
Vol. 43 No. 8 IPSJ Journal Aug. 2002

Regular Paper

An Inter-Space Avatar Programming Language

in a Virtual Space on the WWW

Yin-Huei Loh,† Takefumi Ogawa,†† Masahiko Tsukamoto†††

and Shojiro Nishio†††

In recent years, research work on virtual space has been extensively carried out. Many
virtual spaces are formed by multiple subspaces and the user uses an avatar to represent him
moving around in the virtual space. In general, moving around in virtual spaces requires real-
time user control. To make the avatar control more efficient and interesting, we propose the
Avatar Programming language (AP) to program the avatar’s behavior in a virtual space. To
maintain the independency of subspaces which form the virtual space, we employ the internal
control approach where the program handler is built inside each subspace. We implemented
the system on a virtual space constructed with IBNR (Image-Based Non-Rendering) 11), an
image-based representation technique to construct virtual spaces which run on a normal web
browser on the WWW. Using AP, the avatar’s behavior can be flexibly predefined beforehand,
and we can save the users much time and trouble in controlling the avatar in a virtual space.

1. Introduction

In recent years, research work on virtual
space has been extensively carried out 2),5),6).
Virtual spaces can be used to simulate many
things in real space; visiting remote museums,
art galleries, famous tourist resorts virtually,
shopping in virtual shopping malls, borrowing
books from virtual libraries and so on. Since
virtual spaces are usually huge, they often con-
sist of multiple virtual subspaces.
In order for users to move around in a vir-

tual space, some systems employ the method
of using an avatar to represent the user in the
virtual space. By controlling the avatar, the
user can see himself moving or carrying out var-
ious kinds of activities in the virtual space. In
controlling the avatar, real-time user interac-
tion is often required where the user controls
the avatar’s behavior at the point of time the
behavior is desired. To make the avatar con-
trol more efficient and interesting, in this pa-
per, we propose a programming language which
can be used to preprogram the behavior of
the avatar. We name it the avatar program-
ming language (AP). In AP, a program is ex-
ecuted across different subspaces in a virtual

† Department of Information Systems Engineering,
Graduate School of Engineering, Osaka University

†† Infomedia Education Division, Cybermedia Center,
Osaka University

††† Department of Multimedia Engineering, Graduate
School of Information Science and Technology,
Osaka University

space on the WWW. We designed the language
structure based on several policies, propose
the program executing mechanism to execute
the program across different subspaces, and
we implemented the system on IBNR (Image-
Based Non-Rendering) 11), a method to con-
struct virtual space systems which can run on
the WWW.
By defining a program using AP, users can

give instructions to the avatar in advance as of
how it should act. Given the instruction, the
avatar is able to act autonomously and more
intelligently in the virtual space without the
need to be controlled by the user at real-time.
In such a way, the avatar can be used to per-
form various services to the user. To help the
user, the virtual space constructor can also pre-
define some programs in the virtual space. The
program can be executed under certain circum-
stances when a user visits the virtual space.
The remainder of the paper is organized as

follows. In section 2, we explain the approach
taken in realizing the avatar programming lan-
guage. We describe the programming language
structure in section 3 and explain the program
execution mechanism in section 4. Discussion
on sample usages, observation and related work
are included in section 5. Finally, we conclude
our paper in section 6 with some discussion
about future work.

2. The Approach

2.1 Language Design Policy
AP is designed as an inter-space avatar pro-

2797



2798 IPSJ Journal Aug. 2002

Fig. 1 The internal control approach versus the
external control approach.

gramming language in a virtual space on the
WWW. To achieve this, we have employed the
design policies as listed below.
• Ability to use the program on the WWW.
• Ability to maintain the independency of

subspaces on the WWW.
• Comprehensibility and readability of the

program by users and virtual space con-
structors.

In order to maximize the number of users
of the programming language, we have decided
to make it usable on the WWW as this is the
most common platform and can be accessed by
anyone using any operating systems from any-
where around the world. We have chosen IBNR
as the platform to implement the programming
language, because an IBNR virtual space runs
on Internet Explorer. A brief introduction of
IBNR is included in the next subsection. The
avatar programming language is implemented
with JavaScript program which runs on the web
client.
In a virtual space consisting of a number of

independent subspaces, the avatar moves across
these subspaces, and the control is passed along
from a subspace to another. There are two
methods to handle the program in the virtual
space, the internal control approach and the ex-
ternal control approach. Figure 1 illustrates
the concept of these two approaches. A pro-
gram handler is in charge of handling the pro-
gram, from program input, processing to execu-
tion. In the internal control approach, the pro-
gram handler is built as a component inside the
subspace. When the avatar moves from a sub-
space to another, the control of the program is
also passed along from the program handler in
the previous subspace to the program handler
in the current subspace. In such a way, the in-
dependency of the subspaces can be maintained
as different program handlers can be used for
different subspaces.
As opposed to the internal control approach,

the external control approach can be used
where the program handler is built as an exter-

nal component to the subspaces. In the exter-
nal control approach, since the program handler
runs as a resident process to control and exe-
cute the program, it is relatively easy to execute
the program across different subspaces.
However, since the internal control approach

allows different subspaces to have different pro-
gram handlers, they can carry different defini-
tions for the same commands, and it is possible
for a subspace to have some special commands
which do not exist in the other subspace. When
using the external control approach for the
same purposes, everything has to be included
in the same program handler which makes it
complicated and large. In other words, using
the internal control approach makes it easy to
maintain the independency of subspaces. Con-
sequently, we have taken the internal control
approach.
As the internal control approach is chosen, it

is necessary to propagate the program from a
subspace to another subspace. We have taken
the approach to save the program in the cookie,
a function provided by web browsers where val-
ues stored in a cookie can be shared by differ-
ent web pages as long as they are on the same
server. In such a way, the program can be re-
ferred to by different subspaces.
To minimize the data volume propagated, it

is necessary to make the program small in size.
On top of that, considering the fact that the
program is stored in cookie which has limitation
in size, it is also logical to make the program
simple and short. As a consequence, we have
employed the one-alphabet command/one-
line programming policy where each com-
mand consists of only one alphabet with the
necessary parameters so that the program can
be written in one line.
Finally, considering the fact that the program

is used by virtual space users and constructors,
the program must be made understandable and
readable by human beings. Therefore, the com-
mands are all designed in the Polish form (pre-
fix style) where the operator is first written
followed by the operand (parameter) enclosed
in parenthesis. This is more readable to hu-
man beings compared to the reverse Polish form
(suffix style) where the operator is placed after
the operand (parameter). As an example, the
expression (a+ b) ∗ c is written as ∗(c+(ab)) in
the Polish form and ((ab) + c)∗ in the reverse
Polish form.
With the above, we have designed the pro-



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2799

gramming language and implemented it on
IBNR on the web. The system can be exe-
cuted on a normal web browser without any
extra plug-ins or external software. No spe-
cial resident process on the web server or clients
are executed to handle the program. Instead,
a JavaScript program is executed on the web
browser of the client to handle the program.
We will explain IBNR in the next subsection.

2.2 IBNR
In order to construct a virtual space, the

geometry-based rendering (GBR) technique 6)

and the image-based rendering (IBR) tech-
nique 2),5) are often employed. Since the real
space is complex and has many objects, it is
very costly to construct a virtual space with
high reality using GBR. With IBR, this task
becomes easier, but rendering is still necessary.
These conventional approaches in building vir-
tual 3D space require much calculation and
consume a great deal of computational power,
sometimes affecting the processing speed of the
applications when a lot of changes or motions
are involved in the scene. Thus, rendering speed
is a main issue and very often, special applica-
tion programs are also required.
In order to solve these problems, we have pro-

posed IBNR (image-based non-rendering) 11),
an imaged-based representation method. In
this method, a virtual space is constructed us-
ing many independent subspaces we call scenes,
each representing a part of the virtual space.
Each scene is constructed using a static picture
of the real space as the background of the scene.
The avatar which represents a user in the vir-
tual space is formed by pasting a picture of a
person with a suitable size on the background
of the scene.
Users can control the movement of the avatar

using some predefined keys, and the avatar’s
size changes accordingly when it is moved.
Many scenes can be linked together to form a
huge virtual space. When the avatar reaches
the edge of a scene, the background scene is
changed to another scene to reflect the move-
ment. Figure 2 (a) to (c) show how the ava-
tar’s size changes when it moves. As the avatar
reaches the edge of the scene, the background
scene changes to another scene as shown in
Fig. 2 (d).
The virtual spaces constructed by IBNR can

be used on the WWW because in IBNR, every
scene is defined with an HTML file as shown
in Fig. 3. All parameters of the scenes and

(a) (b)

(c) (d)

Fig. 2 Sample IBNR scenes showing scene changes
when the avatar moves.

Fig. 3 IBNR system.

a JavaScript program are included in the cor-
responding HTML files. This JavaScript pro-
gram controls the avatar’s movement and scene
change. When the avatar moves, the JavaScript
program reflects its movement on the scene;
when the avatar moves out from a scene, the
JavaScript program loads the corresponding ad-
jacent scene to the web browser. We have pro-
posed some editing tools 7) to construct scenes
from the pictures of the real world and link
them together to form a virtual space. Some
sample applications that we have built using
IBNR can be found on the IBNR homepage 3)☆.
We have chosen IBNR because an IBNR vir-

☆ JavaScript for Netscape Navigator (NN) and Mi-
crosoft Internet Explorer (IE) are not compatible
with each other. Due to this constraint, our sys-
tem only works well on IE browser. However, it can
be transformed into Java versions to work on NN
browser.



2800 IPSJ Journal Aug. 2002

Fig. 4 Classification of programs and commands.

tual space consists of many subspaces; thus it
reflects the idea of the internal control approach
best. In this paper, we use IBNR as the base
of our system to implement the programming
language.

3. The Language Structure

In the avatar programming language we pro-
pose, we provide two types of program as fol-
lows:
• Avatar program
• Event-driven program
The avatar program is a sequence of actions

formed by the basic commands and the con-
trol commands (see Fig. 4). When the avatar
program is executed, the avatar performs the
corresponding actions specified in the program
sequentially. The avatar program is a one-time
program. It is executed from the beginning to
the end once, and then deleted from the mem-
ory.
The event-driven program defines an avatar

program to be executed when an event occurs.
It is defined in pairs of event-actions where the
“event” is one of the event commands while the
“action” is an instance of the avatar program (a
string of combination of the basic and control
commands). When the specified events occur,
the corresponding actions will be inserted into
the avatar program and then executed. Unlike
the avatar program, after the event-driven pro-
gram is defined, it stays in memory and waits
for the event to happen to activate the action.
It remains in memory after it is being executed
unless being explicitly deleted. In other words,
it may be executed multiple times since the ac-
tion is activated every time the specified event
happens.
Figure 4 illustrates the classification of pro-

grams, commands and their relation.
Since the programming language is used to

instruct the avatar to perform various actions,
the language should be made able to define
a variety of different instructions flexibly. To
accomplish this, we prepare a lot of primi-
tive commands in the language which can form
many different actions when they are combined
in different manners. We explain them in the
following.

3.1 Basic Commands
Basic commands are commands which specify

a unit of action of an avatar. They are stand
alone commands which can be used indepen-
dently without being combined with any other
commands. They can be further divided into
the avatar’s movement, variable control com-
mands and other actions.
Avatar’s movement are the most basic com-

mands in a virtual space to move the avatar
around. Commands to track the avatar’s move-
ment are also included in which by recording
the movement of the avatar, the program to
move from a place to another can be saved into
a variable and be used later. The commands
related to avatar’s movement are listed in Ta-
ble 1.
Variables are used to keep various informa-

tion in a virtual space. In Table 2, program
is used to store the avatar program, while
eprogram is used to store the event-driven pro-
gram. There are 3 system variables, reg (reg-
ister), cnt (counter) and pace (avatar’s moving
pace). reg is used to store information tem-
porarily; information stored can be manipu-
lated with some operations. cnt is used to con-
trol a loop command as of when the loop should
end (will be explained in the next subsection).
pace represents the avatar’s moving pace where
a smaller value makes the avatar move faster
and vice versa. A user can also create his own
variables we call user-defined variables. Using
user-defined variables, a user can store as much
information as he likes and organize them in his
own way. To manipulate these variables with
some operations, the users can load these vari-
ables into reg and save them back after manip-
ulation. The virtual space constructor can also
define some variables inside each subspace to
provide users the information about the virtual
space. The variables can be manipulated with
the variable control commands as follows.
For commands “+”, “−”, “z”, “Z”, “A” and

“D”, the parameter can be a value, or it can
refer to a variable name when the symbol “#”
is added. When “#” is used, it refers to the



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2801

Table 1 Avatar’s movement.

f Move to the scene in front of the avatar (relative direction).
b Move to the scene at the back of the avatar (relative direction).
r Move to the scene at the right of the avatar (relative direction).
l Move to the scene at the left of the avatar (relative direction).
F Move to the scene in front from the user’s point of view (absolute direction).
B Move to the scene at the back from the user’s point of view (absolute direction).
R Move to the scene at the right from the user’s point of view (absolute direction).
L Move to the scene at the left from the user’s point of view (absolute direction).
K(t) Move forward one step.
K(b) Move backward one step.
K(h) Turn right.
K(f) Turn left.
H Start recording the movement of the avatar in a forward manner.
T Start recording the movement of the avatar in a backward manner.
Q Stop the recording of movement.
X Execute the movement recorded.

Table 2 Variable control commands.

s(n) Set reg to n (reg = n).
+(n) Add the number n to reg (reg = reg + n).
−(n) Subtract the number n from reg (reg = reg − n).
z(str) Concatenate the string str to the front of reg.
Z(str) Concatenate the string str to the end of reg.
A(n) Add n as an element to the set stored in reg.
D(n) Remove element n from the set stored in reg.
u Set the value of reg to the URL of the current scene.
x Set reg to program (reg = program).
X Set program to reg (program = reg).
e Append reg to the back of eprogram.
E Overwrite eprogram with the the event-driven program stored in reg.
i Increase cnt by 1.
d Decrease cnt by 1.
c Set cnt to reg (cnt = reg).
C Set reg to cnt (reg = cnt).
P(n) Set pace to n (pace = n).
S(var) Set var to reg (var = reg).
G(var) Set reg to var (reg = var).
k(var) Destroy variable var.
v(var) Display the value of variable var on screen.

Table 3 Other actions.

t(x) Display the message x on screen.
@(x)(p1):(p2) Display a dialog box with the question x on screen; if the user chooses the “ok”

button, execute the program p1, otherwise if he chooses the “cancel” button, execute
the program p2.

w(n) Wait for n milliseconds before executing the next command.
j(x) Jump to the URL x.
J Jump to the URL stored in reg.

value stored in the variable. For example,
“+(#anum)” will add the value stored in vari-
able anum to reg. In such a way, values stored
in different variables can be added up or com-
bined together easily.

var is used to represent any user-defined vari-
ables. By using the “S” and “G” commands,
user-defined variables can be loaded into reg,
some operations can be performed on the value
in the reg and then the value can be loaded
back to the user-defined variables.
Commands provided for other actions are

listed in Table 3.
In “@” command, both p1 and p2 are avatar

programs formed by one or more commands.
In order to save the processing cost, the syn-
tax of “@” command is made similar to those
in the choice commands, where the command
is divided into three portions: the “if” portion
“@(x)”, the “then” portion “(p1)” followed by
a colon “:”, and the “else” portion “(p2)”. Ei-
ther of the “then” or the “else” portion can be
omitted.



2802 IPSJ Journal Aug. 2002

Table 4 Repeat commands.

n(p1) Execute program p1 n times, where n is a positive integer.
(p1) Execute program p1 indefinitely.

Table 5 Choice and loop commands.

?m(p1):(p2) If movement m is possible, execute program p1, otherwise execute program
p2. m can be either one of “f”, “b”, “r”, “l”, “F”, “B”, “R”, “L” which
indicate the corresponding movement to the adjacent scenes, or “s”, which
indicates move one step to the front without exiting the current scene.

?(val)(p1):(p2) If the value of reg is equal to val, execute program p1, otherwise execute
program p2.

p(p1):(p2) If the value of reg is more than 0, execute program p1, otherwise execute
program p2.

!(p1) While cnt is not 0, execute program p1.

3.2 Control commands
Control commands are used for controlling

the basic commands but they can also be used
recursively on themselves. These commands
cannot be used independently; they must in-
clude the basic commands as parameters in or-
der to make sense. Control commands can be
further divided into two groups, the repeat com-
mands and the choice and loop commands.
Repeat commands (Table 4) are used to

specify the number of times a command (or a
group of commands) should be repeated. They
can shorten the program when there are many
similar actions to be performed.
Repeat commands’ structure has some simi-

larity with the Logo programming language 4),
where in Logo, the cursor is moved around the
screen by using simple commands like “right
40” and “forward 20”.
Choice and loop commands (Table 5) refer

to commands which adaptively change accord-
ing to the situation. In a choice command, a
condition is stated and different commands can
be carried out when the condition is and is not
fulfilled. This is equivalent to the “if-then-else”
command in common programming languages.
Loop command is an improvement over the re-
peat commands where the number of repeats
does not need to be fixed but can be changed
dynamically according to the situation. It is
equivalent to the “do-while” command in com-
mon programming languages. The commands
provided are as follows.
Since choice and loop commands are adaptive

and they control the flow of the program, they
make the avatar program more flexible.

3.3 Event Commands
The last category of commands is the event

commands as shown in Table 6. These com-
mands are used in the event-driven program

Table 6 Event commands.

i The avatar enters a scene.
o The avatar leaves a scene.
m The avatar makes a move.
f The avatar moves forward.
b The avatar moves backward.
r The avatar moves to the right.
l The avatar moves to the left.

to specify the events which will activate an
avatar program (formed by a combination of ba-
sic and/or control commands) to be executed.
A number of events and the corresponding ac-
tions can be defined. The possible events are as
follows.
The syntax of the event-driven program is

e1ˆp1&e2ˆp2&. . . &enˆpn, where ei represents
an event command while pi represents an avatar
program. They are separated with “ˆ”, and
pairs of event-program are separated with “&”.
In the above, whenever e1 occurs, p1 will be
inserted into the avatar program and executed.
The same thing happens for e2 and p2 and so
on.

3.4 Sample Programs
Combining the above commands, various pro-

grams can be formed. Below, we list some pos-
sible avatar programs.

2fr Go forward two scenes, then go right-
ward one scene.

s(2)c!(f?l(d))l Make the avatar move for-
ward and take the second left turn.

P(100)2fP(400)w(200)bf Rush to two
scenes in front, wait for a while, and then
slowly move back to the current scene.

s(0)3(f?l(+(1)))p(b2f) Check whether
there are left turns to any of the three
scenes in front. If there exists at least one
such scene, go back to the original starting
point.

s(1)cs(0)!(?s(+(1)K(t)):(d))v(reg) Cal-



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2803

culate the number of steps needed to reach
the edge of a scene.

p:(@(Would you like to go back
to the beginning?)(j(http://www.te-
st.com/begin.html))) If reg is not pos-
itive, ask the user whether he wants to go
back to the beginning and if he answers yes,
load the web page which shows the starting
scene.

s(1)cs(0)S(scnnum)!(G(scn)?(balcony)
(d):(G(scnnum)+(1)S(scnnum)f))
v(scnnum) Calculate the number of
scenes to go forward before reaching the
balcony scene. Here, scn is prepared by
the virtual space constructor beforehand as
a description of the scene.

Avatar programs can be even more powerful
when used in event-driven programs. Here, we
list some sample event-driven programs.

mˆG(step)+(1)S(step) Record the number
of steps the avatar has taken.

iˆG(scn)?(balcony):(G(scnnum)+(1)
S(scnnum)f) Count the number of scenes
to go through to the balcony scene.

iˆG(scnname)A(#scn)S(scnname) Col-
lect all the scene names an avatar goes
through. Similar to the above, scn is a de-
scription of the scene prepared by the vir-
tual space constructor beforehand.

The event-driven program can be activated
when the avatar moves either by an avatar pro-
gram or by user’s real-time control.
As shown in the above examples, various pro-

grams can be formed flexibly with the com-
mands provided. The program execution mech-
anism is explained next.

4. Program Execution Mechanism

In this section, we explain the program input
mechanism, the details of the program handler
and the program propagation mechanism.

4.1 Program Input
Program input can be done by the user using

the user interface we provided. In a scene of an
IBNR virtual space, a user simply presses the
key “s” (for script), and a dialog box asking the
user to key in the avatar program will appear on
the scene to let the user key in the program. To
key in an event-driven program, a user can press
the key “e” (for event-driven script). Similarly,
a dialog box asking the user to key in the event-
driven program will appear on the scene.
The virtual space constructor can also prede-

fine the programs in the HTML files which form

(event)
A∆E

BiA∆E
ei occurred

(E = e1ˆB1&e2ˆB2& . . .

&enˆBn)

(basic)
bA∆E

A∆E
execute b

(replace)
eA∆E

A∆E∗ E∗ = reg

(append)
EA∆E

A∆E&E∗ E∗ = reg

(program)
XA∆E

A∗∆E
A∗ = reg

(repeat)
SnaA∆E

aSn−1aA∆E
if n > 1

(repeat1)
1aA∆E

aA∆E

(indefinite)
∗aA∆E

a ∗ aA∆E

(if-true)
?CZ1 : Z2A∆E

Z1A∆E
if C

(Z1 or Z2 must not

be null)

(if-false)
?CZ1 : Z2A∆E

Z2A∆E
if not C

(Z1 or Z2 must not

be null)

(reg-pos)
pZ1 : Z2A∆E

Z1A∆E
if reg > 0

(Z1 or Z2 must not

be null)

(reg-npos)
pZ1 : Z2A∆E

Z2A∆E
if reg ≤ 0
(Z1 or Z2 must not

be null)

(loop)
!(A)B∆E

A!(A)B∆E
if cnt �= 0

(loop-end)
!(A)B∆E

B∆E
if cnt = 0

Fig. 5 Rules of program execution.

the scenes. This can be done with the “savePro-
gram” and “saveEvent” functions AP provides.
The details will be explained in section 4.4.

4.2 Program Handler
This section explains the core part of the pro-

gram execution mechanism by showing the de-
tails of the program handler to process, namely,
to parse and to execute, the avatar program.
The rules of program execution are shown in

Fig. 5. In this figure, A∆E represents the state
that the avatar program equals to A and the
event-driven program equals to E. Each rule
represents the possible change of state from the



2804 IPSJ Journal Aug. 2002

Fig. 6 The procedure of AP program handler.

above to the below when program is executed.
We explain the other notations as follows.
• A, B and Bi each refers to an avatar pro-

gram or null (i.e., an empty string).
• E refers to an event-driven program.
• b represents a basic command except “e”,

“E” and “X”.
• Si represents the string of integer i.
• a represents an atomic program which may

be a single command or an avatar program
enclosed in brackets.

• C represents the condition of the “?” com-
mand.

• Z1 and Z2 each refers to an avatar program
enclosed in brackets or null.

These rules are used in executing the avatar
program and the event-driven program. In the
following explanation, we will refer to the rules
in this figure.
As we have mentioned before, there is no spe-

cial process to handle the avatar program exe-
cution. Every scene acts as an HTML file inde-
pendent of other scenes, and the control is lost
when scene changes. Thus, program execution
is handled separately from each scene with a
JavaScript program.

Figure 6 shows the detail actions of AP pro-
gram handler. It is done by every single scene
on the client side to execute the avatar pro-
gram. The process is first started when a scene
is loaded or reloaded into the web browser. The
program handler first reads the cookie to load
the event-driven program and the avatar pro-
gram, and checks whether any events specified
in the event-driven program has occurred. If
a specified event has occurred, the correspond-
ing program specified in the event-driven pro-
gram will be inserted into the avatar program as

stated in rule “event” in Fig. 5. For example,
when the event-driven program “iˆ+(1)” and
the avatar program “2f” are currently stored
in the system and event “i” (the avatar en-
ters the scene) has occurred, the system inserts
“+(1)” into the avatar program to make it be-
come “+(1)2f”. The modified program is then
saved into the cookie again.
After checking the event-driven program, the

avatar program is examined. If no program ex-
ists, the scene works as a normal web page with
IBNR virtual space functions where the avatar
can be moved around freely by the users. When
a program exists, the system retrieves the saved
program and starts processing the program.
Processing starts with program conversion

where the first command of the avatar program
is extracted and analyzed. If it is a basic com-
mand except command “e”, “E” and “X”, the
avatar program is executed as stated in rule
“basic” in Fig. 5. If the basic command is “e”
(or “E”), the avatar program is executed as
stated in rule “replace” (or “append”) in Fig. 5
where the event-driven program is modified. If
the basic command is “X”, the avatar program
is executed as stated in rule “program” in Fig. 5.
If the first command of the avatar program

is not a basic command, program conversion is
done to convert this command. The first com-
mand of the avatar program (which changes ev-
ery time the conversion is done) is repeatedly
analyzed and converted until the first command
becomes a basic command (as shown in the rest
of the rules in Fig. 5). The details of program
conversion are discussed in the next subsection.
After program conversion, the program handler
extracts the first command from the avatar pro-
gram to execute. This command is then trun-
cated from the avatar program and the new pro-
gram is saved into the cookie. As the command
is being executed, some events specified in the
event-driven program may happen. Thus the
system goes back to check the event-driven pro-
gram and the same process repeats. These four
steps, check event, check program, convert pro-
gram and execute program are repeated until
the execution is interrupted, or no more com-
mands exist, i.e. the program is finished exe-
cuted, or the scene changes.
The program is interrupted when a user in-

terrupts or the next command is an error. In
both cases, the program execution is paused to
allow the user to modify the current avatar pro-
gram or event-driven program. When the user



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2805

is done with program modification, the system
continues from the “check event” process. In
the case where the program is finished executed,
the scene returns to the normal mode, i.e., it
works as a normal web page with IBNR virtual
space functions. In the case where the scene
changes, i.e., the avatar moves to another scene,
the program execution control is lost from the
old scene and passed to the new scene. In the
new scene, the whole thing repeats again.
In the normal mode, users can always key in

a program (avatar program or event-driven pro-
gram). When this happens, the system starts
the “check event” process. As we had explained
in the previous chapter, an avatar program is
a one-time program where the commands are
executed once and then deleted, but an event-
driven program remains in memory unless being
explicitly deleted. Therefore, in normal mode,
whenever an event occurs (an event can hap-
pen when the user moves the avatar), “check
event” process is started. Similarly, as ex-
plained above, when an event specified in the
event-driven program has occurred, the corre-
sponding program specified in the event-driven
program will be inserted into the avatar pro-
gram and the processing will be carried out.

4.2.1 Program Conversion
Program conversion is done only when the

first command is a control command (repeat
command or choice and loop commands). This
preprocessing is done to filter out the control
commands so that in the next process, com-
mand execution, only simple and straightfor-
ward basic commands need to be handled. In
program conversion, a command is either ex-
panded or simplified into zero or more simpler
commands. Program conversion is done recur-
sively until the first command in the avatar pro-
gram becomes a basic command. Then the first
command is executed.
If the command is a repeat command, the pa-

rameter is duplicated to the front, and the num-
ber of repeats is decremented (rules “repeat”,
“repeat1” and “indefinite” in Fig. 5).
If the command is a choice command, the

condition specified in the “if” portion is eval-
uated and only either the “then” or “else”
portion will remain after conversion (rules
“if-true”, “if-false”, “reg-pos”, “reg-npos” in
Fig. 5). This result may be null as either the
“then” or “else” portion can be ommited.
As for a loop command, the system checks

the value of cnt. If cnt is not zero, the pa-

rameter is duplicated to the front as in the re-
peat commands, otherwise the command is con-
verted into null (rules “loop” and “loop-end” in
Fig. 5).

4.2.2 Command Execution
Command execution basically performs the

basic action specified by the first command in
the avatar program. However, when the first
action is one of the movement “f”, “b”, “r” or
“l”, it needs to be converted to commands of
absolute direction “F”, “B”, “R”, “L” which
is executed without depending on the direction
the avatar is facing. This step is necessary be-
cause during program execution, the avatar’s
direction may change and if a user interrupts
the program and then continues execution, the
commands “f”, “b”, “r”, “l” will indicate differ-
ent directions from the initial ones. Converting
the movement commands to the commands of
absolute direction ensures that the program is
executed correctly after user interruption.

4.3 Program Propagation
In the existing IBNR, an avatar’s position in

the scene is controlled by a JavaScript program.
When the avatar reaches the edge of a scene
(which is an HTML file), the current scene au-
tomatically changes to another scene which is
predefined during the virtual space construc-
tion stage, and the control is passed to the new
scene. As a result, all information in the old
scene is lost.
In AP, the program and data must be prop-

agated to the new scene. To achieve this, the
program must be stored before the old scene
changes to the new scene so that it can be ac-
cessed from the new scene. By utilizing the
cookie function of a web browser, the programs
and the values of variables are saved into a
cookie. Since cookies can be accessed by dif-
ferent HTML files, the information stored can
be shared by all scenes. In such a way, even af-
ter scene change, the programs can be retrieved
back and thus can continue to be executed.

4.4 Implementation
In order to use AP in an IBNR virtual space,

it is necessary to modify the HTML file of
an IBNR subspace. The AP program handler
that we have built with a JavaScript program,
“ap01.js”, must be included into the HTML file,
in addition to the “ibbnr08.js” and “avatar.js”
used for constructing the IBNR virtual space.
We show a sample HTML file in Fig. 7.
We have mentioned that the functions “save-

Program” and “saveEvent” can be used in the



2806 IPSJ Journal Aug. 2002

� ✏
<html>
<head>
<script language="JavaScript1.2">
var Background="../part1/dsc00157.jpg";
var FloorWidth=410, FloorDepth=400;
... (variable declaration of IBNR virtual
space)

</script>
<script language="JavaScript1.2"
src="avatar.js">

</script>
<script language="JavaScript1.2"
src="ibnr08.js">

</script>
<script language="JavaScript1.2"
src="ap01.js">

</script>
</head>
<body>...</body>
</html>

✒ ✑
Fig. 7 A sample HTML file with AP function.

HTML files to save the avatar program and
event-driven program into the system. The fol-
lowing shows an example of lines that should
be included in the file.
<script language="JavaScript1.2">

function start() {

saveProgram("?f(f):(r)");

saveEvent("i^G(scnname)A(#scn)S(scnname)");

}

</script>

Using the above, a virtual space construc-
tor can predefine the avatar program and the
event-driven program in the subspace and exe-
cute them when a user comes in to the subspace
or when he performs some action like pressing
a button.

5. Discussion

5.1 Sample Usages
In this section, we discuss how the avatar pro-

gramming language can be applied in various
virtual spaces.
Information searching and information col-

lecting in a virtual space can be realized. For
example, finding a book in a virtual library,
finding the shop which sells the CD with the
lowest price in a virtual mall by comparing the
prices in different shops, or collecting the ti-
tles of the CDs produced in year 2000. The
avatar program can be used to specify the con-
dition and the action to be taken when the
condition is/is not fulfilled using various com-
mands that we have prepared. Nevertheless,
it is necessary that the virtual space construc-

tor defines the information about the virtual
space inside the subspaces and the user must
know how the information is defined to retrieve
them. Assume that in a virtual shop formed
by a number of subspaces, each subspace con-
tains information about a product which can
be specified in variables such as “type”, “price”
and “brand”. These information definition can
be made known to the user who comes to this
virtual space.
In such a way, using avatar programming,

users can instruct the avatar to search infor-
mation. This can save them time and effort
to do the searching on their own at real-time,
especially when the work is monotonous.
As for movement tracking, users can record

down the movement of the avatar when it moves
in a forward or backward manner. By doing
so, the movement recorded down can be reused
when the user comes to the same virtual space
the next time. Moreover, by tracking the move-
ment in a backward manner, the avatar can be
instructed to move back to the starting point at
any time, thus preventing the user from getting
lost in a virtual space.
Since the avatar program can be predefined

by the virtual space constructors as we have
mentioned in the previous chapter, it can be
used by the virtual space constructors to pro-
vide guidance in a virtual space to the users.
By defining the movement from the current
scene to the destination scene in a program, the
avatar can be instructed to guide the users to a
place. Indirectly, it acts as a tour guide in the
virtual space.
The virtual space constructors can also make

use of the avatar program to provide some use-
ful information for the users. For example, giv-
ing the promotion information or product in-
formation in a virtual shopping mall, or expla-
nation about an exhibit in a virtual museum or
art gallery. By predefining the program, the in-
formation about sales, special discounts or new
arrivals can be displayed to the user with a
message box when the users come to the sub-
space. Some explanation about product or ex-
hibits can be done in the same way. By utilizing
the information stored in cookie, it is possible to
display different information for different users
with different interest, or only display the in-
formation when some criteria is satisfied.

5.2 Observation
Here, we would like to discuss some observa-

tion in this research work.



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2807

In this work, since we have chosen the in-
ternal control approach, independency of sub-
spaces can be maintained. Accordingly, it is
possible to have subspaces with different pro-
gram handlers to handle the program propagat-
ing from a subspace to another. Even though
the subspaces may contain different program
handlers, a program can still be propagated
across these subspaces being executed by dif-
ferent program handlers in these subspaces.
In a broader sense, even with other kinds

of virtual space (e.g., those constructed by
VRML 12)), even though the data format and
definition of the virtual space may be differ-
ent, the program execution mechanism works
exactly in the same way. As long as the pro-
gram handlers for these virtual spaces are im-
plemented, AP can be used in the same manner.
Furthermore, it is possible to use AP across dif-
ferent virtual spaces where the program prop-
agates from a virtual space to another kind of
virtual space, being executed by the program
handlers in these virtual spaces. This makes
the integration easier.

5.3 Related Work
Our work has some similar characteristics

with mobile agents 1),8) in that it uses an agent,
the avatar, to provide some service for the user
and that it aims to achieve autonomous behav-
ior in the agent. However, our idea is to use
the avatar as an agent in a virtual space even
though currently we are only at the very first
step of achieving this.
In Ref. 10), a WAVE language to program

mobile processes in distributed environments is
proposed while in Ref. 9), a language for spec-
ifying dynamically evolving networks of dis-
tributed processes is proposed. In these works,
the program hops from node to node in a net-
work, which is analogous to the avatar pro-
gram which hops from a subspace to another
subspace. These works also use the same ap-
proach with our work where the language is
defined with short commands such that short
programs are possible. However, the purpose of
these languages is to handle mobile processes in
distributed environment which differs from AP.
The language structure in AP has some sim-

ilarity with the Logo programming language 4)

in the part where the movement is repeated –
“2f” in avatar programming and “forward 20”
in Logo programming. Apart from that, in
some computer games especially MUD (multi-
user dungeon, a type of multi-player interac-

tive game) where the player, represented by
an avatar, explores the virtual space in the
game, the movement of the avatar can be pre-
defined. However, the avatar programming is a
one-alphabet program, it is executed across dif-
ferent subspaces (thus an inter-space program-
ming language) and it runs on the web.

6. Conclusions

In this paper, we have proposed AP, an
avatar programming language for controlling
the avatar in a virtual space which can be used
on the WWW. We have shown the language
structure, explained our implementation and
shown some sample usages on how the concept
can be used in a virtual space.
We have designed the avatar programming

language handler with the internal control ap-
proach. We mainly focused on the technical
issues like the mechanism to propagate and ex-
ecute a program across different independent
subspaces.
One problem in this language is that it is

rather low level as all commands are one-
alphabet commands and thus it is not easy for
users to remember and use the commands. A
solution is to provide a more user-friendly tool
to enable the users to make full use of this lan-
guage. This can be done by providing some pre-
defined macros to perform some jobs, in which a
user only needs to choose from the list of macros
and provide some information to carry out the
job. During execution, the program handler we
have proposed can still be used to process the
program. Another possibility is to provide a
high-level language which is easier to be used,
working as a layer in between the user and the
program handler. This remains as part of our
future work.

Acknowledgments This research was sup-
ported in part by Special Coordination Funds
for promoting Science and Technology of the
Ministry of Education, Culture, Sports, Science
and Technology of Japan, and by Grant-in-Aid
for Scientific Research on Priority Areas num-
bered 13224059 from the Ministry of Educa-
tion, Culture, Sports, Science and Technology
of Japan.

References

1) Harrison, C.G., Chess, D.M. and Kershen-
baum, A.: Mobile Agents: Are They a Good
Idea?Mobile Object Systems: Towards the Pro-
grammable Internet, Vitedk, J. and Tschudin,



2808 IPSJ Journal Aug. 2002

C. (Eds.), Lecture Notes in Computer Science
1222, pp.25–45, Springer-Verlag (Mar. 1997).

2) Hirose, M.: Image-Based Virtual World Gen-
eration, IEEE Multimedia, pp.27–33 (Jan.–
Mar. 1997).

3) IBNR Project, Nishio Laboratory, Osaka Uni-
versity, http://www-nishio.ise.eng.osaka-u.ac.
jp/IBNR/.

4) Logo Foundation — The Turtle,
http://el.www.media. mit.edu/groups/logo-
foundation/Logo/Turtle.html.

5) Moezzi, S., Tai, L.C. and Gerard, P.: Virtual
View Generation for 3D Digital Video, IEEE
Multimedia, pp.18–26 (Jan.–Mar. 1997).

6) Nakanishi, H., Yoshida, C., Nishimura, T.
and Ishida, T.: Free-Walk: Supporting Casual
Meetings in a Network, Proc. ACM 1996 Con-
ference on Computer Supported Cooperative
Work, pp.308–314 (1996).

7) Ogawa, T. and Tsukamoto, M.: Tools for
Constructing Pseudo-3D Space on the WWW
Using Images, New Generation Computing,
Vol.18, pp.391–407 (2000).

8) Pham, V.A. and Karmouch, A.: Mobile Soft-
ware Agents: An Overview, IEEE Communica-
tions, Vol.36, No.7, pp.26–37 (July 1998).

9) Riely, J. and Hennessy, M.: A Typed Lan-
guage for Distributed Mobile Processes (Ex-
tended Abstract), Proc. 25th ACM-SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 98 ), pp.378–390
(1998).

10) Sapaty, P.: Mobile Processing in Distributed
and Open Environments, John Wiley & Sons,
Inc. (1998).

11) Tsukamoto, M.: Image-based Pseudo-3D Vi-
sualization of Real Space on WWW, Digital
Cities: Technologies, Experiences, and Future
Perspectives, Ishida, T. and Isbister, K. (Eds.),
Lecture Notes in Computer Science, Vol.1765,
pp.288–302, Springer-Verlag (2000).

12) VRML, http://www.web3d.org.

(Received April 12, 2001)
(Accepted May 15, 2002)

Yin-Huei Loh received her
Bachelor of Computer Sciences
in University of Science, Malay-
sia in 1997. She joined Osaka
University in the following year
and obtained her M.E. degree in
Information Systems Engineer-

ing in 2001. She is currently pursuing her Ph.D.
degree in the same university.

Takefumi Ogawa received
his B.E. and M.E. degrees in In-
formation Systems Engineering
from Osaka University, Japan,
in 1997 and 1999, respectively.
Currently, he is a research asso-
ciate in the Cybermedia Center,

Osaka University. His research interests include
groupware systems and augmented reality. He
is a member of four learned societies, including
IEEE.

Masahiko Tsukamoto re-
ceived his B.E., M.E., and Dr.E.
degrees from Kyoto University,
Japan, in 1987, 1989 and 1994,
respectively. From 1989 to
February 1995, he was a research
engineer of Sharp Corporation.

From March 1995 to September 1996, he was
an assistant professor in the Department of In-
formation Systems Engineering of Osaka Uni-
versity, and since October 1996 to March 2002,
he was an associate professor in the same de-
partment. Since April 2002, he has been an
associate professor in the Department of Mul-
timedia Engineering of Osaka University. His
current research interests include mobile com-
puting and augmented reality. He is a member
of eight learned societies, including ACM and
IEEE.



Vol. 43 No. 8 An Inter-Space Avatar Programming Language 2809

Shojiro Nishio received his
B.E., M.E., and Dr.E. degrees
from Kyoto University, Japan,
in 1975, 1977 and 1980, respec-
tively. From 1980 to 1988 he was
with the Department of Applied
Mathematics and Physics of Ky-

oto University. In October 1988, he joined the
faculty of the Department of Information and
Computer Sciences, Osaka University, Japan.
In August 1992, he became a full professor in
the Department of Information Systems Engi-
neering of Osaka University. He has been serv-
ing as the director of Cybermedia Center of Os-
aka University since April 2000. Since April
2002, he has been a full professor in the Depart-
ment of Multimedia Engineering of Osaka Uni-
versity. His current research interests include
database systems, multimedia systems and dis-
tributed computing systems. Dr. Nishio has
served on the Editorial Board of IEEE Transac-
tion on Knowledge and Data Engineering, and
is currently involved in the editorial board of
Data and Knowledge Engineering, New Genera-
tion Computing, International Journal of Infor-
mation Technology, Data Mining and Knowl-
edge Discovery, The VLDB Journal, and ACM
Transactions on Internet Technology. He is a
fellow of IPSJ, and he is a member of eight
learned societies, including ACM and IEEE.


