
Vol. 43 No. 5 IPSJ Journal May 2002

Regular Paper

Low-Energy Design Using Datapath Width Optimization

for Embedded Processor-Based Systems

Yun Cao† and Hiroto Yasuura†

This paper presents a novel system-level technique that minimizes the energy consumption
of embedded processor-based systems through datapath width optimization. It is based on the
idea of minimizing energy consumed by redundant bits, which are unused during execution
of programs by means of optimizing the datapath width of processors. To minimize the
redundant bits of variables in a given application program, the effective size of each variable
is determined by variable size analysis, and Valen-C language is used to preserve the precision
of computation. Analysis results of variables show that there are average 39% redundant
bits in the C source program of MPEG2 video decoder. In our experiments for several real
embedded applications, energy savings without performance penalty are reported and range
from about 10.8% to 48.3%.

1. Introduction

Minimizing power consumption of embedded
systems is a crucial task. Battery-operated
portable systems demand tight constraints on
energy consumption. Better low-power circuit
design techniques and advances in battery tech-
nology have helped to increase battery lifetime.
On the other hand, managing power dissipation
at higher design levels can considerably reduce
energy consumption, and thus increase battery
lifetime. Energy consumption at all design lev-
els should be considered to reduce power of the
whole embedded system.
We have developed a design platform, which
consists of a Valen-C retargetable compiler 2),
soft-core processor (Bung-DLX)1),3) and a
cycle-based simulator 4). We also have done
some researches on reduction of area and cost
for embedded core-based systems 5),6). In this
paper, we focus on minimizing energy dissipa-
tion and present a system-level technique for
embedded processor-based systems, which min-
imizes energy consumption of the whole system
while providing adequate performance level. In
the initial design phase of our approach, we de-
sign a system with a soft-core processor, data
RAMs, instruction ROMs and logic circuits.
Then we analyze the effective bit width of each
variable of a given application program. After
that, using the results of analysis, we rewrite
the application program in Valen-C language 2),
in which we specify the word length of each
variable satisfying accurate computation to re-

† Kyushu University

duce energy consumed by redundant bits in the
application program. After verifying the func-
tionality of the initial design, we modify several
design parameters of the soft-core processor, in-
cluding the datapath width, the number of reg-
isters and the instruction set. We can tune up
the soft-core processor to minimize the energy
consumption while satisfying the system perfor-
mance constraints. To get first-cut estimates of
energy consumption early in the design, a few
component-based power estimation models are
also developed, total energy is obtained by sum-
ming over all components of the system.
This paper is structured as follows: the
next Section 2 gives an overview of related
work. Section 3 describes our energy minimiza-
tion technique by datapath width optimization.
Section 4 presents our energy estimation mod-
els. Experiments and results are shown in Sec-
tion 5. Finally, Section 6 concludes our work.

2. Related Work

Hardware and software techniques to reduce
energy consumption have become an essential
part of current system designs. Extensive re-
searches on power optimization from circuit
level to system level have been conducted in
these recent years. Such techniques have partic-
ularly targeted the memory system 7)∼9) due to
the prevalent use of data-dominated signal and
video applications. Reference 14) focuses on
exploiting cache to reduce power consumption.
The work 11) presented an architecture-oriented
power minimization approach. A power and
performance simulation tool that can be used
to do architecture-level optimizations has been

1348

Vol. 43 No. 5 Low-Energy Design Using Datapath Width Optimization 1349

Fig. 1 An energy minimization flow using datapath width optimization.

introduced by Sato, et al. 12). The approach 13)

uses a multiple-voltage power supply to mini-
mize system-power consumption. A framework
for describing the power behavior of system-
level designs was proposed by Ref. 10). The
paper Ref. 15) proposed a low power hardware/
software partitioning approach using a high uti-
lization rate of the involved resources.
As far as we know, this paper first present a
system-level energy minimization approach in
which designers can control the width of dat-
apath freely. The energy consumption of the
whole system is drastically reduced without de-
cline of performance by optimizing the datap-
ath width.

3. An Energy Minimization Approach

In the design of consumer electronic systems,
designers have to manage rapid increase of com-
plexity of a target system with requirments on
high-performance and low-energy comsumption
under the tight constrait of short design time.
Therefore, core-based solutions are proposed for
embedded system design. Our approach gives
designers a freedom to determine the datapath
width of soft-core processor, because the datap-
ath width of a processor has great impacts not
only on power consumption and performance
of the processor but also on those of memo-
ries. Optimizing datapath width for each given
application is an effective approach to mini-
mize energy consumption of the whole embed-
ded systems.

3.1 Problem Description
We focus on reducing the energy consumption
of an embedded system by tuning the datapath
width of processors. We define an embedded
system as a processor along with its data mem-
ory and instruction memory, all implemented
on a single chip (SOC). The soft-core proces-
sor (Bung-DLX) that we used in this paper is a

variable configuration RISC processor that can
be synthesized to any bit-width and register file
size. The instruction memory is implemented
in ROM and the data memory is implemented
in RAM that has a word length equal to the
width of the processor datapath. The instruc-
tion word length remains invariant in this pa-
per.
Valen-C retargetable compiler is produced by
a multi-precision compiler generator that au-
tomatically emits the necessary multi-precision
instructions, according to the processor datap-
ath and the bit width specification of each vari-
able.
The energy minimization problem is formu-
lated as:

minimize Energy(w)
subject to Cycle(w) ≤ Ccst

Area(w) ≤ Acst

Where Energy(w), Cycle(w) and Area(w) are
functions of the datapath width w, Ccst and
Acst are the constraints on the execution cycle
and area respectively. This is a nonlinear opti-
mization problem. The overview of our energy
minimization algorithm is described in Fig. 2.

3.2 Our Approach
Figure 1 shows our proposed approach,
which consists of the following phases:
• Phase 1: The source program of the tar-
get application, which was originally writ-
ten in C or other language, is rewritten in
Valen-C language, after the bit width of
each variable is analyzed. For instance, if
the variable x requires at most 11 bits, the
programmer can write int11 x; in the vari-
able declaration of Valen-C program.

• Phase 2: Bung-DLX is customized to dif-
ferent soft-core processors by choosing dif-
ferent design parameters, such as the data-
path width and the address size of the data

1350 IPSJ Journal May 2002

• Input:
– source program: Sj

– input data: Din

– the constraint of cycles: Ccst

• Variable:
– datapath width wi ∈ W = {w1, w2, . . . wn}

• Output:
– execution cycles ci ∈ C = {c1, c2, . . . cn}
– the minimal energy consumption Emin

when ck ≤ Ccst

– the datapath width wk when Ek = Emin

• Phase 1: Analysis
– static analysis of variable size

xi ∈ X = {x1, x2, . . . xn}
– compile the source program Sj

– dynamic analysis of variable size
yi ∈ Y = {y1, y2, . . . yn}

• Phase 2: Soft-core processor (Bung-DLX)
– define the design parameters

∗ datapath width wi

∗ the number of registers ni

• Phase 3: Valen-C program V Sj

– variable declaration of bit width (xie and
yie)

– compile the Valen-C source program V Sj

for customized Bung-DLX at wi

• Phase 4: Estimation
– for wi ∈ W

∗ calculate the execution cycles ci

∗ calculate the energy consumption Ei

∗ get (Emin , wk) when ck ≤ Ccst

– return (Emin , wk)

Fig. 2 Pseudo code of the algorithm for energy
minimization.

memory.
• Phase 3: The Valen-C source program of an
application is compiled for the customized
soft-core processors. Retargetable Valen-C
compiler generates the assembly code from
the source program. As a result, different
embedded systems are generated based on
different customized processors and assem-
bly codes. At this phase, the size of both
the data memory and the instruction mem-
ory of each system are estimated.

• Phase 4: The systems generated at phase
3 are evaluated. Execution cycles, mem-
ory size and energy consumption are esti-
mated. The impact of the design parame-
ters on the energy consumption and on the
system performance is evaluated, the em-
bedded system of the minimal energy con-
sumption, which satisfies the design con-
straints, is chosen among those systems.

3.3 Variable Size Analysis
In order to optimize datapath width, the ef-
fective size of each variable in an application
program needs to be analyzed. This section ex-

plains our methods to analyze effective sizes of
variables in C programs. In this paper, we de-
fine effective size as the smallest size which can
hold both maximum and minimum values of a
variable. In many cases, some bits of a variable
are never used during execution of a program.
If a variable x of unsigned integer type whose
value is in [0, 2000], i.e., between 0 and 2000,
then the number of necessary bits of x is 11,
because the 11-bit size is large enough to hold
any value in [0, 2000].
We use two methods to analyze effective size
of variables. One is dynamic analysis, which
runs programs and monitors the value of each
variable. Dynamic analysis is one kind of
simulation-based method whose results depend
on input data sets given to the programs. The
other is static analysis.
For static analysis, when the maximum value
of an unsigned integer variable x is nmax , the
effective size of x, e(x), is given as follows:

e(x) = log2(nmax + 1) (1)
For a signed integer x with a maximum value
nmax and a minimum value nmin , e(x) is defined
as follows:

e(x) = �log2 N�+ 1 (2)
where

N = max(|nmax |+ 1, |nmin |) (3)
Static analysis is an efficient method to an-
alyze the effective size of variables. However,
in many cases when we can not predict the as-
signed value of a variable unless we execute the
program, such as the case of unbounded loops,
static analysis becomes insufficient. As a solu-
tion to this problem, we adopted dynamic anal-
ysis in our approach.

Figure 3 shows a part of the algorithm used
for dynamic analysis. In dynamic analysis, we
execute the program Sj with input data Din

and monitor the values yi assigned to each vari-
able ni. We insert the monitoring function
checkbits to the assignment statement of vari-
ables. The arguments of the monitoring func-
tion are the variable name ni and its assigned
value yi. The monitoring function checkbits
checks the value assigned to the variable, veri-
fies the bit width required and then memorize
it. After that, it keeps the bit width temporar-
ily in a table. When the monitoring function
checks the same variable with a different as-
signed value, it compares the new bit width
with the bit width already memorized in the
table, and keeps the bigger one in the table and
so on. Thus, the required bit width yie of the

Vol. 43 No. 5 Low-Energy Design Using Datapath Width Optimization 1351

• Initial values:
– initialize the table for int type vari-

ables,
– initialize the table for short type vari-

ables,
– initialize the index for tables i = 0

• Input:
– the name of variable:

ni ∈ N = {n1, n2, . . . , nm}
– the value of variable:

yi ∈ Y = {y1, y2, . . . , ym}
• Output:

– the name of variable:
ni ∈ N = {n1, n2, . . . , nm}

– the effective value of variable:
yie ∈ Yie = {y1e, y2e, . . . , yme}

• Algorithm:
int checkbits(char � name,int yie) {
while ((strcmp((char �)nameint [i], ni) �= 0)
and (i < Ntableint)) {

i = i + 1; }
if (i == Ntableint) then {

strcpy((char �)nameint [i], ni);
Ntableint = Ntableint + 1; }

bitstableint [i] |= yie;
return(ni, yie); }

Fig. 3 A part of the algorithm for dynamic analysis.

variable ni is got after executing the program.
3.4 Efficient Use of Data Memory
Since in many cases, high-level specifications
are devoted to describe functionalities of tar-
get systems rather than implementation details,
they often contain a lot of redundancies such
as duplicated computations and never executed
code. Therefore, the specifications must be op-
timized to remove the redundancies for energy-
efficient design. Some redundancies are intro-
duced in size of variables. For example, in C
programs, a variable whose value is between 0
and 1000 is often declared as the int type, i.e.,
usually 16 or 32 bits depending on target pro-
cessors, and then some upper bits make non-
sense. This means that the memory has many
unnecessary bits, which do not essentially con-
tribute to the calculation of programs. There-
fore redundant bits should be removed to re-
duce power consumption.
C language provides for three integer sizes,
declared using the keywords short, int and long.
The compiler designer determines the sizes of
these integer types. In many processors, the
size of short is 16 bits, int is 16 or 32 bits,
long is 32 bits. On the other hand, in Valen-
C, programmers explicitly specify the required
bit width of each integer data type. Thus it
becomes possible to reduce the energy of the
datapath and the data memory, which is dissi-

pated by the redundant bits. For instance, if
variables x, y, and z require 12, 20 and 24 bits
respectively, the programmer can write “int12
x; int20 y; int24 z;” in the variable declaration
of Valen-C program. If a processor with a dat-
apath width of 20 bits is used in the system,
the total memory size will be 80 bits. More-
over, the unused bits in the data memory will
be 24 bits. On the other hand, if a processor
of a datapath width of 12 bits is used, the to-
tal data memory size will become only 60 bits,
and the unused memory size will decrease to
4 bits. As a result, specifying the word length
required for each variable and changing the dat-
apath width have a significant role in reducing
the data memory size of a system. Therefore it
also affects the power consumption of the sys-
tem.

3.5 Datapath Width Optimization
System designers can tune the value of the
datapath width in accordance with the charac-
teristics of target system to deliver most suited
processor. Designers can reduce the datapath
width until the single precision point (SPP)
without performance loss 5). SPP is the pro-
cessor datapath width, which is equal to the
bit width of the largest variable in a program.
It is the smallest datapath width at which all
instructions can remain single-precision. De-
signers may obtain better solutions, more power
savings by shrinking the datapath less than
SPP, under performance constraints. Figure 4
shows the overview of our datapath width op-
timization algorithm.

3.6 Power versus Performance Trade-
off

Minimizing power consumption is not sim-
ply an altruistic activity. A device consuming
less power will accrue several desirable advan-
tages such as longer battery life for wireless de-
vices, but somewhat less obvious advantages,
such as reliability and performance. The dat-
apath width of a processor strongly affects the
power consumption of the whole system includ-
ing the processor, data memories and instruc-
tion memories, it also affects the execution cy-
cles of a given task, i.e., narrowing the datapath
width less than SPP will cause the increase of
execution cycles because of multiple-precision
operations. For example, that an addition of
20 bit data is executed by only one instruction
on a 20 bit processor is assumed, If the datap-
ath width becomes to 10 bits, two instructions
including additions of lower 10 bits and high

1352 IPSJ Journal May 2002

• Input:
– assembly code of Valen-C program VSasj

• Variable:
– datapath width: Wi∈W={W1,W2, . . . ,Wn}

• Output:
– the minimal energy consumption Emin

when Ck ≤ Ccst

– the optimal datapath width Wk

when Ek = Emin

– the cycle Ck when Ek = Emin

• Algorithm: DaPO(VSasj , Emin , Wk, Ck) {
Wi = W1;
while (Wi �= Wn + 1) {
GetC (Ci);
if (Ci ≤ Ccst) then {
Eproc =

∑
j∈I

ej × Cyclej ;

eROM = 50.97 ∗ Wi ∗
√

Nwords + 1.4;
eSr = 24.9 ∗ Wi ∗

√
Nwords + 56;

eSw = 197 ∗ Wi ∗
√

Nwords + 369;
EROM = eROM ×

∑
i∈I

Cyclei;

ESRAM = eSr × Cload + eSw × Cstore ;
Emem = EROM + ESRAM ;
Ei = Eproc + Emem ;
GetMIN (Ei);
GetODC (Wk, Ck); }

Wi = Wi + 1; }
return(Emin , Wk, Ck); }

Fig. 4 Pseudo code of the algorithm for datapath
width optimization.

10 bits with carry are required. So trade-offs
exist between datapath width and execution cy-
cles. Although a processor with narrower data-
path width dissipates lower power per clock cy-
cle, the total energy for the task is not reduced
always by narrowing the datapath width. Thus,
for a given target system, trading off the power
consumption and performance is an important
work.

4. Energy Estimation Models

This section describes energy consumption
models. The total energy consumption, E, is
the summation of energy consumed by the pro-
cessor (Eproc) and memories (Emem).

E = Eproc + Emem (4)
We estimated Eproc and Emem separately, and
got the energy consumption model of our soft-
core processor generated by HITACH 0.5um
CMOS technology and the energy consumption
models of memory generated by Alliance CAD
System Ver.3.0 with 0.5um double metal CMOS
technology.

Eproc is given by
Eproc =

∑

i∈I

ei × Cyclei (5)

where
ei: Average energy of instruction i

Datapath Pc Ps Ptotal Savings
Width (bit) (mw) (mw) (mw) (%)

32 26.39 56.15 82.54 -
28 20.33 46.15 66.48 19.46
22 19.95 44.39 64.34 22.05
15 13.62 32.54 46.16 44.08
8 10.67 24.69 35.36 57.16

Fig. 5 Power of Bung-DLX (Vdd = 3.3V).

Cyclei: The number of execution of instruc-
tion i

I: Instruction set of Bung-DLX
ei is obtained by performing post-layout sim-
ulation of switch-level. After several simula-
tions, we obtained the empirical energy model
at several datapath widths in Fig. 5, where
power savings are got by comparing to the
power consumption of 32 bits Bung-DLX. The
power dissipation in static CMOS can be di-
vided into static, dynamic and short-circuit
power. Because static power and short-circuit
power are far less than dynamic power, we just
focus on dynamic power, which consists of Cell
Internal Power (Pc) and Net Switching power
(Ps).

ei is shown as follows:

ei =
1
2
× V 2

dd

∑

net

[Cj × Sj + Eck
× Sk] (6)

where
Vdd: Supply voltage
Cj : Load capacitance of net j
Sj : The average number of switching of net j
per clock cycle

Eck
: Internal power of cell k

Sk: The average number of switching of cell
k per clock cycle

Emem is estimated as follows:
Emem = EROM + ESRAM (7)

EROM = eROM ×
∑

i∈I

Ci

ESRAM = eSr × Cload + eSw × Cstore (8)

Vol. 43 No. 5 Low-Energy Design Using Datapath Width Optimization 1353

where
eROM : Energy per read access to ROM
eSr(eSw): Energy per read (write) access to
SRAM

Cload(Cstore): The number of read (write) ac-
cesses of SRAM
The access energy of memories (eROM , eSr,

eSw) is obtained from the SPICE simulation of
several memories with the different configura-
tions. As the result, we have obtained the esti-
mation models as follows:

eROM = 50.97 · b ·
√

Nw + 1.4[pJ/C] (9)

eSr = 24.9 · b ·
√

Nw + 56[pJ/C] (10)

eSw = 197 · b ·
√

Nw + 369[pJ/C] (11)
Where b is the word width of the memory and

Nw is the number of words. pJ/C means one
pJ per cycle.

5. Experiments and Results

In this section we present experiments and re-
sults based on several real applications to eval-
uate our proposed approach. We mainly illus-
trate how we use our approach to minimize en-
ergy consumption of MPEG2 video decoder, a
relatively large program.
In the experiments, we assumed the target
system, a SOC chip, which consists a Bung-
DLX processor, a ROM and a SRAM. Bung-
DLX is a non-pipelined, simple RISC processor,
which has several design parameters including
the datapath width and the number of regis-
ters. All instructions are executed within a sin-
gle machine cycle. The ROM and the SRAM
are used as instruction memory and data mem-
ory respectively. These memories are generated
by Alliance CAD System Ver. 2.0 with 0.5µm
double metal CMOS technology. For simplicity,
we assumed that no other core is integrated in
the SOC chip.

5.1 Variable Size Analysis for MPEG2
Our program is based on Mpeg2decode pro-
gram from the MPEG Software Simulation
Group. It is a player for MPEG-1 and MPEG2
video bitstreams. Mpeg2decode is an imple-
mentation of an ISO/IEC DIS 13818-2 decoder,
whose emphasis is on correct implementation of
the MPEG standard and comprehensive code
structure. We rewrote it in Valen-C with about
6650 lines. The MPEG2 core consists of sev-
eral function blocks such as a soft-core proces-
sor, IDCT blocks, a couple of motion estimation
blocks, a motion compensation block, variable
length encoding, decoding blocks and so on.

Table 1 The number and types of the variables
(MPEG2 decoder).

types Num. types Num.
int 384 unsigned 35

pointers 101 short 6
char 3 unsigned char 21

Table 2 Static analysis results (MPEG2 decoder).

E.Size N.of Variables E.Size N. of Variables
1 bit 50 12 bits 14
2 bits 17 14 bits 46
3 bits 10 15 bits 2
4 bits 11 16 bits 39
5 bits 8 17 bits 2
6 bits 11 18 bits 2
7 bits 12 26 bits 2
8 bits 9 27 bits 4
9 bits 7 28 bits 3
10 bits 3 29 bits 3
11 bits 6 30 bits 7
Total 5,656 bits −34% (8,576 bits)

Table 3 Dynamic analysis results (MPEG2).

V.name E.size V.name E.size
fn 5 bits g2nc 7 bits
fl 12 bits rbx 12 bits
sn 6 bits rby 12 bits
nl 20 bits rec4s1 24 bits

gb32l 20 bits rec4s4 24 bits
gbl 20 bits rec4cs1 24 bits
gbn 5 bits rec4cs4 24 bits
g2ai 20 bits rechs1 24 bits

g2asign 20 bits rechcs1 24 bits
g2aincn 18 bits rec4as1 24 bits
g2anc 6 bits rec4as4 24 bits
gi 7 bits rechas1 24 bits

gsign 20 bits rechas2 24 bits
gincnt 6 bits rec4acs1 24 bits
g2i 7 bits rec4acs2 24 bits

g2sign 3 bits rechacs1 24 bits
g2incnt 7 bits rechacs2 24 bits
Total 1,056 bits 521 bits −52%

We analyzed the C source program of
MPEG2 video decoder and got some analysis
results. The number and types of the variables
in MPEG2 decoder are described in Table 1.
The results of static variable analysis are de-
picted in Table 2 (E.Size means effective size
of variable; N. of Variables means the num-
ber of variables), and that of dynamic analysis
are shown in Table 3 (V.name means variable
name). From Table 2 and Table 3, we can see
that there are many redundant bits in the vari-
ables of MPEG2 decoder C source program. We
got 34% reduction of bits from the static anal-
ysis and 52% from the dynamic analysis.
To verify our analysis results of variable size,
we used the following model.

1354 IPSJ Journal May 2002

Supply Voltage Vdd = 3.3V
D. W Ep(J) Es(J) Er(J) Et(J) Sav.
32 bits 0.85 85.76 70.55 157.2 -
30 bits 0.78 76.97 70.55 148.3 5.6%
28 bits 0.68 69.01 70.55 140.2 10.8%
26 bits 0.90 124.8 72.14 197.8 −25.8%
22 bits 1.03 108.6 109.8 219.4 −39.6%

Fig. 6 Energy consumption for MPEG2 decoder.

PSNR = 10× log10[
1
E

× 2552][dB] (12)
where, PSNR: Ratio of pick signal to noise

E: Mean-square error
Our experimental results of PSNR are infi-

nite, so it shows that the variables, which are
assumed according to the analysis results can
work exactly as that of the source program of
MPEG2 video decoder. Therefore, our analysis
results are verified.

5.2 Power and Performance Estima-
tion

This section reports some experimental data
concerning the use of our approach to reduce
energy consumption. The cycle count is ob-
tained by using our instruction-level simulator.
The input of the simulator is the assembly code,
which is generated by the retargetable Valen-
C compiler. Results of energy consumption Et

(shown in Fig. 6) include energy of a soft-core
processor (Ep), a data RAM (Es) and an in-
struction ROM (Er), where D.W is datapath
width. We use the energy consumption models
in Section 4. Apparently, the energy consump-
tion changes nonlinearly.

Figure 7 shows the energy consumption,
execution cycles and area (gates) of MPEG2
video decoder, and we got the optimal datapath
width, 28 bits for MPEG2 video decoder. Fig-
ure 8 describes the energy savings of our bench-
marks, such as Lempel-Ziv algorithm, ADPCM
encoder, and MPEG2 AAC decoder and so on.
No Opt. means the original datapath width
of Bung-DLX (32 bits). Opt. is the datapath
width where the whole system has the mini-

Fig. 7 Energy consumption, execution cycles and
area (gates) for MPEG2 decoder.

Energy Consumption (J)
Applications No Opt. Opt. Savings
Lempel-Ziv 0.9517 0.4919 48.3%
ADPCM 1.181 0.9187 22.8%
MPEG2 157.16 140.24 10.8%

Fig. 8 Energy savings for benchmarks.

mization energy consumption without perfor-
mance loss. For Lempel-Ziv algorithm, we got
energy savings of 48.3% at datapath width of
15 bits, for ADPCM encoder, energy savings
is 22.8% at datapath width of 19 bits and for
MPEG2 video decoder, the energy savings is
10.8% at datapath width of 28 bits. For differ-
ent application, the number of variables is dif-
ferent and the effective size of variables is also
different, therefore the optimal datapath width
of minimal energy is different. For a given ap-
plication, our approach just tries to take advan-
tage of the characteristics of the application to
reduce the energy consumption.

6. Conclusions

In this paper, we proposed a system-level
energy minimization technique through data-
path width optimization, which can suit the
complexity of embedded systems and stringent
time-to-market constraints. We also presented
a set of algorithms that minimize energy con-
sumption in system-level. We illustrated issues
and tradeoffs involved in the design. Our ex-

Vol. 43 No. 5 Low-Energy Design Using Datapath Width Optimization 1355

perimental results show that for a given appli-
cation we can reduce significantly the energy
consumption by datapath width optimization.
We have demonstrated energy savings without
performance penalty range from about 10.8% to
48.3%, which based on a number of real embed-
ded applications. Extending parameter-tuning
for low power to DSPs is our future work.

Acknowledgments This research was
partly supported by the Grant-in Aid for Sci-
entific Research (B) (2) 12558029 and VCDS
project of STARC.

References

1) Yasuura, H., Tomiyama, H., Inoue, A. and
Eko, F.N.: Embedded System Design Using
Soft-Core Processor and Valen-C, Journal of
Information Science and Engineering, No.14,
pp.587–603 (Aug. 1998).

2) Inoue, A., Tomiyama, H., Okuma, T.,
Kanbara, H. and Yasuura, H.: Language and
Compiler for Optimizing Datapath Width of
Embedded Systems, IEICE Trans. Fundamen-
tals, Vol.E81-A, No.12, pp.2595–2604 (1998).

3) Eko, F.N., Inoue, A., Tomiyama, H. and
Yasuura, H.: Soft-Core Processor Architec-
ture for Embedded System Design, IEICE
Trans. Electronics, Vol.E81-C, No.9, pp.1416–
1423 (1998).

4) Eko, E.N. and Yasuura, H.: A Cycle-Accurate
Simulator Toolkit for Soft-Core Processors,
Proc. Asia Pacific Conference on cHip Design
Languages (APCHDL ’99), pp.11–16 (Oct.
1999).

5) Shackleford, B., Yasuda, M., Okushi, E.,
Koizumi, H., Tomiyama, H. and Yasuura,
H.: Embedded System Cost Optimization via
Data Path Width Adjustment, IEICE Trans.
Information and Systems, Vol.E80-D, No.10,
pp.974–981 (1997).

6) Inoue, A., Ishihara, T. and Yasuura, H.: Flex-
ible system lsi for embedded systems and its
optimization techniques, Journal of Design Au-
tomation for Embedded System, Vol.5, No.2
(2000).

7) Panda, P.R., Catthoor, F., Dutt, N.D.,
Danckaert, K., Brockmeyer, E. and
Vandercappelle, A.: Data and Memory Opti-
mization Techniques for Embedded Systems,
ACM Trans. Design Automation of Electronic
Systems, Vol.6, No.2, pp.149–206 (2001).

8) Panda, P.R., Dutt, N.D., Catthoor, F.,
Vandercappelle, A., Brockmeyer, E., Kulkarni,
C. and Greef, D.: Data Memory Organiza-
tion and Optimizations in Application-Specific
Systems, IEEE Design & Test of Computers,

Vol.18, No.3, pp.56–68 (MAY–JUNE 2001).
9) Panda, P.R., Dutt, N.D. and Nicolau, A.: On-

Chip vs. Off-Chip Memory: The Data Parti-
tioning Problem in Embedded Processor-Based
Systems, ACM Trans. Design Automation of
Electronic Systems, Vol.5, No.3, pp.682–704
(2000).

10) Benini, L., Hodgson, R. and Siegel, P.:
System-level Power Estimation and Optimiza-
tion, International Symposium on Low Power
Electronics and Design, pp.173–178 (Aug.
1998).

11) Landman, P. and Rabaey, J.: Architectural
Power Analysis: The Dual Bit Type Method,
IEEE Trans. on VLSI Systems, Vol.3, No.2
(1995).

12) Sato, T., Nagamatsu, M. and Tago, H.: Power
and Performance Simulator: ESP and its Ap-
plication for 100 MIPS/W Class RISC Design,
IEEE Proc. Symposium on Low Power Elec-
tronics and Design, pp.46–47 (1994).

13) Hong, I., Kirovski, D., et al.: Power Optimiza-
tion of Variable voltage Core-Based Systems,
IEEE Proc. 35th Design Automation Confer-
ence (DAC ’98), pp.176–181 (1998).

14) Ko, U. and Balsara, P.: Energy Optimization
of Multilevel Cache Architectures for RISC and
CISC Processors, IEEE Trans. on VLSI Sys-
tems, Vol.6, No.2, pp.299–308 (1998).

15) Henkel, J.: A Low Power Hardware/software
partitioning Approach Core-Based Embedded
Systems, IEEE Proc. 36th. Design Automation
Conference (DAC ’99), pp.122–127 (1999).

(Received September 20, 2001)
(Accepted January 16, 2002)

Yun Cao is a Ph.D. can-
didate in Department of Com-
puter Science and Communica-
tion Engineering, Kyushu Uni-
versity, Japan. She received
her B.E. degree of Electron-
ics and Information Engineering

from Huazhong University of Science and Tech-
nology, China, in 1989. Her research interests
are hardware/software co-design, low power/
low energy system design and system design
methodology. She is a student member of IPSJ,
IEEE and ACM.

1356 IPSJ Journal May 2002

Hiroto Yasuura is a profes-
sor of Department of Computer
Science and Communication En-
gineering, Graduate School of
Information Science and Electri-
cal Engineering, and the director
of System LSI Center of Kyushu

University, Fukuoka, Japan. He received the
B.E., M.E., and Ph.D. degrees in computer sci-
ence from Kyoto University. His current in-
terests include parallel computer architectures,
hardware algorithms for VLSI, VLSI CAD, and
system design methodology. He is a member of
IPSJ, ACM, and IEEE.

