composed of relatively
small network and is suitable for realtime sound
synthesis. And another is “resynthesis model”,
which is capable of resynthesis of the sound
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of the musical instruments by a learning algo-
rithm.

Sound synthesis by “hand-tuning model” is
totally new. “Resynthesis model” was used as
a speech synthesis model ). This paper shows
resynthesis of the sound of the musical instru-
ments by resynthesis model.

2. Single Neuron Model and Recur-
rent Neural Network

As a model of individual single neuron,
a continuous-time, continuous-variable neuron
model is adopted. Therefore output value from
any single neuron can be directly used for wave-
form of a synthesized sound.

Equation of dynamics of each neuron in a re-
current neural network is given? as

du; -
Tid—tz = —u; + f(; Wiju;) + 1;

where u;(t) is the i-th unit output at a time ¢,
7; a time delay constant, f(x) a sigmoid func-
tion, I; an external input of the -th unit, Wj;
a connection weight from the j-th unit to the
i-th unit.

3. Sound Synthesis Variation 1: Hand-
Tuning Model

Recurrent Neural Network can generate very
complex dynamics pattern because of its recur-
rent connections even if it is composed of rela-
tively small numbers of neurons.

As the 1st variation of RNNS, sound synthe-
sis by hand-tuning model is shown. This model
is useful for realtime software sound synthesis.

3.1 1 Pair Model

“1 pair model” is composed of one pair neu-
ron and another output neuron. Each neuron
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Fig.1 An example of the produced waveform from 1
pair model.

of the pair neuron is connected each other and
is also connected to itself. This pair neuron is
the smallest recurrent neural network architec-
ture. The output neuron receives two output
values from the pair neuron and computes out-
put value, which is waveform itself.

Dynamics of the pair neuron is completely de-
scribed by eight parameters, 2 initial values, 2
time delay constants, 4 connection weight val-
ues. In an 8-dimension space of parameters,
the region which gives this system lasting os-
cillation seems to be small. One of such region
is given if weight values connecting each other
are asymmetric. In this condition, 2 output val-
ues of a pair neuron spikes by turns, and this
pair neuron functions as a kind of oscillator. It
is also possible to use only one of the outputs
from the pair neuron as waveform itself, but
the third neuron, the output neuron, is used
for producing more complex, rich waveform.

An example of a waveform of 1 pair model is
shown in Fig. 1, where “u0” is the output from
the neuron No.0, “ul” is the output from the
neuron No.1, “Output” is the output from the
output neuron, that is waveform itself. Param-
eters of neurons are described in Fig. 2.

Frequency of the waveform mainly depends
on the time delay constant 7, and the total
waveform chiefly depends on values of con-
nection weight. Because values of connection
weight and feedback loop do not directly pro-
duce waveforms, it is difficult to predict the pro-
duced waveform while hand-tuning except for
the time delay constant 7.

Another example of a waveform of 1 pair
model is shown in Fig. 3, and parameters are
shown in Fig.4. In this case, feedback terms
are increased.

In this way, we can make various oscilators by

Feb. 2002

Fig.2 Parameters to produce waveforms in Fig. 1.
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Fig.3 Another example of the produced waveform
from 1 pair model.

Output

Fig.4 Another set of parameters to produce
waveforms in Fig. 3.

changing many parameters, even in this simple
1 pair model.

3.2 2 Pair Model and 3 Pair Model

2 pair model is composed of 2 pair neurons
and 1 output neuron (Fig. 5). This model has 2
oscillators, frequency of each oscillator depends
on its time delay constant 7. Therefore this
model resembles 3 operator model in FM syn-
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Fig.7 An example of the produced waveform from 2
pair model.

thesis in a sense (Fig.6). By modifying two
time delay constants, various waveforms can be
produced (Fig. 7).

As shown in Fig. 5, in this example, the ratio
of the 2 time delay constants of 2 pair neurons
is 1.5, thus harmonics of the sound can be con-
trolled.

And more, by slightly modifying the time
delay constant of one of neurons (ex. Neuron
No.10 in Fig.5), the output of the right pair
neuron can be slightly fluctuated, and the pro-
duced sound also can be slightly fluctuated.

In the same way, we can produce more com-
plex waveform by adding more pair neurons.
Figure 8 is an example of 3 pair model, and
Fig. 9 shows parameters to produce waveforms
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Fig.8 An example of the produced waveform from 3
pair model.
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Fig.9 Parameters to produce waveforms in Fig. 8.

in Fig. 8.

4. Sound SynthesisVariation 2: Resyn-
thesis Model

“Sound Synthesis Variation 2” in this section
introduces resynthesis model by Recurrent Neu-
ral Network.

4.1 APOLONN

Some architectures of recurrent neural net-
works can be trained to learn spatiotemporal
pattern ¥-®) and chaotic dynamics %7,

Adaptive nonlinear pair oscillators with local
connections, APOLONN )| is one of the archi-
tectures that was applied for speech synthesis
of “Ah” sound (sampling ratio was 4kHz) 7).
An APOLONN consists of many pairs of oscil-
lators. A pair of oscillators is locally connected
with its neighboring pairs, and all neurons are
connected to one neuron; the output neuron.

Each pair of oscillators generates various
kinds of complex patterns depending on its pa-
rameters, such as 7; or its weight connections.
Since each pair is locally connected to the neigh-
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Fig.10 Sampled data of the sound of the piano, and
the training data (denoted between the 2 ar-
rows).
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Fig.11 Training data of the piano. 5,016 samples.
The note is A3.

boring pairs, oscillations of a pair are not in-
dependent from another. The total system
can produce further complex nonlinear patterns
that are rich in frequencies.

4.2 Resynthesis of the Sound of the Pi-

ano

An APOLONN is trained to learn waveforms,
including fluctuations of amplitude and period-
icities, of an acoustic musical instrument (See
Ref. 7) for learning algorithm details).

A waveform of a piano tone (A3, 440Hz),
known as a mixture of attack noise, simple
vibrations and their fluctuations, is used for
the teacher signal®. The data were sampled
in 16-bit integer format at a sampling rate of
44.1 kHz.

Figure 10 is the sampled data of the sound
of the piano, and the training data is denoted
between the 2 arrows. This part, shown in
Fig. 11, is relatively flat; 46 periods after the
attack. 5,016 samples are used for the train-
ing. To look into the chaotic dynamics of the
data, 3-dimensional phase space trajectory is
also shown (Fig. 12).

20 pairs of oscillators were used in the simula-
tion. 7; of each pair was set to slightly different
from the neighboring pair. The ratio of the 7;
between two neighboring pairs was 0.9.

After 990 iterations, error signal became suf-
ficiently small. An output of the recurrent neu-
ral network, shown as Fig. 13, indicates that
the APOLONN can learn some complex tem-
poral pattern. 3-dimensional phase space tra-
jectory, presented as Fig.14, shows that the
APOLONN has learned even fluctuations of the
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Fig.12 Phase space trajectory of the training data
of the sound of the piano.
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Fig.13 Produced waveform by resynthesis of the
sound of the piano by RNNS.
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Fig.14 Phase space trajectory of the data by resyn-
thesis of the sound of the piano by RNNS.

original sound data.
By changing some parameters, such as 7; and
weight connections, new sound data is easily

synthesized.
4.3 Resynthesis of the Sound of the
Violin

The sound of the piano is a good example of
“decaying sound”. The other good example is
a sound of the violin, which is “lasting sound”.
In this section, resynthesis of the sound of the
violin is shown.

The data were sampled in 16-bit integer for-
mat at a sampling rate of 22.05kHz?%). The
note was G, open 4th string. This part, shown
between the two arrows in Fig. 15, is used for
teacher signals. It has 3,792 samples, 34 peri-
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Fig.15 Sampled data of the sound of the violin, and
the training data (denoted between the 2 ar-
rows).
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Fig.16 Teacher signals of the sound of the violin.
3,792 samples (0.17 sec).
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Fig.17 The beginning of 300 samples of the teacher
signals.

ods of 0.17 second (Fig. 16). Figure 17 is the
head part of this teacher signals.

To look into the dynamics of the data,
3-dimensional phase space trajectory is also
shown (Fig.18). Time lag constant is set to
30 samples.

As an architecture of recurrent neural net-
work, an APOLONN is adopted 1)-)~7).
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Fig.18 Phase space trajectory of the teacher signals
of the sound of the violin.
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Fig.19 Resynthesized waveform of the violin by
RNNS (iter=>5,000, 300 samples).

The learning process was done by a software
simulation. 25 pairs of oscillators were used in
the simulation. The ratio of the 7; between two
neighboring pairs was 0.9.

One of the leading feature of RNNS is the
possibility of resynthesis of the sound using con-
nection weight values. This system is fully de-
scribed by many differential equations, time un-
limited sound resynthesis is possible.

By reading connection weight after learning
of 5,000 iterations, new sound is resynthesized.
The head 300 samples of the sound is shown in
Fig. 19.

On the other hand, Fig.20 is a waveform
of another sound by reading connection weight
during learning of only 100 iterations. This
figure shows possibilities of a harsh decreasing
sound resynthesis without any envelope filters.

5. Concluding Remarks

A new technique of sound synthesis, RNNS
(Recurrent Neural Network Synthesis), is pre-
sented.

RNNS has two ways of sound synthesis, one



224 IPSJ Journal

01

‘Gv22_4_s_11_00100_head300.xgraph’

output

L L L L L
0 0.05 01 015 0.2 0.25 0.3
t

Fig.20 Resynthesized waveform of the violin by
RNNS (iter=100, 300 samples).

sound synthesis variation “hand-tuning model”
is by modifying parameters of recurrent neural
networks composed of several neurons. It re-
sembles FM synthesis in a sense. It is shown
that it is possible to synthesis new sound by re-
current neural network. Since this is composed
of relatively small numbers of neurons, it is pos-
sible to synthesize realtime in software.

And as another variation, “resynthesis mod-
el”, a sound synthesis by resynthesis of the
sound by RNNS is shown. Using connection
weight values after learning process or dur-
ing learning process, both resynthesis of the
original sound and synthesis of new sound are
shown.
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