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ATM is one of the key technologies for high-performance networks. TCP is most popular
protocol used in these networks and the Internet. Throughput of TCP on IP over ATM
networks suffers congestion and deadlock due to their different characteristics. In this paper,
we have investigated factors that includes; ATM switch buffer size, TCP window size, MTU
size and external ATM traffic. We have studied TCP over UBR streams running with CBR
streams, which make ATM switch congested and lead to heavy cell loss situation. We have
proved that TCP data transfer on ATM congested link suffers throughput deadlock due to
switch buffer size, MTU size, TCP window size, and CBR streams. We have explained the
TCP throughput deadlock anomaly and have proved that TCP’s performance is less than 2%
of the available bandwidth over plain ATM.

1. Introduction

The ATM (Asynchronous Transfer Mode)
networks provide QoS (Quality of Service) to
multimedia application, like audio/video data
transfer and video conferencing. It is one of the
key technologies for high-speed networks. Many
campus networks in Japan have been adopt-
ing ATM LANs (Local Area Networks) as their
backbone 10).

TCP (Transport Control Protocol) has got
much importance and dominance as the pro-
tocol in these networks and today’s Internet,
but TCP does not necessarily fit well with any
high-speed network. Rather, TCP on IPoA (IP
over ATM) 16),17) is known to have several im-
plementation problems. The large MTU size
of ATM 3),17) causes considerable degradation
of the performance in TCP data transfers 21).
ATM data contains payload of 48 [bytes] and
TCP does fragmentation that causes cell loss
at the ATM level. One cell loss at ATM level
heavily affects the performance at the protocol
level 24).

In this paper, we have investigated traffic
dynamics of TCP over UBR (Unspecified Bit
Rate) streams running with CBR (Constant Bit
Rate) streams, which make ATM switch con-
gested and lead to heavy cell loss situation.
While the simulation results shown in Ref. 24)
are derived using traffic of the same precedence

† Graduate School of Informatics, Kyoto University
†† Media Center, Osaka City University
††† Data Processing Center, Kyoto University

(UBR), we focus ourselves on the dynamics of
TCP over congested ATM links where stream
data, typically high-density video streams, oc-
cpies most of the available bandwidth with ab-
solutely high precedence (CBR).

We first show that TCP data transfer suffers
throughput deadlock because of ATM switch
buffer size, MTU size, and CBR pressure traffic.
Time-outs occur too frequently in TCP, and in
the worst case the performance is less than 2%
of the available bandwidth over plain ATM. We
have tried to reveal throughput characteristics
of IP over ATM traffic. We have explained the
TCP throughput deadlock anomaly and have
done extensive experimentation with other pa-
rameters for its analysis.

In Section 2, we describe protocols TCP/IP,
ATM and discussed problems related to perfor-
mance degradation of TCP throughput. In Sec-
tion 3, the experimental design is described. In
Section 4, we focused on TCP throughput dead-
lock and analyzed it. In Section 5, the other
effective deadlock parameters are described. In
Section 6 conclusions are presented.

2. TCP/IP over ATM

Before discussing the problems, let us briefly
go through these protocols.
2.1 TCP/IP
TCP/IP suit is the protocol for the Inter-
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net. IP (Internet Protocol) provides an unreli-
able and connectionless datagram delivery ser-
vice with a simple error-handling algorithm 27).
TCP (Transport Control Protocol) was specif-
ically designed to provide a reliable end-to-
end block (set of bytes) stream over an unre-
liable network 28). Networks are different be-
cause they may have different topologies, band-
widths, delays, packet sizes, and other param-
eters. TCP was designed to adapt dynamic
properties of the internetwork and to be robust
in the face of failures. Each machine support-
ing TCP has a TCP transport entity, either a
user process or a part of the kernel that man-
ages TCP streams and interfaces to IP layer.
A TCP entity accepts user data stream from
local processes, breaks them up into pieces not
exceeding 64K bytes and sends each piece as
a separate IP datagram. When IP datagrams
containing TCP data arrive at a machine, they
are given to the TCP entity, which reconstructs
the original block streams. This TCP entity is
called TCP protocol. A TCP connection is a
block stream, not a message stream. Message
boundaries are not preserved end to end. The
sending and receiving TCP exchange data in
the form of segments. A segment consists of
a fixed 20-byte header (plus an optional part)
followed by zero or more data bytes.

The TCP software decides how big segments
should be. It can accumulate data from sev-
eral writes into one segment or split data from
one write over multiple segments. Two limits
restrict the segment size.
• Each segment, including the TCP header,

must fit in the 65,535 bytes IP payload.
• Each network has a maximum transfer unit

or MTU, and each segment must fit in the
MTU.

The basic protocol used by TCP is the slid-
ing window protocol. When a sender trans-
mits a segment, it also starts a timer. When
the segment arrives at the destination, the re-
ceiving TCP sends back a segment (with data
if any exists, otherwise without data) bearing
an acknowledgement ACK number equal to the
next sequence number it expects to receive. If
sender’s timer goes off before the ACK is re-
ceived, the sender transmits the segment again.
2.2 ATM
Asynchronous Transfer Mode (ATM) is a

connection-oriented protocol that provides four
basic service classes namely ABR (Available Bit
Rate), CBR (Constant Bit Rate), real-time &

non real-time VBR (Variable Bit Rate), and
UBR (Unspecified Bit Rate).

The unit of transport in ATM is a 53 byte
fixed length PDU (Protocol Data Unit) called
a cell. A cell consists of a 5 bytes header and a
48-byte payload. Variable length PDUs, must
be segmented by the sender to fit into the 48-
byte ATM cell payload, and reassembled by the
receiver. The header field, in each cell, mainly
used to determine the virtual channel and to
perform the appropriate routing. Cell sequence
integrity is preserved per virtual channel. The
header values are assigned to each section of a
connection for the complete duration of the con-
nection. Signaling and user information are car-
ried on separate channels. All services (voice,
video, and data) can be transported via ATM,
including connectionless services. To accommo-
date various services an adaptation function is
provided to fit information of all services into
ATM cells and to provide services specific func-
tions. For computer communication the recom-
mended end-to-end ATM service is through an
ATM Adaptation Layer (AAL), either AAL3/4
or AAL5 15). The adaptation layer aggregates
cells into much larger data units that are more
efficiently handled by higher layers and match
the application data units better. The TCP/IP
protocols use the size of these AAL data units
(ATM network MTU) to compute MSS (Max-
imum Segment Size). The MSS is defined as
MTU − 40 (TCP/IP header) 6),25). The AAL5
payload is 9,180 and TCP/IP header is 40. Ac-
cording to Ref. 25), MSS = 9,180 − 40.

But we find in our experiments by Tcpdump
software 29) that MSS is fixed by the TCP pro-
tocol and does not follow the above formula for
different values of MTU. Figure 1 shows the
relationship between MSS and MTU.
2.3 Previous Works on Performance

Degradation of TCP/IP over ATM
The following problems have been discussed

in various publications.
Packet fragmentation can result in wasted

bandwidth and packet retransmission 24). Be-
cause the network might drop only one frag-
ment from a packet, “the loss of any one frag-
ment means that resources expended in sending
other fragments of that datagram are entirely
wasted”15). It is shown that smaller switch
buffer and larger TCP packet sizes (MTU in
our case) both reduce the effective throughput
for TCP over plain ATM 24). Effective through-
put is defined as the throughput that is “good”
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Fig. 1 Relationship between MSS and MTU.

in terms of the higher-layer protocol. TCP win-
dow size also affects the effective throughput of
TCP over plain ATM. TCP window size rang-
ing from 8Kbytes to 64Kbytes show a lower
effective throughput with larger window.

The drastic drop in performance is caused by
a deadlock situation in the TCP connection,
which is broken up by the 200ms timer gener-
ated TCP acknowledgment 22). It causes TCP
to behave as a stop-and-go protocol with one
or two data segments sent every 200ms. The
deadlock occurs when the amount of data sent
is not enough to trigger a TCP window update
packet at the receiver, and at the same time
there is not enough space in the send buffer to
create a segment of size MSS bytes. Nagle’s al-
gorithm prohibits the sending of non-MSS seg-
ments if there are unacknowledged bytes. Since
TCP piggybacks acknowledgments onto win-
dow updates, the connection is deadlock until
the receiver sends a timer generated acknowl-
edgment.

Buffer size in ATM switch may suffer overflow
during congestion and suffer cell loss. Increase
in buffer size is not the solution for this problem
as buffer is going to be overflowed again mak-
ing the equipment more costly. The cell loss
problem has given rise to Early Packet Discard
EPD 24) and Partial Packet Discard PPD 2). In
PPD, if a cell is dropped from a switch buffer,
the subsequent cells in the higher layer proto-
col data unit are discarded. In EPD, when the
switch buffer queues reach a threshold level, en-
tire higher-level data units (e.g., TCP/IP pack-
ets) are dropped.

ATM Switch
   EA1550UBR traffic

Sender Receiver

ATM analyzer

FreeBSD3.2-R FreeBSD3.2-R
CBR traffic

Fig. 2 Experimental configuration.

3. Experimental Design and Method

3.1 Experimental Design
We are assuming a congested ATM link

where:
• Only two flows exist. One is CBR (Con-

stant Bit Rate) flow, which has absolutely
high precedence, and the TCP flow (which
is on UBR- Un-specified Bit Rate) is get-
ting pressure of the CBR streams.

• The cell buffer size in the ATM switch for
UBR is relatively of small size. It is smaller
than window size of TCP, although enough
larger than a packet.

This is a very typical situation where a stream
data (like MPEG video stream) and ordinary
TCP flow are get encountered on ATM switch
make congestion. TCP data transfer suffers
several timeouts due to heavy cell loss at ATM
level.

The experimental configuration is shown in
Fig. 2. Two permanent virtual channels (PVC)
have been created in the ATM switch, which
are used by two computers. The ATM switch,
Fujitsu EA1550, has output-buffer architecture
and we can change the size of allocated cell
buffer to each port. No packet discarding
schemes have been used within ATM switch.
ATM traffic analyzer, Hewlett Packard’s HP
E5200A, can generate CBR traffic and monitor
the traffic of these two PVC’s. These PVC’s
are used for UBR and CBR streams.

The FreeBSD 3.2 is installed on each system
that has TCP Reno 13), with a few other fea-
tures like the TCP timestamp option, window
scaling, and T/TCP.
3.2 Experimental Method
We have made use of Netperf 14) as a tool, a

benchmark that can be used to measure var-
ious aspects of networking performance. Its
primary focus is on bulk data transfer and re-
quest/response performance using either TCP
or UDP and the Berkeley Sockets interface. We
injected CBR streams from the ATM analyzer’s
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Table 1 System equipment specifications.

CPU Pentium II 266MHz
M/B P2L97
Memory SD-RAM 64Mbytes 10 ns
ATM NIC ENI-155p
Operating System FreeBSD3.2-Release
ATM Driver HARP

traffic generator. TCP’s data transfer is over
UBR streams, through netperf running for 10
sec and the output of netperf gives the TCP’s
effective throughput over UBR streams. UBR
streams and CBR streams are active on the
same port. We can set send/receive socket size
as command line arguments in the netperf. For
the throughput analysis we have used Tcpdump
software, which dumps statistics on the seg-
ments sent by the sender towards the host. The
equipment listing and specifications are given in
Table 1.

4. TCP Throughput Deadlock

4.1 TCP Throughput Affected by Cell
Buffer Size

In the following experiment we used CBR
streams of 60M[bps] and measured the UBR
traffic throughput as a function of cell buffer
size. MTU sizes were selected as 512, 1,500,
4,352, 6,500, 9,180 [bytes] while the socket
buffer size is 64K[bytes] as shown in Fig. 3.

When the cell buffer size is 150K[bytes] (3K
cell) or more no throughput deadlock occurs.
For example, the throughput is 82.94M[bps]
when MTU = 9,180 [bytes]. When cell buffer
size goes down from 150K[bytes], through-
put sharply decreased. When cell buffer is
50K[bytes] (1K cell) or less, UBR traffic
throughput is less than 2% of the available
bandwidth. Below this point the value of TCP’s
throughput is referred as deadlock. Simulation
results have been shown for a number of TCP
connections using UBR traffic over plain ATM,
throughput as function of cell buffer size 24).
It is proved that 1) Throughput for a number
of TCP connections over plain ATM is about
10 ∼ 30% when cell buffer size is equal to 1K
cell and 2) TCP’s throughput suffers perfor-
mance degradation with large MTU sizes. We
found that:
• TCP over UBR streams suffers deadlock

with the CBR streams.
• The larger is the MTU size, the better is the

TCP throughput. TCP performs better for
MTU 9,180 than for MTU 1,500.
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Fig. 4 Throughput versus socket buffer size.

4.2 Throughput Affected by TCP
Window Size

The TCP window size is directly related with
the size of the sender/receiver socket size op-
tion used in the netperf. Figure 4 makes it
clear that effectiveness of TCP window quite
depends upon socket size. We have plotted send
& receive socket sizes along x- & y-axis respec-
tively and the points correspond to the UBR
traffic throughput. CBR traffic is 60M[bps]
and MTU sizes are 1,500, 3,000, 6,000, 6,500,
and 9,180 [bytes] while cell buffer size is 1K
cell. Above each line deadlock always occurs,
no deadlock occurs below the lines (shown in
Fig. 4). We mean by good that when through-
put of UBR streams is more than 10% of the
available bandwidth. Fig. 4 shows that an in-
crease in socket buffer size brings increase in
deadlock area. Both MTU size and socket size
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Table 2 Patterns selected for analysis.

CBR [Mbps] 60
MTU [bytes] 1,500

Socket Size [Kbytes] 25 38
State Good Deadlock

Pattern (a) (b)
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Fig. 5 Segment’s sequence number versus time.

are large enough during deadlock situation.
4.3 Analysis of Deadlock Mechanism
To analyze the TCP’s throughput deadlock

for the same MTU, we used Tcpdump 29) soft-
ware. This software dumps statistics on the
segments sent by the sender towards the host.
We selected two patterns mentioned in Table 2
and did the Tcpdump test for these patterns.
Figure 5 show relation between time at which
the segments are sent by the sender and the se-
quence number of the segments. It shows pat-
terns (b) as step line that represents deadlock.

After analyzing the Tcpdump output for pat-
tern (b), we could find that:
( 1 ) TCP algorithm retransmits a lost packet

if the sender receives three duplicate ac-
knowledgments or the time-out for the
lost packet is generated 27). Time-out is
generated in a time lag that causes poor
throughput. Time-out happens seven
times in whole span of 10 seconds (ap-
proximately).

( 2 ) Before the time lag occurs, sender sent
the packet and received the ACK from
receiver with a window size smaller (by
one MSS) than the usual advertised win-
dow. Here the sender is waiting for new
acknowledgment and not sending, on the

other hand receiver is waiting for the
new segment. Both are waiting and not
sending any thing, so it occurs deadlock
during this time. After retransmission
time out, the normal procedure of send-
ing data starts once again. The steps in
the figures are due to retransmission time
outs.

A question arises here that why both sender
and receiver are waiting and sending nothing.
When an ACK advertise a window smaller than
usual, following may be the possible reasons 27).
When a packet arrives at the receiver side then
it is initially processed by the device driver’s
interrupt service routine. It is then placed onto
IP’s input queue. Thus segments arrived one
after the other are placed onto IP’s input queue
in the received order. IP will pass them to TCP
in the same order. When TCP is processing
the segments then the connection is marked to
generate a delayed ACK. The ACK advertising
smaller window size implies that there are still
some bytes of data in the TCP receiver buffer
that application has not read.

We have found that there is a segment loss
with pattern (b) and no segment loss with pat-
tern (a). Transmission fashion with pattern (a)
& (b) is that sender receives one ACK and then
sends two segments after handshaking and ini-
tial stages of data transfers. Pattern (a) most
of the time follow this fashion. While on the
other hand in pattern (b), sender sends three
segments upon receiving one ACK.

Consider the patch shown in Fig. 6 of Tcp-
dump out file for socket size 38KB. Here the
first time out location has been explained. The
transmission fashion here, sender receives one
ACK and sends two segments. The sender
has sent 26 segments (line 1 to 36) until it re-
ceives ACK (line 37) for segment 99,281 (line
1), which is expected by the sender. Sender will
process this ACK and came to know that data
until 99,280 bytes has been acknowledges by the
receiver. Sender then sends two more segments
(lines 38, 39). Sender now has sent 27 segments,
which is the maximum limit (39,420/1,460=27)
of the sender and receiver buffer sizes because
the window size is 39,420. Thus TCP re-
ceiving entity is processing these segments set-
ting the connection to generate the delayed
ACK every time it process the new segment.
From line No.40 to 42 sender receives dupli-
cate ACKs for 99,281. This shows segment
has lost and sender retransmits the segment
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1. 16:55:54.093915 Sender.1264 > Recver.4785: . 97821:99281(1460) ack 1 win 39420 (DF)
2. 16:55:54.093982 Sender.1264 > Recver.4785: P 99281:100741(1460) ack 1 win 39420 (DF)
3. 16:55:54.094110 Recver.4785 > Sender.1264: . ack 70081 win 39420 (DF)
4. 16:55:54.094225 Sender.1264 > Recver.4785: . 100741:102201(1460) ack 1 win 39420 (DF)
5. 16:55:54.094283 Sender.1264 > Recver.4785: . 102201:103661(1460) ack 1 win 39420 (DF)
6. 16:55:54.094412 Sender.1264 > Recver.4785: . 103661:105121(1460) ack 1 win 39420 (DF)
7. 16:55:54.094481 Sender.1264 > Recver.4785: P 105121:106581(1460) ack 1 win 39420 (DF)
8. 16:55:54.094511 Recver.4785 > Sender.1264: . ack 73001 win 39420 (DF)
9. 16:55:54.094611 Sender.1264 > Recver.4785: . 106581:108041(1460) ack 1 win 39420 (DF)
10. 16:55:54.094721 Recver.4785 > Sender.1264: . ack 75921 win 39420 (DF)
11. 16:55:54.094769 Sender.1264 > Recver.4785: . 108041:109501(1460) ack 1 win 39420 (DF)
12. 16:55:54.094869 Sender.1264 > Recver.4785: . 109501:110961(1460) ack 1 win 39420 (DF)
13. 16:55:54.094904 Sender.1264 > Recver.4785: P 110961:112421(1460) ack 1 win 39420 (DF)
14. 16:55:54.095018 Sender.1264 > Recver.4785: . 112421:113881(1460) ack 1 win 39420 (DF)
15. 16:55:54.095098 Recver.4785 > Sender.1264: . ack 78841 win 39420 (DF)
16. 16:55:54.095189 Sender.1264 > Recver.4785: P 113881:115341(1460) ack 1 win 39420 (DF)
17. 16:55:54.095277 Sender.1264 > Recver.4785: . 115341:116801(1460) ack 1 win 39420 (DF)
18. 16:55:54.095371 Recver.4785 > Sender.1264: . ack 81761 win 39420 (DF)
19. 16:55:54.095401 Sender.1264 > Recver.4785: P 116801:118261(1460) ack 1 win 39420 (DF)
20. 16:55:54.095629 Recver.4785 > Sender.1264: . ack 84681 win 39420 (DF)
21. 16:55:54.095736 Sender.1264 > Recver.4785: . 118261:119721(1460) ack 1 win 39420 (DF)
22. 16:55:54.095794 Sender.1264 > Recver.4785: P 119721:121181(1460) ack 1 win 39420 (DF)
23. 16:55:54.095931 Recver.4785 > Sender.1264: . ack 87601 win 39420 (DF)
24. 16:55:54.095959 Sender.1264 > Recver.4785: . 121181:122641(1460) ack 1 win 39420 (DF)
25. 16:55:54.096053 Sender.1264 > Recver.4785: P 122641:124101(1460) ack 1 win 39420 (DF)
26. 16:55:54.096135 Sender.1264 > Recver.4785: . 124101:125561(1460) ack 1 win 39420 (DF)
27. 16:55:54.096236 Recver.4785 > Sender.1264: . ack 90521 win 39420 (DF)
28. 16:55:54.096272 Sender.1264 > Recver.4785: P 125561:127021(1460) ack 1 win 39420 (DF)
29. 16:55:54.096390 Sender.1264 > Recver.4785: . 127021:128481(1460) ack 1 win 39420 (DF)
30. 16:55:54.096464 Sender.1264 > Recver.4785: P 128481:129941(1460) ack 1 win 39420 (DF)
31. 16:55:54.096551 Recver.4785 > Sender.1264: . ack 93441 win 39420 (DF)
32. 16:55:54.096835 Recver.4785 > Sender.1264: . ack 96361 win 39420 (DF)
33. 16:55:54.096915 Sender.1264 > Recver.4785: . 129941:131401(1460) ack 1 win 39420 (DF)
34. 16:55:54.096951 Sender.1264 > Recver.4785: . 131401:132861(1460) ack 1 win 39420 (DF)
35. 16:55:54.097025 Sender.1264 > Recver.4785: . 132861:134321(1460) ack 1 win 39420 (DF)
36. 16:55:54.097077 Sender.1264 > Recver.4785: P 134321:135781(1460) ack 1 win 39420 (DF)
37. 16:55:54.097157 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
38. 16:55:54.097266 Sender.1264 > Recver.4785: . 135781:137241(1460) ack 1 win 39420 (DF)
39. 16:55:54.097332 Sender.1264 > Recver.4785: P 137241:138701(1460) ack 1 win 39420 (DF)
40. 16:55:54.097567 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
41. 16:55:54.098788 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
42. 16:55:54.098935 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
43. 16:55:54.098985 Sender.1264 > Recver.4785: . 99281:100741(1460) ack 1 win 39420 (DF)
44. 16:55:54.099088 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
45. 16:55:54.099235 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
46. 16:55:54.099871 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
47. 16:55:54.100017 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
48. 16:55:54.100167 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
49. 16:55:54.100319 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
50. 16:55:54.100473 Recver.4785 > Sender.1264: . ack 99281 win 39420 (DF)
51. 16:55:54.100768 Recver.4785 > Sender.1264: . ack 100741 win 37960 (DF)
52. 16:55:54.231388 Sender.1263 > Recver.netperf: . ack 513 win 17520 (DF)
53. 16:55:55.466216 Sender.1264 > Recver.4785: . 100741:102201(1460) ack 1 win 39420 (DF)

Fig. 6 Tcpdump patch from pattern (b) just before Time-Out occurs.

99,281 (line 43). This will again make full
both send and receive buffers. Sender again re-
ceived seven duplicate ACKs for segment 99,281
(line 44 through 50). Sender will ignore all
these ACKs because sender has just sent that
segment. Sender receives ACK acknowledging
data up to 100,740 (line 51). But the adver-
tised window is 37,960, which is smaller by one
MSS than the usual 39,420. It is indicating that
there is still 1,460 bytes of data in TCP receive
buffer, which is not read by the application.
The window size 37,960 means 26 segments can
be sent but sender has already sent 26 segments.
Sender could not sent the new segment until it
will receive a new ACK for one of the 26 seg-

ments sent by the sender. Sender receives an-
other ACK (line No.52) but it is not the one
expected by the sender. Here sender is waiting
for the new ACK while receiver is waiting for
new segment to come. Both are waiting and
not sending anything. Retransmission possible
only in two cases; 1) Three duplicate ACKs, 2)
Time out. As there is no duplicate ACKs, so
the only possibility is time out. Thus, time out
happens (line No.53) which causes throughput
deadlock. After this time out, TCP slow start
algorithm starts once again.

According to fast retransmit and fast recov-
ery algorithm 27), when third duplicate ACK is
received, slow start threshold ssthresh is set to
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one-half of the minimum of the current con-
gestion window (cwnd) and the receiver’s ad-
vertised window. Retransmit the missing seg-
ment and set the cwnd to ssthresh plus 3 times
the segment size. Each time another duplicate
ACK arrives, increment cwnd by the segment
size and transmit a packet if allowed by the new
cwnd value. It means that fast retransmit and
fast recovery algorithm only recovers one miss-
ing segment. It seems that there is more than
one segment loss in one window, which is not
recovered by TCP’s fast retransmit and recov-
ery algorithm.

It just reflects that the receiver has had to
buffer a lot of data because it has sequence holes
and can’t deliver what it’s holding. Sequence
holes mean that there are some segment losses
due to cell loss at ATM level. The time out
occurs 7 times in about 10seconds. The gap
between the acknowledged and unacknowledged
bytes in all time out cases is 39,420, which is the
window size. This gap never goes to this limit
during 25KB flight size.

TCP does not suffer throughput deadlock
when we increase the ATM switch buffer size
to 2kCells. When the connection is marked
to generate a delayed ACK while buffer size is
1kCells, then this delay is not sufficient enough
for ATM switch to buffer up data. Hence be-
comes overflow. But when Buffer is 2kCells
then it has sufficient place to buffer the data
for a longer delay than 1k Cells. This means
that there is enough capacity (bandwidth, delay
product) available along the path for 25KB in
flight but not for 38KB. For 25KB in flight, the
connection becomes window-limited, and TCP
over UBR streams achieve steady state. For
38KB in flight, TCP suffers continuous buffer
overflow and take a timeout. This contributes
to TCP throughput deadlock.

Again if we turned on the EPD option imple-
mented in the ATM switch, TCP throughput is
recovered. Which proves our claim that there is
a cell loss at ATM level, causing TCP through-
put deadlock.

Thus the above discussion concludes that
large window and small buffer sizes cause TCP
throughput deadlock. As a future work, we
would like to find out the number of missing
segments during flight size of 38KB and would
like to increase more TCP connections.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

C
B

R
 tr

af
fic

 [M
bp

s]

Socket buffer size [Kbytes]

Cellbuff=0.5K
Cellbuff=1K

Cellbuff=1.5K

Fig. 7 CBR pressure when there is deadlock due
to socket buffer size (cell buffer=0.5K, 1K,
1.5 K[cells]).

5. Deadlock Parameters

5.1 Combined Effectiveness of Socket
Buffer and Cell Buffer Sizes on
Deadlock

We carried on further experiments to find
out the points where the UBR traffic through-
put falls into deadlock. The result is shown
in Fig. 7. For example for the first point we
fixed CBR traffic 140M[bps] and discovered the
socket buffer size at which UBR throughput suf-
fers deadlock. UBR throughput does not suf-
fer deadlock with small socket sizes. From this
point we decreased CBR pressure linearly and
find out the last point up to which UBR suf-
fers deadlock. This will become the first point.
For the second point again the procedure will
be same. We will go to the next socket size
and decrease the CBR pressure until the final
point of deadlock. It is quite possible that for
the last CBR pressure, the new socket size will
also suffers the final deadlock (the two consec-
utive points show these values). We noted the
last value of CBR pressure and socket buffer
size where UBR traffic suffers final deadlock.
At the same point if we decrease the CBR pres-
sure then there is no deadlock. The MTU size
is 1,500.

Looking at Fig. 7, we have come to know that:
• If the socket buffer size is small enough,

then there is no deadlock even through
heavy CBR traffic.

• The switch buffer size is almost twice the
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socket buffer size when deadlock occur ini-
tially.

• Socket buffer size is directly proportional to
the switch buffer size when deadlock starts
initially.

• When socket size goes down from this ini-
tial point, CBR pressure decreases linearly
and their slopes are same (parallel) regard-
less of cell buffer sizes.

• When this linearity comes to an end, even
a CBR stream of 1M[bps] causes deadlock.

5.2 Deadlock as a Function of Socket
Buffer and MTU Sizes

This experiment is exactly same as previous
one but here we fixed cell buffer size as 1Kcell
and used two MTU sizes 1,500 and 9,180. We
did the same procedure for each MTU and draw
the graph as shown in Fig. 8, which shows:
• When deadlock begins to occur, there is no

relationship between socket buffer size and
MTU.

• When we increase the socket buffer size
from this point, the linearity degree of CBR
pressure is inversely proportional to MTU.

The steps, when MTU is 9,180, are due to
the fact that window size is set by the TCP,
rounding the MSS value.

6. Concluding Remarks

In this paper, we have shown that TCP Reno
over UBR streams congested with CBR streams
in ATM networks suffers throughput degrada-
tion and is less than 2% of the available band-
width. The throughput suffers several time-

outs due to inefficiency of Fast Retransmit and
Fast Recovery Algorithms, which were unable
to recover more than one segment loss in a win-
dow. A number of researchers have observed
that TCP’s loss recovery strategies do not work
well when congestion window at a TCP sender
is small 1). This can happen, for instance, be-
cause there is only a limited amount of data
to send, or because of the limit imposed by
the receiver-advertised window, or because of
the constraints imposed by end-to-end conges-
tion control over a connection with a small
bandwidth-delay product 4),5),18),23),26). What
we have found is another occasion when the
mechanism does not work well.

There has been proposed new strategies,
like NewReno 8), TCP SACK 19), TCP Ve-
gas 7), and many others 1),9),20). We have al-
ready reported some results on NewReno and
TCP SACK 11), but comprehensive survey of
other existing TCP implementation, including
Tahoe 12), over congested ATM networks would
be left as a future work.

As we have shown in detail that the large
MTU that causes deadlock. It is well known
that the large MTU of 9180 bytes recommended
in Ref. 3)☆ causes deadlocks 21), but here we
have shown that another kind of deadlocks will
occur under CBR pressure and the situation is
worse. We dare say that there is little positive
reason to use such large MTU now. In other
words, we can get more performance on ATM-
backbone solutions (where hosts have Ethernet
NIC and ATM is deployed only on backbone
routers) or on ATM LANE solutions, than on
native end-to-end IPoA solution. This is quite
opposite of what were said before.

We may avoid the deadlock by prepar-
ing enough size of cell buffer, or deploying
PPD (Partial Packet Discard) and EPD (Early
Packet Discard) schemes at ATM switch level as
was discussed in Ref. 24). Actually brand-new
ATM switches now sold for ATM LANs have
enough cell buffer, possibly 16Kcells or more
(mainly for ABR support, we guess), and they
have also PPD and/or EPD features. However,
we must note that ATM switches already in-
stalled in campus ATM LANs or carriers’ na-
tional backbones do not necessarily have so
much buffer nor such features. So there still re-
main strong needs to improve the performance
of TCP over ATM by introducing newer algo-

☆ Now in Ref. 17).
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rithms to the implementation.
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Editor’s Recommendation

The authors observe how lower priority traf-
fics are affected if higher priority traffics ex-
ist, and make it clear that, under some con-
ditions, deadlocks can be occurred. Major rea-
sons of deadlocks are analysed and conditions
that may cause deadlocks are experimentally
derived. The situations reported here are get-
ting more significant as the broad band trans-
mission applications such as motion picture
transmissins are frequently performed.

(Chairman of SIGDSM Katsuya Hakozaki)
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