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Predicting the Degradation of Speech Recognition Performance
from Sub-band Dynamic Ranges
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An acoustic measure for predicting the degradation of speech recognition performance due to
noise contamination is developed. The merits of the proposed measure over using conventional
SNR are that 1) the measure does not require original clean signal as a reference signal,
2) the measure takes the spectral shape of noise into account and, 3) the measure can be
used to predict recognition performance directly. The basic idea of the measure is to utilize
the dynamic range of the sub-band signals as an estimate of the SNR and to predict the
degradation of recognition performance by taking the product of the recognition accuracy
of each sub-band. The proposed measure is tested through experimental evaluation using
white Gaussian noise and human-speech-like noise (HSN). In the experiment, the correlation
between the predicted and the actual recognition accuracies are 0.96 and 0.99 for white noise
and HSN, respectively. The results confirm the effectiveness of the proposed measure.

1. Introduction

In order to extend the speech recognition
technology to a wider range of applications,
the better robustness to changes of the environ-
ment is indispensable. In particular, technolo-
gies for dealing with noisy speech have been one
of the most important issues in speech recog-
nition research, and various approaches have
been proposed?). One reason that so many dif-
ferent approaches have been attempted is that
the ‘noisy’ condition is not a simple situation
but varies greatly and therefore, evaluating the
effectiveness of noisy speech recognition tech-
nologies is not easy.

The simplest way of comparing the noise re-
duction technologies under a given noise con-
dition is to perform speech recognition exper-
iments, because the noise condition of interest
is not always the same as that under which the
proposed method is developed. However, im-
plementing and executing proper size of exper-
iments of the reported noise reduction methods
require much resources. One way to deal with
this difficulty is to develop a measure which can
be used to quantify the noise condition so that
one can determine how much the noise condi-
tion under which the reported method functions
well, is similar to the condition under consider-
ation.

In many cases, the degradation of speech
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quality due to the existence of noise is charac-
terized by the SNR (signal-to-noise ratio); how-
ever, utilizing SNR for that measure gives rise
to two problems. The first problem is that cal-
culating SNR essentially requires both an origi-
nal clean speech and noise signals. In real situ-
ations, however, explicit detection of the noise
segment is difficult?)). The second problem is
that the SNR does not take into account the
spectral shape of noise. In the case of in-car
noise, for example, since the power of the noise
signal is concentrated at lower frequencies (typ-
ically below 300Hz), the SNR after eliminat-
ing the frequency region is of interest in most
speech recognition applications. In general, the
speech quality in higher-frequency region has
less of an effect on the degradation of recogni-
tion performance. The SDR (signal deviation
ratio) measure for various kinds of speech dis-
tortion has the same problem as the SNR mea-
sure.

In this paper, we propose an acoustic measure
of speech degradation that can directly pre-
dict the speech recognition performance based
on dynamic ranges of the signal in various
frequency regions (sub-band dynamic ranges).
The proposed method involves two ideas. The
first idea is that the spectral shape of the noise
can be measured without reference, by calcu-
lating the sub-band dynamic range (Fig.1).
Since the low-energy segment, e.g., silence, of
the signal is masked by background noise, dy-
namic range is a reasonable quality index of
noisy signals. Thus, by dividing the noisy sig-
nal into several frequency bands and by cal-
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Fig.1 Cumulative distribution of frame power and the
dynamic range of a signal. When the noise sig-
nal masks the speech signal, the lower bound
of the distribution of frame powers becomes
higher.

culating the dynamic range of each sub-band
signal, the spectral shape of the noise can be
estimated. The second idea is that the ef-
fects of the different band-limited noises on the
speech recognition performance are indepen-
dent of each other®~"). Considering this idea,
it is assumed that the recognition performance
can be calculated as the product of the esti-
mated accuracies, each of which is determined
by the SNR of a particular frequency band.

The remainder of this paper consists of the
following four sections. In Section 2, the
method for calculating the sub-band dynamic
range is described. In Section 3, recognition
experiments for determining the degradation of
recognition accuracy as a function of sub-band
dynamic range are detailed. In Section 4, ex-
pected recognition errors due to degradation in
all sub-bands are integrated to form a predic-
tion measure of recognition performance. Ex-
perimental results of the evaluation tests are
also described. A summary of this paper will
be given in Section 5.

2. Sub-band Dynamic Range Calcula-
tion

In this paper, sub-band dynamic range values
are calculated as shown in Fig.2. All speech
data are digitized into 16 bits at 16 kHz sam-
pling rate. Short-time Fourier analysis is exe-
cuted on a 30ms frame at intervals of 10 ms.
Because of the relative importance of the lower
frequency region in speech recognition, the fre-
quency range of 0 to 5kHz is used for calcu-
lating sub-band dynamic ranges. The spectral
component of the frequency range of 0 to 5 kHz
is divided into 10 equal-width sub-bands, i.e.,
0-500, 500-1000, ..., 4.5k—-5.0kHz. Then the
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Fig.2 Calculation method for sub-band dynamic
range.
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Fig.3 An example of the log frame power sequence of
a sub-band (3.0-3.5kHz) when human speech
like noise of 1,024 superpositions is added with
the global SNR of 5dB. Full-band waveform
(upper) and sub-band log frame power sequence
(lower).

log-power of the sub-band in the time frame is
calculated. Finally, after taking the histograms
of sub-band frame powers over the given utter-
ances, the sub-band dynamic ranges are calcu-
lated as the differences between 90%-tile and
10%-tile values of the histograms.

Under certain conditions, this sub-band dy-
namic range describes the ratio of the pow-
ers of background noise and the speech sig-
nal. Suppose that the average frame power
of background noise is lower than that of the
speech signal, i.e., the positive SNR condition,
as shown in Fig.3. In this case, the distri-
bution of the log frame power is expected to
exhibit two-peaks (one is of the noise and the
other one is of the speech signal) and the dis-
tance between the two peaks is the average

SNR.
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Fig.4 Histogram and cumulative distribution of the
sub-band log frame powers of the noisy speech
given in Fig. 3.

In the above example, the density function
of the log frame power has the shape given in
Fig. 4. In that figure, it is clear that the lower
tail of the distribution corresponds to the noise
signal, whereas the higher tail corresponds to
the speech signal. Thus, although it is difficult
to estimate the mean from distributions, the
characteristics of the two distributions can be
estimated from the lower and higher percentile
values of the frame power distribution. In the
case of Figure 4, the 10%-tile value of the over-
all distribution is about 5dB below the mean
of the noise frame power, whereas the 90%-tile
value is about 7dB below the mean of speech
frame power. The difference between them is
a reasonable estimate of the SNR. The reader
should note that the lower and higher endpoints
used to calculate dynamic range used in this pa-
per, i.e., 10% to 90%, are reasonable only when
the number of samples (frames) of noise and
speech signals are comparable.

3. Sub-band Dynamic Range and
Recognition Performance

It is well known that the phonetic feature
of speech signals is mainly contained in the
frequency range lower than 3kHz, and that
the energy of the speech signal is concentrated
at lower frequencies with about —6dB/Oct of
spectral tilt. Thus, the degradation of recog-
nition performance due to noise is a function
of not only the total power of the noise but
also its spectral shape. In this section, we will
determine the relationship between recognition
accuracy and the SNR in particular frequency
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Fig.5 Recognition performance as a function of the
sub-band dynamic range.

bands, through recognition experiments.

3.1 Recognition Experiments

The experimental conditions are as follows.
As speech material, thirty sentences spoken by
a male speaker are extracted from the JNAS
newspaper corpus of Acoustic Society Japan®.
The 1997 IPA standard monophone models (16
mixture, three-state, 43 phone-set, gender de-
pendent) are used for acoustic modeling®. The
feature vector for the experiment is 25 MFCC’s
(12 static + 12 delta + delta-log-power). The
length and shift period of the analysis window
are 25ms and 10 ms, respectively. The recog-
nition task material is dictation of 311 phrases
without grammar. The index of the recognition
performance is %Correct given by

N-S-D
N )

where N, D and S are the total numbers of
words, deletion errors and substitution errors,
respectively.

3.2 Noise in Single Sub-band

In the first experiment, the effect of noise of
a particular frequency band on recognition ac-
curacy is examined. In this experiment, band-
limited white noise is added to the original ut-
terances. The band of the noise is changed from
0-0.5kHz to 4.5-5.0 kHz, as are the overall SNR
conditions (5—40dB). The results of the recog-
nition experiments are plotted in Fig. 5. In the
figure, the recognition score is plotted as a func-
tion of the SNR measured in the sub-band dy-
namic range.

It can be seen in all sub-bands that the recog-
nition performance decreases as the dynamic
range of the band decreases. The performance
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Fig.6 Recognition performance as a function of the
sub-band dynamic range of 0.5-1.0kHz, i.e., the
higher sub-band, when noise also exists in 0—
0.5kHz, i.e., the lower sub-band, with SNR of
D (lower).

more strongly depends on the sub-band dy-
namic range in the lower frequency region. For
the recognition system, a dynamic range value
of more than 25 dB is needed in the sub-band of
0.5-1kHz, to obtain a recognition accuracy of
more than 80% in this particular task. Dynamic
ranges of more than 20dB and 15dB are also
needed for 1-1.5 kHz and 1.5-2.0 kHz bands, re-
spectively, for an 80% score. On the other hand,
the change of the dynamic range in sub-bands
higher than 3.5 kHz does not affect the recogni-
tion performance, unlike in the lower bands.

3.3 Adding Noise to Multiple Bands

In Fig. 6, recognition performance is plot-
ted as a function of the dynamic range of 0.5—
1.0kHz band. Unlike in the previous section,
in this case, a different band-limited noise is
added simultaneously to 0-0.5kHz. Thus, in
this experiment, the dependency of neighbor-
ing frequency bands in affecting the recognition
accuracy is examined.

As shown in the figure, unlike the previ-
ous result, the relationship between the sub-
band dynamic range and recognition perfor-
mance is not monotonic. When the dynamic
range of the lower (0-0.5kHz) band is less
than 10dB, for example, the recognition per-
formance decreases as the dynamic range of
the higher (0.5-1.0kHz) band increase to above
25dB. This result suggests that the great dif-
ference in SNR conditions between neighbor-
ing frequency regions causes severe degradation
in recognition performance, particularly in the
lower frequency regions. Thus, as discussed
later, in integrating sub-band information to
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predict recognition accuracy, assuming inde-
pendence between neighboring frequency bands
in the lower frequency region is inappropriate.
In experiments, such a non-monotonic relation-
ship, however, is not found in any other combi-
nation of sub-bands.

4. Predicting Recognition Performance

4.1 Prediction Formula

From the previous results, the recognition
performance is determined to be a function of
the sub-band dynamic range. In this section, by
integrating the recognition performance, which
is a function of the dynamic range of sub-bands,
an acoustic measure is constructed to predict
the recognition performance for noisy speech.
As for the integrating principle of sub-band in-
formation, a simple product of the recognition

accuracy in each band is adopted:
10

(1—e) =] —ei(d), (1)
i=1
where, e; stands for the error rate due to the
noise in the ith sub-band. The error rate is
given as a function of the dynamic range of the
ith sub-band d;.

It should be noted that this is the in-
verse form of Fletcher’s definition of intelligi-
bility*®). In our case, “the total degradation
of the recognition performance is governed by
the accumulation of recognition performance in
each sub-band”, whereas in Fletcher’s case “the
total intelligibility is controlled by the accu-
mulation of the degradation of intelligibility in
each sub-band”, i.e.,

(1-s)= H(l—si),
where s and s; are intelligibilities of full band
and ith sub-band, respectively.

It should also be noted that e;(d;) is assumed
to be a ratio in the period of (0,1). In other
words, the ‘word accuracy’ score that takes
word insertion error into account cannot be pre-
dicted by this idea, because the score can take
a negative value, particularly under poor con-
ditions.

Furthermore, from the results in the previous
section, dependence between the lower two sub-
bands should be taken into account. In this
case, the prediction formula can be rewritten
as
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10
(1 — 6) = {1 — 6172(d1,d2)} H {1 — 61(dl)}
=3
(2)

Finally, the expected recognition perfor-
mance is normalized by the baseline perfor-
mance of the system:

10
1-— 6172 (dl, dg) 1-— €; (dl)
Porea = Po 11

(3)
where Py is the baseline performance of the
recognizer at the given task, i.e., the recogni-
tion accuracy of the clean speech case. e; (00)
is the word error rate when no noise signal is
contaminated in the ith sub-band. Therefore,
1 —e; (00) = Py holds for each band.

4.2 Evaluation of the Prediction Form

In this section, the proposed prediction form
is evaluated through recognition experiments.
In the experiments, the experimental results in
Sections 3.1 and 3.2 are used as the error rate
functions, e;(d;). As for the test utterances, 20
different sentences spoken by the same speaker
as in the previous section are used. Noise
signals are added to the test utterance, then
recognition experiments are performed in the
same manner as described in Section 3. Thus,
the performed experiments are ‘closed’ with re-
spect to the speaker, the recognition system and
the recognition task conditions. The predicted
recognition performance is calculated from sub-
band dynamic ranges {d;} according to Eq. (3).

As test noise, a set of white Gaussian noise
(WGN) and a set of human-speech-like noise
(HSN)'9 are used. HSN is a kind of bubble
noise generated by superimposing independent
speech signals. When the number of superpo-
sitions is small, the signal simulates a multi-
speaker situation, whereas when the number of
superpositions increases to some hundreds, the
HSN becomes stationary noise whose spectral
shape represents long-term spectra of speech.
In the experiments, three sets of HSN consisting
of 32, 256 and 1024 superpositions are used. For
WGN, 10 band-limited and one full band sig-
nal are prepared. These two sets of noise signals
are added to the test utterance under 6 differ-
ent SNR conditions, i.e., 0, 5, 10, 20, 30, 40 dB;
therefore, 18 HSN and 66 WGN test conditions
are prepared in total. Note that the SNR here
is calculated from original speech sound and
noise signals for each sentence. Sub-band dy-
namic ranges {d;}, on the other hand, are cal-
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culated over given 20 sentences, by the method
described in Section 2.

4.3 Results of Experiments

The relationship between predicted and ac-
tual recognition performances is plotted in
Figs. 7 and 8 for WGN and HSN, respectively.
In the figures, it can be seen that Eq. (3) can be
used to predict the degradation of recognition
performance due to a noise well. The correla-
tion coefficients between actual and predicted
recognition rates are 0.96 for WGN and 0.99
for HSN.

The same experiments as described in the
previous section, but with changes of two con-
ditions, i.e., 1) the length of the signal for es-
timating sub-band dynamic ranges and 2) dis-
regard of the correlation between the lower two
sub-bands in modeling, are performed. Under
the first condition, the sub-band dynamic range
was calculated from one sentence, whereas 20
sentences were used in the previous experi-
ment. The average duration of the sentences
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was about three seconds. For the second condi-

tion, the independence between the lower two

frequency bands in error rate estimation, i.e.,
e12(dy,dz) = e1(dy) - e2(d2),

is assumed. The correlation coefficients of the

predicted and actual recognition performance

are given in Fig. 9, for all conditions.

The results clarified that accurate prediction
is difficult when the sub-band dynamic range is
calculated using only one sentence. It is also
confirmed that taking the dependence between
the lower two frequency bands into account is
important.

5. Summary

A method of predicting the degradation in
speech recognition performance due to noise
is proposed. Since the prediction measure is
defined based on the dynamic ranges of sub-
bands, an original speech signal as reference
is not needed, unlike in the case of conven-
tional SNR measure. Furthermore, the mea-
sure can take the spectral shape of the noise
into account when predicting recognition per-
formance. Experimental evaluations were per-
formed under the ‘closed’ condition where the
same speaker, the same recognition system and
the same recognition task under the trained
condition, but different noise and speech signals
were used. The experimental results, although
obtained under limited conditions, confirmed
the effectiveness of the measure. The correla-
tion coefficients between predicted and actual
recognition rates are 0.96 and 0.99 for white
Gaussian noise and human-speech-like noise, re-
spectively.
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Since the proposed measure uses the error
rate function, e;(d;), for the specific recogni-
tion conditions, further research is needed to
extends the method to a wider range of noise
conditions. In particular, whether or not the
same error rate function can be used for dif-
ferent speakers, i.e., speaker dependence, is the
most important issue that was not clarified in
this study.

Also, further research on the following points
is expected to improve the performance of the
measure: 1) a method of dividing the frequency
band into sub-bands, 2) the effectiveness of
weighting each sub-band output and 3) opti-
mum amount of data for calculating dynamic
range values.
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