TR TR 7 2 45 38] (WA RIGA4E B 1) &[5 Ko & 759

2N-4

Bernady O. Apduhan,

Nobuhisa Tokuzaki,

ADAPTING THREADS ON SPP(Self synchronizing Parallel Program)
PROCESSES IN A UNIX ENVIRONMENT

Tatsuhiro Ohshima,

*Itsujiro Arita

Dept. of Computer Science, Kyushu Institute of Technology

Tobata Campus,

Kitakyushu City

*¥Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology

Iizuka Campus,

1. INTRODUCTION

The SPPs are parallel programs
with a high~speed synchronizing
mechanism utilizing FIFO(First In First
Out) queue[4], to decrease the
overheads due to the synchronization of

operations in a multiprocessor system.
We apply the concept of SPP in the
design of the distributed operating
system of our HYPHEN B-16 Multi-

microprocessor System project.

In the sections that follow, we
describe the abstraction of SPP
processes, adapting the thread concept
in a UNIX environment. .

2. THE SELF SYNCHRONIZING
PARALLEL PROGRAM

program, with
data-~dependency
applying appropriate
rules, can be transformed into a
precedence graph, known as Self
synchronizing Parallel Program[3]. SPPs
are represented in terms of processes,
segments and tasks. A task is a unit of
execution in SPP and specifies a
sequence of operations that are
executed continously without
interruption. A segment is a unit of
allocation, i.e., all the tasks
included in a segment must be allocated
to the same processor module. The
program structure of SPP is shown in
Figure 1. -)

A sequential
consideration to its
relation and by

pmo0 pmi pm2

SPP process

segment 1 segment 2 segment 3

task 1 task 2 task 3
task 4 task 5
task 6

Figure 1. The Program Structure of SPP.

Iizuka City

In order to schedule the
execution of the tasks, each processor
module has its own FIFO queue where the
entry addresses of the tasks to be run
are placed or removed by two special
purpose instructions; namely, ’'parallel
branch’ and ’exchange task’, which
operate on the FIFO queues.

3. THE SPP PROCESSES
IN A UNIX ENVIRONMENT

3.1 The Driving Forces

The development of the new SPP
process abstraction was motivated by
the increasing complexity of
distributed and multiprocessor
environments and the imminent needs of
modern applications. In the
conventional UNIX, many different
system calls are involved in process
control, resulting in high overhead on
the part of the operating system.

3.2 The Abstraction Environment

The +thread is the basic unit of
CPU utilization in the Mach kernel[l],
which 1is roughly equivalent to an
independent program counter operating
within a task. It is the specification
of an execution state within a task.
All threads within a task share access
to all resources. Mach allows multiple
threads to exist(execute) within a
single task., A task is generally a high

overhead object(much like a process),
whereas a thread is relatively low
overhead object. On tightly coupled
shared memory multiprocessors, multiple
threads within the same task may
execute in parallel. Thus, an
application can use the full

parallelism available, while incurring
only a modest overhead on the part of
the kernel.

The above mentioned features and
capabilities of threads, make it so
attractive to our multi-microprocessor
system project. The adaptation
structure 1is shown in Figure 2. The

760

threads correspond to the SPP segments.
The thread concept allows multiple SPP
tasks to exist within a single SPP

segment, but one SPP segment may
contain many SPP tasks. For
multiprocessor systems, threads
utilizes the wait system call for
synchronization. In the HYPHEN B-16
Multi-microprocessor System, the

'EXchange Task’® instruction is used and
multiple SPP tasks from one SPP segment
may be executed in parallel. An SPP
task may be created, destroyed,
suspended and removed.

Likewise, SPP segments may also be
suspended or resumed. An SPP task may
only execute when both it and its SPP
segment are resumed. Resuming an SPP
segment does not cause all component
SPP tasks to begin executing, but only
those SPP tasks which are not
suspended.

4. CONCLUSION

With this new abstraction of SPP

processes, we anticipate to gain
substantial performance benefits. As of
this writing, the verification and
development on the above mentioned

model of SPP processes are well under
way on the Apollo DOMAIN, before its
implementation to the HYPHEN B-16
hardware. The on-going development of
this new model of SPP processes has
lead to the key aspects and
considerable refinements in the design
of the HYPHEN B-16 Operating Systen.

REFERENCES
[1] Accetta, M., et al., "Mach: A New
Kernel Foundation for UNIX
Development”", in Proceedings of USENIX
1986 Summer Conference, pp.93-112.
[2] Apduhan, B.O., et al., "The
Implementation of SPP(Self

synchronizing Parallel Program) Kernel
Functions in a UNIX Environment", 1987
Denki Kankei- Gakkai Kyushu Shibu
Rengoukai Taikai Rombunshou, Okinawa,
October 1987.

[3] Arita, 1I., "On a Parallel Program
with Synchronizing Mechanism using FIFO
Queue(I) -Self synchronizing Parallel
Program", Trans. IPSJ, Vol.24, No.2,
1983(in Japanese).

[4] Arita, I., Sueyoshi, T., " On a
Parallel Program with Synchronizing
Mechanism using FIFO Queue(III) -
Execution Control Mechanism", Trans.
IPSJ, Vol.24, No.6, 1983(in Japanese).
{5] Baron, R.V., et al., " MACH Kernel
Interface Manual ", Dept. of Computer
Science, Carnegie Melon University,
January 1987.

Shell
fork
Shell Shell”
child)
wait exec SPP
o
49“\ d‘g‘;
R N
oo
exit Par"“e‘ PB
5ranch =3
spP Spp
segment 5Seg¢fw segrient
1 2 n
ooo0

Figure 2. The Adaptation Structure.

