TF PRI BE = 2 55 37 [l (AR AN634- 12 1) & [E K &

21

Language for Modular Programming

3D-3

on Term Rewriting Systems

Hideki Yamanaka

International Institute for Advanced Study of
Social Information Science,

FUJITSU LIMITED

Introduction

In a few years, term rewriting systems(5] becomes
popular and common as a computation model, especially
a model for functional programming languages. Because
it has special features, e.g. its denotational or algebraic
semantics is corresponding to its operational semantics
under some condition. Nevertheless it has no features of
modularization for the structural programming, so it is
claimed that term rewriting systems have the same com-
putation power as turing machines and we can program
anything by term rewriting systems, but we may not pro-
gram large scale one because term rewriting systems have
no modularization mechanism in themselves.

In a couple of years, the direct sum system of term
rewriting systems[5](6][7] that is a disjoint union of term
rewriting systems; renaming symbols appearing in them
so that no name conflict can arise, was proposed for a
key to the solution. But the direct sum system is too
weak to modularize term rewriting systems because it
is so hard to divide the programming into pieces that
process shared resources, i.e. in the direct sum system,
a module can not know any data representation of other
modules.

In this paper we propose a programming language
MT for which we may describe a term rewriting system
by a set of small scale ones. We will show the structural
programming, i.e. the modularization, in term rewriting
systems later.

Syntax of MT

MT is designed for programmers to be able to pro-
gram in styles of top-down and bottom-up manner. In
top-down style programming, we may use usual func-
tional programming ways and program recursive descen-
dantly from the top level function to bottom functious.
In bottom-up style programming, we may use procedural
programming ways and make up a program by combining
many modules together, which have been programmed in
top-down style. In short, we program a large program by
gathering many small modules in the language MT. Al-
though the language has many procedural features: the
modularity and so on, but yet its semantics is purely
functional and mathematical. Now we start to explain
its syntax.

A program is a set of modules. A module is a pair
of a signature and equations roughly. (Note that each
module is a usual term rewriting system.) In detail, it is
shown as a BNF representation as follows:

(program) = (global-struct){config)

(modules)*
(global-struct) = ‘global’ ‘{’(signature)}’
(config) = “nit’ (term)’; Y
{module) = (term)‘[(parm-declar)‘]’

{’(init) (signature){equation)*‘}’
{parm-declar) = (parm-list)‘—)’(sort)
(parm-list) = |[(non-null-parms)‘,’(parm)
(non-null-parms) :=(parm)|

(non-null-parms)‘, "(parm)
(parm) = (var) '(sort)
(init) = “nat’ ¢ (term))’
(signature) =](szgnature)(functionality)
(functionality) == (function)*: (arity)‘;’
(arity) (sort-list)‘—)’(sort)

(sort-list)
(non-null-sorts)

[{non-null-sorts)*, ’(sort)
(sort)|(non-null-sorts)‘,’(sort)

(equation) = (term)‘ = (term)*;’

(term) = (var)|{function)‘(’(args)‘)’
{args) = [(non-null-args)
(non-null-args) = (term)|(non-null-args)‘,’(term)
(vars) = [(non-null-vars)‘, (var)
(sort) := (alfabet)*

(function) := (alfabet)*

{var) = (alfabet)t

(alf abet) = [0 - 9]|[a — 24 — Z]
Limitations:

1. (term) must be well-formed to (parm-declar) and
(arity).

2. Any proper subterm without variables of (term) in
(module) must be declared in (global-struct).

3. (term) at the head of (module) and left hand side
{term) of (equation) must be linear.

4. (module) and (equation) must be non-overlapping.

Semantics of MT

A MT program P has an initial configuration Conf,
a special module Glob, said a global module, and other
modules My,M5,---,M,. So a program

= (Conf,Glob, My, Ms,--- , M,)

Each module M; has a configuration conf;, a signature
¥; and a set of rules R;, so M; = (conf;,X;, R;), where
conf; = (N1, N2): N is a term laid ahead of its module
and No is a term laid init part of its module. Note
that we sometimes write Mo as (Conf, Glob) because
(Conf,Glob) is a special case of modules.

Language for Modular Programming on Term Rewriting Systems

Hideki Yamanaka
FUJITSU LIMITED

22

Here we start to define a semantic domain
D = (Conf, T, T, X, R) and semantic function M : P — D.
we define 9 as a quintuple (6,8,V,a, B) At first, 6 is a
map that extracts sorts from a term using the fact ¢ €
T[Glob U X] as follows:

6(f(t1’t21 e 1tm)) = {f $ 81,82,
6(z) = {z:s} from[---,z:s,---]in (parm-declar)
where s; = Sort(¢;). And it is extended to
8((Ny, V) = 6()

At second, 6 is a map that annotates each signature with
its module number. Let

y8m — Sm41}

2!' = {fk 8k1,8k2:° " s Skny — skn)‘-{-l}
,then 8 maps it to
0(Z:) = {fi : Sk1rSka> " +5kny = Sknpt1)
At third, V is a map that collects variables in a term as
follows:

V(N) = {{z|z is a variable symbol occurring in N
whose sort is s}| s € S}
And it is extended to
V((N1, N2)) = V(N1) U V(Ny)
At fourth,S is as follows:
B(F(ts,t2, -+ 1 tn),3) = a(£,9) (B(t1, 4), Bta, 8),
) vﬂ(tmi))
Bz,i) = A, (ol i)
where z € X,. And B is extended as follows:

B((N1, N3),3) = {(e(I1,0), Ay (B(N2, 1))}
where s is the sort of N;. At last, we define o that
annotates all symbols with module numbers as follows:
v if v is defined in M;

A9
0

a(v,i) = ifvisa A

v otherwise

where s is also the sort of A;. And it is extended to

o (M, i) = B(confi, i) U a(R, 4)
Note that the domain of a’s is extended from symbols to
terms and rules.

Now we get the semantic function as follows:

Let Zp = Glob U 8(con f1) U 8(confz)U---U é(confn)
,then we get
T=6(T)Ub(T)U---Ub(Z,)
And an initial configuration; the start point of computa-
tion, is
Conf = a(Conf)

Jis a S-indexed family of predefined input variables
that are denumerable. In this system J is treated as a S-
indexed family of new constants. the constants can allow
to be placed only in (Confo) to be used for inputs from

users. And a S-indexed family of all variable symbols
used in this system is

% = V(confo) U V(conf1) U---U V(confn)

Finally we get a set of rules that is maybe infinite is

R = Jo' (M) U{{(2. (0),9)]
sl
t € T{GlobUJU {A|s" € So})s}|s € So}
Note that A, is the abbreviation of A% and U is not the
union of sets but is the union of S-indexed family of sets.

Discussion

Many languages based on term rewriting systems, i.e.
HOPE[1], OBJ2[2], MIRANDA([8] and so on, have been
developed. But these languages only have a modulariza-
tion mechanism by the abstract type constructor or the
parameterization[3] but have no identifier management
mechanisms like stack. In short, these languages can not
have any identifier localization mechanism.

The localization is the key to make programmers to
program large scale ones, It has been pointed out from
the view of the structural programming. So we must be
necessary for the mechanism, so that we may program
large scale ones using term rewriting systems.

As far as we know, MT is the first language that
treats the identifier management mechanism in a frame-
work of term rewriting systems. Moreover MT has a
feature that partially computes modules, so that each
module of MT may become efficient by incremental par-
tial computation. In short, we have design MT, so that
MT might be the key to the theory of reusability of pro-
grams.

Acknowledgement

The author would like to thank Professor Y.Inagaki,
Dr. T.Naoi and other members of Inagaki laboratory at
Nagoya University for their valuable comments.

References

[1] Burstall,R.M. et al : HOPE: An Experimental Ap-
plicative Languages, The 1980 LISP Conference,
pp.136-143, Stanford Univ. (1980).

[2] Futatsugi,K. et al : Priciples of OBJ2, Proc. 12th
ACM POPL (1985).

[3] Goguen,J.A. et al : An Initial Algebra Approach
to The Specification, Correctness and Implementa-
tion of Abstract Data Types, Current Trend in Pro-
gramming Methodology IV (Ed. Yeh,R.), pp.80-
149 (1978).

[4] Hoffman,C.M. et al : Programming with Equa-
tions, ACM TOPLAS Vol4, No.l, pp.83-112
(1982).

[5] Klop,J.W. : Term Rewriting Systems: a tutorial,
Note CS-N8701, Centre for Mathematics and Com-
puter Science, Amsterdam (1987).

[6] Tovama,Y.: On the Church-Rosser Property for
the Direct Sum of Term Rewriting Systems, J.ACM
Vol.34, No.1, pp.128-143 (1987).

[7] Toyama,Y.: Counterexamples to Termination for

the Direct Sum of Term Rewriting Systems,

Info.Proc.Lett. 25, pp.141-143 (1987).

Turner,D. : Miranda: a non-strict functional

laguage with polymorphic types, LNCS Vol.201

(1985).

(8]

