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A Genetic Algorithm for the Rectilinear Steiner Tree Problem

in VLSI Interconnect Layout

SHIN'ICHI WAKABAYASHI'

This paper proposes a genetic algorithm for generating a set of rectilinear Steiner trees for
the interconnect optimization problem in VLSI layout design. The algorithm produces a set of
rectilinear Steiner trees, whose geometrical and timing characteristics are different each other.
In the proposed genetic algorithm, each chromosome represents the topological structure of
a Steiner tree. An evaluation function is given to map it into the layout of a Steiner tree.
Steiner trees produced by the algorithm are Pareto-optimal with respect to the total wire
length and the maximum propagation delay, and the user can choose any tree among those
solutions as a final routing solution. Experimental results show that the algorithm efficiently
produces a set of alternative routes in VLSI interconnect optimization.

1. Introduction

The routing problem in VLSI physical design
is generally formulated as the problem of find-
ing a rectilinear Steiner tree, which connects
a given source with a set of sinks with verti-
cal and horizontal wire segments. The mini-
mum Steiner tree construction problem is an
NP-hard problem, and thus many heuristic al-
gorithms have been proposed'®). On the other
hand, with the advent of sub-micron geome-
tries in semiconductor technology, wire resis-
tance becomes a significant contributor to sig-
nal delay, and thus routing should be performed
under the timing constraints with an appropri-
ate delay model®.

Most of previous work on Steiner tree con-
struction considering timing constraints was
aiming at producing one Steiner tree as an out-
put for a given net®). However, there often ex-
ist cases, in which more than one trees are re-
quired to generate. For example, the rip-up and
reroute technique is common in LSI routing.
A set of Steiner trees helps the router to find
a better alternative route. Besides rip-up and
rerouting, a set of Steiner trees often gives the
good flexibility to the router. However, there
have been few previous algorithms, which could
effectively produce a set of Steiner trees with
different geometrical as well as timing charac-
teristics. Alpert et al. proposed a Steiner tree
construction algorithm, which smoothly com-
bine the minimum cost and the minimum ra-
dius objectives')?). Using this algorithm, a set
of rectilinear Steiner trees could be obtained by
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varying the value of a control parameter of cost-
radius tradeoff. However, this algorithm did
not directly treat the propagation delay. Cong
and Koh proposed a branch-and-bound-based
Steiner tree construction algorithm with wire-
sizing, which produced a set of required-arrival-
time Steiner trees, providing a smooth trade-
off among signal delay, wave form, and rout-
ing area®. Although this algorithm could pro-
duce a set of good alternative routes, due to its
branch-and-bound nature, the CPU time would
become large when the number of sinks is large.

In this paper, we propose an algorithm to pro-
duce a set of Steiner trees. The algorithm pro-
duces a set of rectilinear Steiner trees, whose
total wire length and signal propagation de-
lay are different each other. The proposed al-
gorithm is a genetic algorithm. Genetic algo-
rithms (GAs)®) are known to be robust heuris-
tic algorithms to solve optimization problems,
and for VLSI design areas, a number of GA
based algorithms have been presented!?)13).
For the (rectilinear) Steiner construction prob-
lem, a few GAs have been also proposed?-11).
In those previous GAs, a chromosome directly
represents the geometry of a Steiner tree. We
have a different approach to representing a solu-
tion of the problem. In the proposed GA, each
chromosome represents a topological structure
of a Steiner tree. An evaluation function is
given to map it into the layout of a Steiner tree.
Furthermore, the proposed GA has another fea-
ture, which also discriminates the proposed GA
from the previous ones. Steiner trees produced
by the algorithm are Pareto-optimal®) with re-
spect to the total wire length and the maximum
propagation delay, and the user can choose any
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tree among those solutions as a final solution.
As the interconnect delay model, we adopt the
Elmore delay model”. To evaluate the pro-
posed GA, we have implemented it on a work-
station, and compared it with the Steiner tree
construction algorithm proposed by Alpert, et
al.)2) . Experimental results show that the pro-
posed algorithm efficiently produces a set of al-
ternative routes in VLSI interconnect optimiza-
tion.

This paper is organized as follows. In Section
2, the delay model is given and the problem is
formulated. In Section 3, the proposed algo-
rithm is presented. Section 4 shows experimen-
tal results to evaluate the proposed algorithm,
and finally, Section 5 concludes with possible
directions for future research.

2. Preliminaries

2.1 Delay Model
As in most previous work on interconnect lay-
out optimization, we adopt the Elmore delay
model” for interconnects. For wire e, let I,
ce and r. denote length, capacitance, and re-
sistance, respectively. Further, let e, denote
the wire entering node v from its parent. We
use the following model for interconnects delay
Dwire:
Ce=Cy XleyTe =1y Xl
Dwire (ev) =Te, X (CEU/Z + C(TU))
where ¢, and r, are capacitance and resistance
for unit-length wire, respectively, T, is the sub-
tree rooted at v, and ¢(T),) is the total capac-
itance of T;,. If v is a sink, then ¢(Ty,) = cp,
where ¢ is the input load of the buffer. The
Elmore delay from source sg to sink s; is

tElmore(SO; Si) = Z Dwire(ev)-

ey €Epath(so,s;)

2.2 Problem Formulation

We use the total wire length and the maxi-
mum source-sink delay as our optimization ob-
jectives. Since there are two terms to be mini-
mized, in a usual formulation, one of two terms
would be handled as a secondary objective.
Linear combination of two terms as one unified
objective may be another common method for
this case. In this paper, however, we treat the
Steiner tree construction problem as a multi-
objective problem, and introduce the concept
of Pareto-optimality® to this problem.

Let P be a multi-objective optimization prob-
lem. For simplicity, we assume that two objec-
tive functions, f and g, are given to be mini-
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mized. Generalization to more than two objec-
tive functions is easy. Any solution of P, which
satisfies P’s all constraints, but does not neces-
sarily minimize any of two objective functions,
is called a feasible solution. Let s be a feasible
solution of P, and the values of two objectives
are represented as (f(s), g(s)). A feasible solu-
tion s is said to be a noninferior (or, nondom-
inated) solution if there is no feasible solution
s’ such that f(s') < f(s) and g(s’) < g(s). A
set of noninferior solutions is said to be Pareto-
optimal.

The Steiner tree problem in this paper is
stated as follows:

Given a source sy and n sinks s1, S2, ..., Sp
of a signal net S with given positions, find a
Pareto-optimal set of rectilinear Steiner trees
with respect to two objective functions, i.e.,
the total wire length of the tree and the max-
imum source-sink delay among all routes from
the source to sinks.

Note that, in VLSI design, any net will be
driven by a gate at the source, and due to the
fanout limitation of a gate, the number of sinks
of a net, denoted n, is bounded by some con-
stant. This constant depends on the semicon-
ductor technology, with which the VLSI design
is performed, but we can safely assume that the
number of sinks of any net is at most 30, and
in most cases, it is less than 20.

3. The Algorithm

3.1 Outline of the Algorithm

The algorithm presented in the following is
a genetic algorithm (GA). GA is known to be
a robust heuristic algorithm to complex opti-
mization problems® . For VLSI physical design,
many GAs have been also proposed!?)13).

The proposed GA is a generational GA,
and maintains the population consisting of m
chromosomes, each representing a rectilinear
Steiner tree. Chromosomes in the current gen-
eration are recombined and mutated, and se-
lection is performed to produce a new genera-
tion. Mapping from a chromosome to a tree is
given, and the total wire length and the maxi-
mum source-sink delay of the tree are regarded
as the fitness values of the chromosome. The
proposed mapping is very effective to explore
the search space efficiently. Based on the fit-
ness values, tournament selection is performed
to construct a new generation with elitist strat-
egy. The algorithm repeats those procedures
within the user specified number. An overview
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generate(Pco); °?2 +
luate( Po);
evaluate(Pc); . o 1 +/ \+
repeat noOfGenerations times: e N\
Py = 05 \+ + +
repeat noOfOffspring times: e0 / \ / \ /\
select p1,p2 € Pc;
Py := PyUmutate(crossover(p;, 5 I o3 0123456
p2)); (b) structure tree
end; 6 o4 012++34+56+++

evaluate(Po U Py);
Pg = select(Pc U Py );
end;
Fig.1 Overview of the algorithm.

of the algorithm is shown in Fig. 1.

3.2 Genotype

In GA, a genotype is a coding of the informa-
tion constituting a chromosome. In our prob-
lem, we should represent a rectilinear Steiner
tree with an appropriate coding. There may
be a number of possible representations of a
Steiner tree. In general, for representing a
Steiner tree, there are two types of information,
that is, geometrical information and topologi-
cal information. The former specifies how each
wire segment in the tree is actually laid out, and
the latter specifies the parent-children relations
among nodes. In the previously proposed GAs
for the Steiner tree problem, those two types of
information were both coded in a chromosome.
In Ref.9), a GA for the Steiner tree problem
was proposed, in which a chromosome was an
assembly of the x, y-positions of a fixed num-
ber of Steiner points. Since the layout area of
a Steiner tree in VLSI layout design is large
in general, using this chromosome, it would be
very difficult to realize the efficient search in
the solution space of the problem. In Ref.11),
a GA for the rectilinear Steiner tree problem
was proposed, in which a chromosome consists
of n — 1 binary symbols and n — 2 symbols se-
lected from an alphabet of n symbols, where n
is the number of points to be connected with
a Steiner tree. Due to the Cayley’s Formula
and Hanan’s theorem, from this chromosome,
a Steiner tree could be constructed on Hanan
grids. However, Hou and Sapatnekar showed
that a minimum-delay Steiner tree may require
the use of non-Hanan points'?). Since, in this
paper, we should take not only the wire length
but also the signal propagation delay into ac-
count, this coding scheme may not be appro-
priate.

In this paper, a chromosome only specifies the

(a) Steiner tree (c) chromosome
Fig.2 Genotype.

topological information of a Steiner tree. Geo-
metrical information of the tree will be deter-
mined during the fitness evaluation, that is, a
Steiner tree will be constructed according to the
topological information specified by the chro-
mosome.

Topological information of a Steiner tree is
coded as follows. The coding is defined recur-
sively. Let T be a rectilinear Steiner tree, and
T, be a subtree of T'. Assume that T, consists
of two subtrees T, and T,,, each of which con-
tains at least one source or sink. Let code(T),)
and code(T,,) be the coded strings of T; and
T, respectively. Then the coded string of
T, is defined as the concatenation of code(T,),
code(T,,), and the special symbol +, that is,
code(T,,) = code(T,)code(T,)+. If T,, contains
only one source or sink, then code(T,) is defined
as s; (0< i <mn).

A chromosome defined here specifies how the
tree is constructed. The coding can be inter-
preted as a tree, whose leaves are a source and
sinks, and internal nodes are the special sym-
bols +. We call this tree the structure tree.
From the structure tree, its geometrical infor-
mation is determined during the fitness evalua-
tion. Figure 2 shows an example of a Steiner
tree and its corresponding structure tree as well
as the chromosome.

3.3 Fitness

In a GA, to evaluate each chromosome, a
fitness function is required. In our algorithm,
each chromosome is evaluated with two objec-
tive functions, i.e., the total wire length and
the maximum source-sink delay. Since each
chromosome only specifies the topological in-
formation, to evaluate its fitness, the Steiner
tree should actually be laid out according to the
topological information given by the structure
tree.

Steiner tree construction in the proposed al-
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gorithm is performed as follows. Let S, be a
subtree of the structure tree given by the chro-
mosome, and S, and S,, be the subtrees consti-
tuting .S,,, where u, v, and w are roots of those
subtrees, and v and w are the two children of u.
Assume that S, and S,, have been already laid
out. Then, we determine a route from a node
in S, to a node in S,, to construct a Steiner
subtree corresponding to S,. Note that, in this
case, nodes to be connected in the subtrees may
be existing nodes or intermediate points in the
existing edges.

This Steiner construction algorithm is similar
to the Kruskal’s algorithm for finding a mini-
mum spanning tree of a given graph®. How-
ever, in the proposed algorithm, the ordering
of matching nodes or edges is specified by the
structure tree. To complete the description of
the algorithm, we should specify how to choose
the pair of two nodes or edges to connect two
subtrees. Ome possible idea is to choose the
node (edge) pair with the minimum distance.
However, this idea has two drawbacks. First,
this heuristic is so strong that it would cause
the premature convergence into a local opti-
mum. Second, since all node (edge) pairs are
required to be checked, time complexity to con-
struct a tree would become O(n?). Since the
fitness evaluation is executed in many times in
one GA execution, this is not feasible.

To reduce the computation time, and to avoid
causing premature convergence, we restrict the
range of searching in combining two subtrees.
Let v and w be two roots of subtrees, T,, and T,
to be combined. Let F(v) and E(w) be sets of
edges in T}, and T,,, in which each edge resides
within the distance maz_edge_level from v and
w, respectively. The parameter maz_edge_level
is specified by the user. When combining the
two subtrees, only edges in F(v) and E(w) are
examined so that the time complexity in con-
structing the whole tree is reduced from O(n?)
to O(n).

Once the Steiner tree is constructed from the
chromosome, the total wire length as well as the
maximum source-sink delay are calculated.

3.4 Crossover Operator

To generate a set of chromosomes belonging
to the population in the next generation, two
chromosomes are randomly selected and recom-
bined with a crossover operator with probabil-
ity p.. The crossover operator adopted in the
proposed algorithm is called the subtree inter-
change. In the following, we treat each chromo-
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Fig.3 Crossover.

some as its corresponding structure tree. Let T
and U be the structure tree to be recombined.
First, in each structure tree, a 4+ node is ran-
domly selected from all + nodes except its root.
Let T}, and U,, be two subtrees whose roots are
selected + nodes. Second, two subtrees, T, and
Uy, are interchanged. Interchanging subtrees
usually causes the inconsistency in other parts
in T and U. To fix this inconsistency, duplicate
leaves may be renamed or removed, and new
leaves may be added if necessary. Due to the
lack of space, the details are omitted, and an
example of recombination is shown in Fig. 3.

3.5 Mutation Operator

After performing the crossover, each newly
created chromosome is mutated with the muta-
tion operator. The mutation operator adopted
in the algorithm is as follows. We regard a chro-
mosome to be mutated as a structure tree T.
First, two distinct nodes in T are arbitrarily
chosen, and let those nodes be u and v. Let
T, and T, be subtrees whose roots are v and v,
respectively. If there is no node, which is con-
tained in both T, and T}, then two subtrees are
actually interchanged. Otherwise, the mutation
failed. The probability of applying mutation is
denoted as p,,.

3.6 Selection

After applying mutation, the population of
next generation is constructed with tournament
selection with elitist strategy. Since our prob-
lem is a two-objective optimization problem,
and we want to find a set of Pareto-optimal so-
lutions, selection should also be tailored to be
multi-objective. In this paper, we define the
following three rank functions for each chro-

mosome. Let P = {S1,5,,...,5,} be the set
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of chromosomes in the current generation. Let
L(S;) and D(S;) be the total wire length and
the maximum source-sink delay of the Steiner
tree given by S;. Then, three rank functions
are defined as follows:

ranky(Si) = [{S;|L(S;) < L(Si), S; € P}

ranka(Si) = [{5;|D(S;) < D(S:), Sj € P}

ranky(Si) = [{S;|L(S;) < L(S:),

D(5;) < D(S5), S; € P}

Tournament selection with size 2 is car-
ried out in the algorithm as follows. Let
S; and S; be chromosomes as inputs of se-
lection.  Then, S; will survive as an ele-
ment in the new generation if rank,(S;) <
rank,(S;), or if rank,(S;) = rank,(S;) and
rank;(S;) + rankq(S;) < rank;(S;) + rankq(S;).
S; will survive if rank,(S;) < rankp(S;), or
if rank,(S;) = rank,(S;) and rank;(S;) +
rankq(S;) < rank;(S;) + rankq(S;). Otherwise,
one of two chromosomes is randomly chosen as
a survivor.

In addition to the tournament selection, we
also adopt the elitist strategy. For each chro-
mosome, if it ranked first in any of three rank-
ing functions, it survives as a member of new
generation.

4. Experimental Results

4.1 Test Data and Parameter Values

We have implemented the proposed algo-
rithm with the Free Pascal language (Version
1.0.4) on a personal computer (CPU: Pentium
ITI (1 GHz), Memory: 512 MB, OS: Vine Linux
2.1.5). To evaluate the algorithm, we randomly
generated two sets of test data, and applied the
algorithm to those. For all test data, the chip
area was assumed to be 10 x 10mm?2. For each
test data in the first test data set, which con-
sists of 6 test data, the source was located at
the center of the chip area, and each sink was
randomly generated in the chip area. The num-
bers of sinks of test data in the first test data
set were 5, 10, 15, 20, 25, and 30, respectively.
For each test data in the second test data set,
which consists of 5 test data, the number of
sinks was set to 20, and the source and 20 sinks
were randomly generated in the chip area.

In the experiments, the delay of a Steiner tree
was calculated with the Elmore delay model
described in 2.1 with the following parame-
ter values: ¢, = 0.15fF/um, ¢, = 50.0fF,
ry, = 0.12Q/pum. As the GA parameters, we
set the population size to 21, crossover and
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mutation probabilities to 0.8 and 0.05, respec-
tively, and the maximum number of generations
to 200 except otherwise stated. We also set
max_edge_level in the fitness evaluation phase
to 2. Since the proposed algorithm was based
on a GA, and a GA is a stochastic algorithm, for
each run of the algorithm, a different solution
will be obtained even if the proposed algorithm
is applied to the same instance of the problem.
Thus, for each test data, we executed the pro-
posed algorithm in 20 times so that a stochastic
nature of the algorithm was able to be properly
evaluated.

We have also implemented the Steiner tree
construction algorithm proposed by Alpert, et
al. '2) as the previous algorithm”. In Ref.2),
they showed that the min-cost and min-radius
objectives can be addressed simultaneously via
direct combinations of the Prim’s minimum
spanning tree and Dijkstra’s shortest-path tree
construction algorithms. In their algorithm,
called the algorithm AHHKK in the follow-
ing, there was a control parameter, denoted
¢(0 < ¢ <1), to control the cost-radius trade-
off in the Steiner tree construction. We imple-
mented the AHHKK algorithm with the Free
Pascal language on the same computer envi-
ronment used to implement the proposed algo-
rithm. In the experiments, for each test data,
we set ¢ to 0.00025 x i (0 < i < 4000), and ex-
ecuted the algorithm AHHKK, producing 4001
Steiner trees, so that the total CPU time of the
algorithm AHHKK for each test data is roughly
the same as the CPU time of the proposed al-
gorithm.

4.2 Comparison with the Algorithm

AHHKK

Table 1 shows the results of the algorithm
AHHKK for the first test data set. In the ta-
ble, #s means the number of sinks. L [mm)] is
the best value of the total wire length among
generated Steiner trees, and Dy, [nanoseconds]
is the source-sink delay of a tree whose total
wire length is L. D [nanoseconds] is the best
of the maximum source-sink delay among gen-

Y In Ref.2), two algorithms, ALG1 and ALG2, were
proposed. ALG1 was also proposed in Ref. 1). Since
the authors of Ref. 2) concluded that ALG1 was su-
perior than ALG2, we adopted ALG1. Note that
the original ALG1 was the algorithm to produce an
ordinary Steiner tree. Thus, to produce the rec-
tilinear Steiner tree, we implemented and added
a greedy edge-overlapping method to ALG1. The
edge-overlapping method used here was the one
given also in Ref. 2).



1320 IPSJ Journal May 2002
Table 1 Experimental results of the algorithm AHHKK.
c=0.01 c = 0.00025

#s L Dy, D Lp | #d | #ni | CPU D Lp | #d | #ni | CPU

5 | 11.227 | 0.709 | 0.709 | 11.227 4 1| 0.006 | 0.709 | 11.227 4 1| 0.220

10 | 22.308 | 0.735 | 0.709 | 22.447 8 21 0.012 | 0.709 | 22.447 8 2 | 0.491

15 | 26.827 | 1.138 | 1.117 | 27.360 12 21 0.024 | 1.117 | 27.360 12 2 | 0.928

20 | 35.902 | 1.128 | 0.992 | 39.089 13 3 | 0.041 | 0.992 | 39.089 15 3 | 1.618

25 | 44.549 | 1.207 | 1.096 | 49.079 20 4 | 0.066 | 1.038 | 50.883 29 6 | 2.578

30 | 49.491 | 2.146 | 1.477 | 54.754 32 5| 0.101 | 1.477 | 54.754 39 5 | 4.022

Table 2 Experimental results of the proposed algorithm.

#s minl | DminL minD LoninD avel aveD mazl | mazxD #d #ni | CPU
5 11.088 | 0.617 | 0.617 | 11.088 | 11.088 | 0.617 | 11.088 | 0.617 7.9 7.7 | 0.253
10 21.801 | 0.589 | 0.589 | 21.801 | 21.801 | 0.658 | 21.801 0.735 8.1 7.3 | 0.568
15 26.551 | 0.683 | 0.683 | 26.551 | 26.588 | 0.906 | 26.816 | 1.086 9.2 8.4 | 0.939
20 33.888 | 0.796 | 0.742 | 34.639 | 34.753 | 0.889 | 35.190 1.031 9.0 8.1 | 1.323
25 42.800 | 1.034 | 0.910 44.657 | 44.539 | 1.027 46.364 1.248 | 114 9.7 | 1.787
30 48.362 | 1.310 | 1.187 51.365 51.095 | 1.468 53.988 2.030 | 11.7 7.8 | 2.275
307 | 48.233 | 1.250 | 1.153 | 49.354 50.636 | 1.409 53.397 1.838 | 10.4 8.6 | 5.720
30% | 47.596 | 1.337 | 1.172 51.505 49.927 | 1.384 52.319 1.929 | 13.8 | 11.5 | 8.161

307: gen.=500, 30%: gen.=500, pop. size = 30.

erated Steiner trees, and Lp [mm)] is the total
wire length of a tree whose maximum source-
sink delay is D. #d means the number of dis-
tinct trees, and #ni shows the number of dis-
tinct noninferior trees. Note that the algorithm
AHHKK may produce the inferior solutions as
well as the same solutions. CPU [seconds]
shows the CPU time of the algorithm to pro-
duce 4001 Steiner trees. To evaluate the effect
of the value of ¢ to the quality of solutions and
the CPU time, in the table, two sets of results
were shown, each of which were respectively ob-
tained when ¢ = 0.01 and ¢ = 0.00025. L and
Dy, remained unchanged when the value of ¢
was changed, so those data were not shown for
the case of ¢ = 0.00025. From Table 1, we see
that it is difficult to obtain a sufficient num-
ber of non-inferior distinct solutions using the
algorithm AHHKK even when 4001 trees were
generated. We also note that, for the test data
with less than 20 sinks, ¢ = 0.01 is enough to
produce a good solution.

Table 2 shows the experimental results of
the proposed algorithm for the first test data
set. In the table, #s means the number of
sinks. In this experiments, 20 runs were exe-
cuted for each data, and for each run, the best
of the total wire length, denoted L, and the best
of the maximum source-sink delay, denoted D,
were obtained. minL, avel, and mazL are the

best, average, and worst values of all L’s, and
minD, aveD, and mazD are the best, average,
and worst values of all D’s, respectively. Dpinr
shows D of a run, in which minL was obtained,
and Ly;,p shows L of a run, in which minD
was obtained. #d means the average number
of distinct solutions in 20 runs, and #ni shows
the average number of distinct noninferior so-
lutions in 20 runs. Figures in Table 2 with bold
fonts showed that the data was better than L,
D, #d, and #ni in Table 1. CPU shows the av-
erage CPU time to execute the algorithm with
200 generations.

From the experimental results with compar-
ison of the results of the algorithm AHHKK,
in general, we see that the proposed algorithm
effectively produces a set of rectilinear Steiner
trees with different topological as well as timing
characteristics. The proposed algorithm suc-
cessfully produces a number of non-inferior dis-
tinct solutions, and those solutions are better
than ones produced by the algorithm AHHKK.
Thus, those trees can be used as good candi-
dates in various phases of routing.

Experimental result for 30-sink data seemed
inferior to the ones of data having the smaller
number of sinks. To improve the result, two ad-
ditional experiments were performed. One was
the case, in which the maximum number of gen-
erations was set to 500, and the other was the
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case, in which the maximum number of gener-
ations was set to 500 as well as the population
size to 30. The results of those two cases were
shown in Table 2 as #s = 307, and #s = 30%.
Those results show that the proposed algorithm
may further improve the solutions if the param-
eter setting was appropriately done.

To understand the effectiveness of the pro-
posed algorithm more easily, we summarize how
many runs the proposed algorithm produced
better solutions than the algorithm AHHKK.
The results were summarized in Table 3. In
this table, Ny, Np, N,; mean the number of
runs the proposed algorithm produced better
solutions than the algorithm AHHKK in terms
of L, D, #ni. Ny shows how many runs
the proposed algorithm produced better results
than the algorithm AHHKK in terms of L, D,
#n1 simultaneously.

4.3 More Results for the Case of

#s=20
To further confirm that the proposed algo-

Table 3 Comparison of the proposed algorithm with
the algorithm AHHKK.

#s | N, | Np | Nni | Nay

5 20 20 20 20
10 20 19 20 19
15 20 20 20 20
20 20 18 20 18
25 15 13 19 10

30 3| 11 17 2

307 4 13 18 3

301 9 17 20 6
30T: gen.=500,

30%: gen.=500, pop. size = 30.
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rithm was effective to produce the better results
than the algorithm AHHKK, we performed an-
other experiments. As noted before, we can as-
sume that, in most cases, the number of sinks
of a net is less than 20. Thus, in the follow-
ing, we prepared 5 additional test data, which
consists of one source and 20 sinks. In this sec-
ond test data set, the source was not located at
the center of the chip area, and its coordinates,
denoted (zg, yo), were randomly specified. Ex-
perimental results for the second test data set
were summarized in Table 4, Table 5, and
Table 6. From those tables, we see that the
proposed algorithm constantly produced better
results than the algorithm AHHKK. Note that,
since the proposed algorithm was a stochastic
one, even if a solution produced by the proposed
algorithm was not better than the one by the
algorithm AHHKK, you will probably get bet-
ter one from additional one or two more runs of
the proposed algorithm.

From the experimental results, we also no-
tice that the proposed algorithm can be also
considered as a good algorithm for finding an
ordinary minimum Steiner tree without perfor-
mance consideration. The CPU time of the
proposed algorithm was roughly the same or
shorter than the algorithm AHHKK when c is
set to 0.00025 and about 300 times larger than
the algorithm AHHKK when ¢ is set to 0.01.
Thus, reduction of the CPU time of the algo-
rithm is worth investigating in the future.

Table 4 Experimental results of the algorithm AHHKK for the case of #s = 20

(¢ = 0.00025).

#8 ($07 yo) L Dy, D Lp #d #m CPU
20a | (5.811,5.704) | 32.161 | 1.285 | 1.285 | 32.161 | 22 1] 1.593
20b | (5.519,2.933) | 39.647 | 2.539 | 1.561 | 42.057 | 15 3| 1.581
20c | (9.378,2.944) | 35.928 | 6.417 | 2.650 | 45.798 | 18 7| 1.561
20d | (8.752,8.913) | 35.139 | 7.805 | 3.639 | 38.765 | 22 7| 1575
20e | (6.779,5.596) | 44.731 | 1.848 | 1.841 | 46.752 | 28 2| 1.602

Table 5 Experimental results of the proposed algorithm for the case of #s = 20.

#s minLl | Dpyinr | minD LominD avelL aveD mazl | mazD #d | #ni | CPU
20a | 30.991 | 0.885 | 0.819 32.416 | 31.882 | 0.967 32.655 | 1.201 | 10.7 9.8 | 1.366
20b | 37.961 | 1.324 | 1.324 | 37.961 | 38.703 | 1.472 41.155 1.855 8.4 7.3 | 1.338
20c | 34.466 | 1.806 | 1.753 | 34.760 | 35.065 | 2.260 | 35.843 3.596 7.3 6.8 | 1.297
20d | 33.311 | 3.605 | 2.779 | 33.409 | 33.627 | 3.447 | 34.075 4.457 9.0 7.1 | 1.268
20e | 42.163 | 1.398 | 1.398 | 42.163 | 43.006 | 1.573 | 44.041 1.896 8.9 7.6 | 1.321




1322 IPSJ Journal

Table 6 Comparison of the proposed algorithm with
the algorithm AHHKK for the case of #s =
20.

#s | Np | Np | Npi | Nan
20a 16 20 20 16
20b 16 18 20 14
20c 20 15 13 11
20d 20 18 11 9
20e 20 19 20 19

5. Conclusion

In this paper, we proposed a genetic algo-
rithm to produce a set of rectilinear Steiner
trees in VLSI interconnect optimization. Trees
produced by the algorithm were different in ge-
ometrical as well as timing characteristics, and
can be used in various phases in VLSI rout-
ing. Future research includes the extension of
the proposed algorithm to treat wire sizing and
buffer insertion'®. Since the framework of the
proposed algorithm is so flexible that it is easy
to change the delay model as well as the objec-
tive functions used in the algorithm.
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