R 2 8 33E (R E) 2 E kS

2193

Smal 1l tal
2R-2

P . N7 — =2

k — 8 O % HuU /=

3§§§§2E§§bﬁﬂﬂii/:K%anab%ifﬁ—-I I
CHoeEEEE

Sy == —

Vo= T b0z y AkARH

1. Smalltalk-80 .

Smalltalk-80 is an object oriented pro-
gramming language, and development environment.
ALL of the software used in the development
environment dis available for use in applica-
tions, which substantially reduces the amount
of new code that needs to be written. This
includes a Large amount of graphics and window
management software. Smalltalk-80 is said to
facilitate high productivity and reusability of
code. We wished to confirm these qualities as
we used them in the implementation of a experi-
mental user interface for an autorouter.

We used the implementation of Smalltalk-80
which runs on the Tektronix 4400 series A. I.
workstations.

2. Features

The user interface allows the display and
modification of a printed circuit board in a
standard Smalltalk-80 view (I.e. a window).
This automatically makes all the usual features
of a Smalltalk-80 view (Such as moving, framing
and collapsing) available to the user.

ALL user input is via the mouse using a
variety of techniques, such as menus, pop—up
menus, selection of points, selection of board
objects and selection of areas.

The board can contain connections, routes,
pads, vias, copper areas and a board outline.
These can all be iJnput, and 1in most cases
edited, by the user.

Routes are displayed in gray with a width
that varies in proportion with the scale.
Occupied areas are indicated by filled areas of
gray. Gray 1is used because the display is
monochrome, and different gray tone masks are

used to show which layer a route or occupied
area is on. The number of gray tones that the
eye can be easily distinguished between is

small, so the number of layers 1is Llimited to

two. The wuser can also request a grid to be
displayed.)

The display can be zoomed in and out.
Also an area of the board may be selected and

displayed in a separate view. The scale in the
new view is automatically set according to the
size that the user selected for the new view.
By repeating this, several views of different
parts of the board, at different scales, can be
open simultaneously. Any of these views can be
used for user input.

The autorouter is run
selection. As connections
views are updated. At any time, the autorouter
can be stopped <(also using a pop-up menu),
edits carried out, and then the autorouter res-

by a pop-up menu
are routed, all

tarted. The wuser can thereby watch the pro~
gress of the autorouting, and intervene it
problems seem to be developing. This capabil~

ity is what makes the system interactive.

While the user is editing the board, the
board data may be dinconsistent (E.g. two
routes on the same layer crossing). However,

when a request is made to run the autorouter,
all newly dinput data 1is checked for con-
sistency, and it errors are found, they are

displayed, and the autorouter will not run.

3. Program -
The program structure has the usual struc-
ture for a Smalltalk-80 application that uses

the standard window software (ref. 1) with
slight variations. The top level decomposition
has three parts: a model, which contains the

application's data, a view, which carries out
display functions, and a controller, which con-
trols dnteraction with the user. 1In addition
we also have the autorouter, which is in a sub-
program written in C, ‘and communicates with the
model using a pipe and signals (see fig. 1).
Thus the autorouter appears to the rest of the
program as if it 1is part of the model.
Although it 1is usual to have the view contain
the display functions, in our program, the
model contains much of the software required
for displaying the board. This varjation from
the usual division of responsibilities proved
to be a good decision.
4. Software

The design of the user interface commenced
after a detailed specification of the interface

between the user interface and the autorouter
subprocess had been produced. From this the
minimum requirements of the user intertace

could be inferred.
The first level of decomposition within
the user interface was constrained to follow
the standard model-view-controller pattern We
just needed to decide the precise division of
responsibilities between the three parts. Up
to this point, design had been either conven-
tional, or mostly predecided because we wished
to use the standard Smalltalk view software.
Our Lack of experience made more detailed
design work difficult. We, therefore, briefly
described the functions we wanted to implement,

and only investigated how to implement those
parts that we thought would be difficult.
Further decomposition was Limited to naming
some classes which we thought would be needed
and trying to describe their class hierarchy.
Many board objects (E.g. routes, route seg-
ments, connections) could easily be assigned

Dévelopment of Interactive Autorouter Using Smalitalk -80 - II

Paul HOWARTH

Yasuhiro IMOTO Koichi HIRAYAMA

Sony/Tektronix Corporation

2194

classes; describing the class hierarchy was
more difficult, but mostly successful.

Since design was becoming difficult, and
since Smalltalk-80 is said to facilitate
development by gradual improvement, we then
proceeded with the implementation. We intended
to decide many detailed design dissues immedi-
ately prior to the implementation of the asso-
ciated code. During implementation, we found
that classes additional to those identified
during design were required, and that the class
hierarchy needed changing. In total, twenty
two new classes were developed, of which five
had not been identified prior to implementa-
tion.

This unconventional approach did not
impede progress. Design, implementation and
testing of version 1, which included nearly attl
the required features of the user interface,
took approximately four months. (Since then,
we have made numerous changes as new ideas
occurred to us.) This involved one person for

most of the time, and another for part of the
time; both people had some knowledge of
Smalltalk-80, but were still relative

beginners.

A Smalltalk programmer makes constant use
of parts of the Smalltalk-80 standard system
software. The reusability of these parts is,
therefore, proven. Reusability of new code
written for an application does not, however,
always occur automatically. It may require
some reworking of code and class hierarchies,
or design effort before implementation.
: The skillful use of this large amount of
standard system software requires the program-
mer- to know its capabilities, and how to use it.
Thus, programming in Smalltalk-80 requires more
knowledge of the development environment than a
conventional high Level language, but with this
knowledge, productivity can be very . high.
Being beginners, we spent a Lot of time finding
out how to do things before we were able to
implement them. On one occasion, several days
were spent on a problem that, in the end only
required twenty lines of code. The next time a
similar problem occurs, we will be able to

solve it very quickly.
CONTROLLER}

—
= ol
(&4 :;;'-
= =
/
AUTOROUTER
SUBPROCESS
Figl. Top Level Software Structure

Reuse of code is the most dimportant, but
not the only, reason for high productivity when

using Smalltalk-80. The excellent debugging
facilities also contribute greatly. The abil-
ity to compile small parts of the code, and

then run the whole system immediately, was very
convenient. This is especially important when,
as we were, implementing by gradual improve-
ment.

Code was tested in smaltl pieces 1in order
to catch bugs early. By using workspace views
for the preparation of test data and execution
of tests, suitable tests could be created
readily. In verifying the result of a test, it
was often necessary to use halt statements and
the debugger. Using Smalitalk-80, complex data
structures tend to be created freely and with
Little thought, and checking that these struc-
ture are correct could be difficult. However,
by using a combination of a debugger view and
chains of 1inspector views, it is possible to
trace through these structures, usually with
Little ditficulty. Thus, a combination of
features in the development environment made
incremental testing relatively easy.

Subdivision of the task between two pro-
grammers proved to be difficult. Integrating
separately written code always involved chang-

ing some related software in the main body of
the application, but on the other hand,
Smalltalk-80's development environment made

these changes easy to carry out. We expect the
ability to subdivide work will improve with
experience.

5. Appraisal

Maximum capacities for the number of
routes, connections and the Llike have not been
ascertained. However, the capacities and the
speed of display are more than adequate for
exercising the autorouter, and experimenting
with different methods of user interaction.

The main problem 1in performance is the
pipe which 1is very slow, and somewhat spoils
the interactive capabilities. At time of writ-
ing no solution to this problem has been found.
It is probably caused by the large size of the
Smalltalk image and the way the data is distri-
buted within the. image; this means that the
autorouter subprocess is be driven out of main
memory whenever the user interface runs.

Smalltalk=-80 lived up to its reputed vir—
tues of reusability, high productivity and
implementation by gradual improvement, with the
slight qualitication that achieving reusability
of application code often required a degree of

effort. A problem with dividing the task
amongst team members was identified.
Smalltalk is harder to Learn than a con-

Level language, but its merits
We confidently expect to
productivity with

ventional high
soon became apparent.
continue increasing. our
greater experience.

[2E3XM]

1. Ward Cunningham TSmalltalk-80ick 57 71
L =y ayeTag S LOEYHI
bit. vol.18No.4 1986

