
Vol. 43 No. 9 IPSJ Journal Sep. 2002

Regular Paper

Heuristic and Exact Algorithms

for the Disjunctively Constrained Knapsack Problem

Takeo Yamada,† Seiji Kataoka† and Kohtaro Watanabe†

We are concerned with a variation of the knapsack problem (KP), where some items are
incompatible with some others. As in ordinary KPs, each item is associated with profit and
weight, we have a knapsack of a fixed capacity, and the problem is to determine the set of items
to be packed into the knapsack. However, the knapsack is not allowed to include incompatible
pairs. The knapsack problem with such an additional set of constraints is referred to as the
disjunctively constrained knapsack problem (DCKP). We present a heuristic method as well
as an implicit enumeration algorithm and an interval reduction method to solve DCKPs to
optimality. Combining these, we are able to solve DCKPs with up to 1,000 items.

1. Introduction

We are concerned with a variation of the
knapsack problem (KP) 9),11), where some items
are incompatible with some others. As in ordi-
nary KPs, we have n items to be packed into
a knapsack of capacity c. Let wj and pj de-
note the weight and profit of the jth item re-
spectively. Without much loss of generality we
assume the following.
A1. Problem data wj , pj (j = 1, . . . , n) and

c are all positive integers.
A2.

∑n
j=1 wj > c and wj ≤ c for all j, since

otherwise the problem is trivial.
A3. Items are arranged in non-increasing or-

der of profit per weight, i.e.,

p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn. (1)

In addition, let E ⊆ {(i, j) | 1 ≤ i �= j ≤
n} denote the set of incompatible pairs, and
m := |E| is the number of such pairs. That
is, if (i, j) ∈ E items i and j are not allowed
to be included in the knapsack simultaneously.
This relation is assumed to be reflective, i.e.,
(i, j) ∈ E ⇔ (j, i) ∈ E. We call this dis-
junctive constraint, and the knapsack problem
with these additional constraints is referred to
as the disjunctively constrained knapsack prob-
lem (DCKP).

The problem is to fill the knapsack with
items such that the capacity and disjunctive
constraints are all satisfied and the knapsack
profit is maximized, where by knapsack profit
we mean the total profit of items in the knap-

† Department of Computer Science, The National De-
fense Academy

sack. Let xj be the decision variable such that
xj = 1 if item j is included in the knapsack,
and xj = 0 otherwise. Then, mathematically
the problem is formulated as the following 0-1
programming problem 10),13).
DCKP:

maximize z(x) :=
n∑

j=1

pjxj (2)

subject to
n∑

j=1

wjxj ≤ c, (3)

xi + xj ≤ 1, ∀(i, j) ∈ E, (4)

xj ∈ {0, 1}, j = 1, . . . , n. (5)

Here by X we denote the set of all feasible
solutions, and z(x) is the objective value for
x ∈ X. Throughout the paper x� denotes an
optimal solution with the corresponding opti-
mal objective value z� := z(x�). DCKP is
NP-hard 5), since for E = ∅ it reduces to KP
which is already NP-hard.

DCKP may be solved using any free or com-
mercial integer programming package such as
LINDO, CPLEX and so on 4),6), but in order to
obtain optimal solution within reasonable CPU
time instances must be of a limited size. To
solve larger problems, we present a heuristic
algorithm that gives a lower bound, derive up-
per bounds, and develop an algorithm to solve
the problem to optimality. In particular, we
introduce some pruning conditions, and based
on these develop an implicit enumeration 7) al-
gorithm. Combined with an interval reduc-
tion 2),12) method, the developed algorithm is
able to solve DCKPs with up to 1,000 items
to optimality.

2864

Vol. 43 No. 9 Algorithms for the Disjunctively Constrained Knapsack Problem 2865

2. Heuristic Algorithms

An arbitrary feasible solution x ∈ X nat-
urally induces a lower bound z := z(x) to
DCKP. In this section, we give a greedy 12)

method that produces a good initial feasible so-
lution quickly, and a local search 1) method that
improves on the obtained solution.

The greedy algorithm consists of n steps, with
the jth step corresponding to the decision for
item j under the condition that x1, . . . , xj−1

have been decided. That is, we put item j into
the knapsack if the remaining capacity is large
enough to accommodate it and no incompati-
ble items have already been included. Thus, we
have the following.

Algorithm GREEDY.

Step 1. Set x := 0 and j := 0;
Step 2. Set j := j + 1; If j > n output

(x1, z1) := (x, z(x)) and stop;
Step 3. If

∑j−1
i=1 wixi + wj > c or ∃i < j,

xi = 1, (i, j) ∈ E, set xj := 0; else
set xj := 1;

Step 4. Go to Step 2;

The output from this algorithm, (x1, z1), is re-
ferred to as the greedy solution.

Next, for an arbitrary solution x ∈ X, we
introduce its 2-opt neighborhood N(x) as the
set of solutions obtained from x by changing
the decision for at most two items. These are
obtained from x by either one of the following
operations, provided that the resulting solution
is feasible. Here by I(x) we denote the set of
items included in the knapsack under soluion x,
i.e., I(x) := {j|xj = 1, 1 ≤ j ≤ n}.
(i) Put an item into the knapsack, i.e., for

j /∈ I(x) set xj = 1.
(ii) Exchange a pair of items through the

knapsack, i.e., for i ∈ I(x) and j /∈ I(x),
set xi = 0 and xj = 1.

The local search algorithm starts with the
greedy solution, and repeats to move to a better
neighbor until no such improvement is possible
any further. The algorithm is as follows.

Algorithm LOCAL SEARCH.

Input: x1 (greedy solution);
Step 1. Set x := x1;
Step 2. If ∃y ∈ N(x) such that z(y) >

z(x) go to Step 3; else output
(x2, z2) := (x, z(x)) and stop;

Step 3. Set x := y and go to Step 2;

The output from this algorithm, (x2, z2), is re-
ferred to as the 2-opt solution.

Example 1 Consider DCKP with n = 10,
c = 200, (pj) = (32, 52, 64, 35, 96, 18, 66, 15, 13,
4), and (wj) = (3, 6, 9, 12, 38, 9, 77, 40, 96, 95).
The incompatible pairs are E = {(1, 2), (1, 3),
(1, 9),(3, 6),(3, 7),(4, 5),(4, 9),(5, 6),(7, 9),(8, 9),
(8, 10)}. The greedy solution is x1 = (1001011
100) with z1 = 166, and in one iteration which
exchanges items 1 ↔ 2 it improves to the 2-opt
solution x2 = (0101011100) with z2 = 186.

3. Upper Bounds

An upper bound to DCKP can be found by
replacing (5) with

0 ≤ xj ≤ 1, ∀j. (6)
The resulting linear programming problem
is easy to solve (although it is often time-
consuming for large n and m), and the optimal
objective value to this continuous relaxation is
denoted as zC . Clearly z1 := �zC� gives an
upper bound to DCKP.

Alternatively, we may consider the following
Lagrangean relaxation problem.
Lagrange:

maximize L :=
n∑

j=1

pjxj +

∑

(i,j)∈E

λ(i,j)(1 − xi − xj) (7)

subject to
n∑

j=1

wjxj ≤ c, (8)

0 ≤ xj ≤ 1, ∀j. (9)

Here L is the Lagrangean for DCKP, and
λ(i,j) ≥ 0 is the Lagrangean variable associated
with (4). Rewrite L as

L =
n∑

j=1

(pj −
∑

e∈∂j

λe)xj +
∑

e∈E

λe (10)

with
∂j := {e ∈ E|j is incident to e}. (11)

Then, for a fixed λ := (λe) Lagrange is
a continuous knapsack problem (possibly with
some negative profits), which is easily solved.
Let x�(λ) be an optimal solution to Lagrange
with the associated objective value L�(λ) :=
L(x�(λ)), and put zL(λ) := �L�(λ)�. In partic-
ular, z2 := zL(0) corresponds to the case where
disjunctive constraints (4) are all dropped.

From the duality theory for linear program-
ming problems 3),8), we have

2866 IPSJ Journal Sep. 2002

Fig. 1 The behavior of Lagrangean relaxation.

min{L�(λ)|λ ≥ 0} = zC . (12)
We note that L�(λ) is a piece-wise linear convex
function of λ, and for e = (i, j)

∂L�(λ)/∂λe = 1 − x�
i (λ) − x�

j (λ), (13)
provided that L�(λ) is differentiable at λ.
Then, we tune up λ as follows: we start with
λ0 := 0, and at step k update it according to

λk = λk−1 + δ · ∂L�(λk−1)/∂λ. (14)

In our implementation we set δ = 1.0, and the
iteration stops if

L�(λk) ≥ L�(λk−1) − 0.2 (15)

is satisfied. Let the Lagrangean variable at this
point be λ�. Then, we have an upper bound

zL := zL(λ�) (16)
and the following is obvious.

Proposition 1
z� ≤ z1 ≤ zL ≤ z2. (17)

Thus z2 and zL are weaker than z1 as upper
bounds. However, the former are much easier to
calculate, and especially zL is often very close
to z1.

Example 2 For the instance of Example 1,
we have z1 = 229, z2 = 378, and zL = 255.
Figure 1 shows the behavior of the Lagrangean
upper bound zL(λk) through iteration. Also
shown in the figure are the lower bounds z1, z2

and the optimal objective value z�.

4. Implicit Enumeration

This section presents an implicit enumeration
algorithm to solve DCKP to optimality. This
is further strengthened by an interval reduction
method.

4.1 Complete Enumeration and Prun-
ing

In the complete enumeration approach, we
have two alternatives for each item:
(i) put item j into the knapsack, or
(ii) do not put it into the knapsack.

Thus, in total DCKP is solved in O(2n)
steps. Since this is hopeless unless n is very
small, we introduce some pruning methods.
Let (j, x1, . . . , xj) be the node representing the
state where x1, . . . , xj have been decided, and
items j + 1, . . . , n are remaining to be included
into the knapsack.

From node (j, x1, . . . , xj) two nodes (j + 1,
x1, . . . , xj , 0) and (j+1, x1, . . . , xj , 1) are gener-
ated depending on the decision (i) or (ii) above
for item j + 1. Then, starting with node (0,-)
we have a tree consisting of

∑n
j=0 2j nodes.

To prune some of the nodes (and their descen-
dents) we introduce conditions for doing this.

Before stating the conditions, however,
we prepare some terminology. At node
(j, x1, . . . , xj), F (j, x1, . . . , xj) denotes the set
of remaining items which is incompatible with
some item already included in the knapsack,
and thus can not be adopted. That is,

F (j, x1, . . . , xj) := {i|j + 1 ≤ i ≤ n, 1 ≤
∃h ≤ j, xh = 1, (h, i) ∈ E}. (18)

Now, consider two nodes (j, x1, . . . , xj) and
(j, x′1, . . . , x′j). We say the former is dominated
by the latter if

j∑

i=1

wix
′
i ≤

j∑

i=1

wixi, (19)

j∑

i=1

pix
′
i ≥

j∑

i=1

pixi, (20)

and
F (j, x1, . . . , xj) ⊇ F (j, x′1, . . . , x′j) (21)

hold.
Next, let z(j, x1, . . . , xj) be an upper bound

conditioned at (j, x1, . . . , xj), i.e., an upper
bound to the problem with respect to items
j+1, . . . , n, under the condition that x1, . . . , xj

have been determined. This can be obtained
by slightly modifying either one of the upper
bounds stated in Section 3.

Then, the following pruning conditions are
straightforward.

Proposition 2 Node (j, x1, . . . , xj) can be
terminated if either one of the following is sat-
isfied.

Vol. 43 No. 9 Algorithms for the Disjunctively Constrained Knapsack Problem 2867

C1.
∑j

i=1 wixi > c.
C2. Item j is incompatible with some item

already in the knapsack.
C3. (j, x1, . . . , xj) is dominated by some

other node.
C4. z(j, x1, . . . , xj) < z for some lower bound

z to DCKP.
These conditions eliminate weight-over nodes,

incompatible nodes, dominated nodes, and un-
promising nodes.

4.2 Implicit Enumeration Algorithm
With the pruning conditions C1-C4, the

implicit enumeration algorithm can be con-
structed in the following manner. Here Ωj rep-
resents the set of active nodes at the jth step,
and a lower bound z is fed into the algorithm
as an input.

Algorithm IMPLICIT ENUM.

Input: A lower bound z.
Step 1. Set Ω0 := {(0,-)} and j := 0;
Step 2. For all (j, x1, . . . , xj) ∈ Ωj do

if neither of C1-C4 holds then
Ωj+1 := Ωj+1 ∪ {(j + 1, x1, . . . ,
xj , 0), (j + 1, x1, . . . , xj , 1)};

Step 3. If Ωj+1 = ∅ stop.
Step 4. If j < n− 1 set j := j + 1 and go

to Step 2.
Step 5. Find (n, x1, . . . , xn) ∈ Ωn such

that z :=
∑n

i=1 pixi is maximized;
Output x� := (x1, . . . , xn) and z�

:=z(x�);

Remark 1 In implementing the above al-
gorithm, we need to specify the conditional up-
per bound used in Step 2 to see if C4 is satis-
fied. Since z2 is much faster than zL to calcu-
late, we evaluate z(j, x1, . . . , xj) using zL if 10
devides j, and z2 otherwise.

Example 3 For the instance of Example 1,
Fig. 2 depicts the tree of nodes generated
by IMPLICIT ENUM with an assumed lower
bound z = 219. Here ◦ and • at the terminal
nodes mean that those nodes are terminated
due to condition C4 and C2, respectively. Con-
ditions C1 and C3 are met at the nodes shown
in the figure as C1 and C3. Thus in total 41
nodes are generated, and we obtain an optimal
solution x� = (0100101100) with z� = 229 at
node 39 in the figure.

4.3 Interval Reduction Method
In IMPLICIT ENUM we assumed that we

feed a correct lower bound z ≤ z� as an input.
However, IMPLICIT ENUM runs with an ar-

Fig. 2 The behavior of IMPLICIT ENUM.

Table 1 The number of nodes generated by
IMPLICIT ENUM.

z P (z) Sol. z P (z) Sol.
2879 43373 © 2915 1693 ©
2880 41981 © 2916 1509 ©
2890 23691 © 2917 1146 ©
2900 11529 © 2918 901 ×
2910 3748 © 2919 841 ×
2911 3194 © 2920 794 ×
2912 2711 © 2930 387 ×
2913 2250 © 2940 362 ×
2914 1864 © 2948 315 ×

bitray value of z, irrespective to a lower bound
or not. Such a z is referred to as a trial value.
Then, if we feed a wrong trial value, i.e., z > z�,
the algorithm eventually eliminates all the ac-
tive nodes, meaning that Ωj = ∅ at some j < n,
and ends up (in Step 3) without finding an
optimal solution. Let P (z) be the number of
nodes generated by IMPLICIT ENUM with z
used as a trial value. The following is clear.

Proposition 3 IMPLICIT ENUM correct-
ly finds an optimal solution if and only if the
trial value satisfies z ≤ z�. Moreover, P (z) is a
non-increasing function of z.

Example 4 We consider the instance with
n = 200, c = 1000, and pj and wj are uni-
formly random over [1, 100]. From 19900 pairs
of items, 407 (approx. 2%) are randomly taken
as incompatible pairs. The lower and upper
bounds are z2 = 2879 and zL = 2948. With

2868 IPSJ Journal Sep. 2002

Table 2 Result of numerical experiments for c = 1000.

η n m z2 zL z� #rep #nodes CPU
200 21.1 3488.5 3505.4 3502.6 1.5 2463.0 1.746
400 80.6 4946.0 4958.7 4956.0 1.4 2173.4 1.349

0.001 600 180.6 6150.5 6157.4 6154.9 1.6 3083.8 11.375
800 321.2 6997.0 7011.8 7007.6 1.4 9481.7 49.604
1000 502.1 7788.1 7805.3 7802.8 1.5 14008.7 69.718
200 39.9 3475.0 3493.4 3489.7 1.3 2426.4 1.774
400 158.5 4894.8 4908.2 4905.3 1.9 4727.8 5.783

0.002 600 360.0 6043.1 6062.7 6060.5 1.5 11936.7 42.758
800 640.8 6838.4 6864.8 6860.6 1.3 18269.7 161.675
1000 1001.5 7709.8 7727.8 7722.5 1.7 10735.2 117.506
100 26.8 2391.7 2423.4 2416.6 1.7 1624.3 0.384
200 101.0 3361.9 3406.8 3396.1 2.1 6329.3 10.242

0.005 300 226.1 4067.6 4093.8 4088.0 1.6 5838.5 17.440
400 394.7 4683.8 4731.7 4721.5 1.6 24543.3 152.175
500 620.9 5210.7 5284.6 5279.1 1.1 57542.4 299.570
100 50.8 2349.6 2384.3 2376.6 1.9 2001.2 0.731
200 198.3 3246.8 3329.3 3309.7 1.8 7889.5 10.366

0.010 300 452.5 3892.7 3958.0 3946.0 1.2 13769.9 49.625
400 802.1 4437.0 4525.4 4509.3 1.1 40372.3 249.040
500 1249.1 4888.1 5022.8 4996.3 1.1 58221.1 356.404
100 98.8 2249.1 2296.0 2279.6 1.8 1855.6 1.736
200 387.1 3021.3 3157.2 3123.7 1.5 13590.6 27.353

0.020 300 888.0 3558.8 3706.7 3656.9 1.8 21550.5 125.606
400 1600.4 4011.7 4232.5 4151.4 1.6 38128.1 381.033
500 2494.6 4506.8 4718.7 4615.0 2.6 48840.3 722.668

z = z2, IMPLICIT ENUM generates 43373
nodes and finds the optimal value z� = 2917
in 84.54 CPU seconds (on an HP9000 B132L
workstation). If we happen to use, say z = 2912
as a trial value, we would have the same optimal
solution with 2711 nodes generated in 2.7 sec-
onds. Table 1 shows P (z) for some z ∈ [z2, zL].
Here © and × in the column of ‘Sol’. show,
respectively, that the optimal solution is, and
is not, found for each z. These are divided
into two disjoint groups depending on z ≤ z�

or z > z�.
The above observation leads us to the fol-

lowing guess and try approach. Here IM-
PLICIT ENUM runs with an etimated lower
bound z (which is much larger than z), and if
it fails we try again with z lowered. Thus we
have the following interval reduction method.

Algorithm INTERVAL REDUCTION.

Input: An upper bound z and a lower
bound z.

Step 1. Set z := �αz + (1 − α)z�;
Step 2. Call IMPLICIT ENUM with z as

a trial value;
Step 3. If an optimal solution is found in

Step 2, output it and stop;
Step 4. Set z := z and go to Step 1.

Here, α ∈ (0, 1) is a parameter of the algo-

rithm, and from some preliminary experiments
we set this as α = 0.7. As for the initial bounds,
we may take [z, z] := [z2, zL] discussed in Sec-
tions 2, 3. Then, at each iteration the interval
[z, z] shrinks by the factor of α, and an optimal
solution is found in finite steps.

Example 5 For the instance of Example 4,
we start with z = 2879 and z = 2948. With
α = 0.7, we first try z = 2927. Here IM-
PLICIT ENUM fails after generating 391 node.
The upper bound is revised to z = 2927, and
we try again with z = 2912. This time we ob-
tain the same optimal solution as in Example 4.
Thus, in total we have solved the same instance
with 3102 node and 2.95 CPU sec.

5. Numerical Experiments

We have implemented the algorithms of the
previous sections in C language and conducted
some numerical tests on an HP9000-B132L
workstation to evaluate the performance of the
developed algorithms. In the our experiments,
the knapsack capacity is set to c = 1000/2000,
and n ranges from 100 to 1000. The weights
and profits are assumed random and indepen-
dent over [1, 100]. Out of n(n − 1)/2 pairs of
items m := �η · n(n− 1)/2� pairs are randomly
taken as incompatible pairs. Here η is the ratio
of incompatible pairs, and we try the cases of
η = 0.001/0.002/0.005/0.01/0.02.

Vol. 43 No. 9 Algorithms for the Disjunctively Constrained Knapsack Problem 2869

Table 3 Result of numerical experiments for c = 2000.

η n m z2 zL z� #rep #nodes CPU
200 21.1 4965.7 4987.8 4985.1 1.7 5304.8 5.328
400 80.6 7021.0 7035.5 7033.3 1.2 7173.5 16.314

0.001 600 180.6 8641.6 8659.7 8657.5 1.1 15611.7 60.409
800 321.2 9855.9 9887.7 9881.3 1.2 43951.2 398.060
1000 502.1 11074.1 11101.9 11097.8 1.2 45058.8 400.573
200 39.9 4924.5 4946.6 4944.4 1.5 6688.3 9.439
400 158.5 6893.0 6918.6 6916.5 1.0 19815.3 75.748

0.002 600 360.0 8456.3 8507.6 8498.5 1.1 57832.6 277.858
800 640.8 9575.0 9634.7 9617.9 1.5 100674.1 1610.932
1000 1001.5 10875.4 10915.6 10903.5 2.2 89741.6 1222.446
100 26.8 3361.3 3418.1 3410.2 1.2 4246.2 2.825
200 101.0 4703.2 4780.7 4770.3 1.6 26276.5 99.901

0.005 300 226.1 5692.1 5755.9 5745.2 1.5 35414.8 213.651
400 394.7 6511.4 6600.9 6589.5 1.0 72295.3 511.414
500 620.9 7230.1 7363.0 7340.5 1.2 183691.5 1609.440
100 50.8 3268.1 3329.9 3314.4 1.9 4698.4 6.757
200 198.3 4473.2 4611.1 4582.6 1.3 32506.8 155.524

0.010 300 452.5 5311.2 5461.9 5423.8 1.2 73862.0 539.006
400 802.1 6023.1 6232.3 6180.4 1.1 94849.4 958.528
500 1260.6 6556.6 6807.0 6718.5 1.7 179109.6 2148.943a

100 98.8 2975.0 3128.2 3066.4 2.0 8645.8 27.565

0.020
200 387.1 4053.4 4303.0 4233.2 1.4 39697.2 240.164
300 888.0 4742.7 5058.7 4908.5 2.3 110531.5 981.217
400 1611.0 5087.7 5471.0 5318.3 1.7 47927.3 678.260b

a: Average of 8 successful runs. Two runs failed due to insufficient memory.
b: Average of 3 successful runs. Seven runs failed due to insufficient memory.

Table 2 and Table 3 give the result of exper-
iments of the implicit enumeration algorithm
combined with the interval reduction method
for c = 1000 and c = 2000, respectively. Here
shown are the ratio (η) and the number of
incompatible pairs (m), the lower and upper
bounds (z2 and zL) at the initial node of the
tree, the optimal objective value (z�), the num-
ber of iterations in interval reduction (#rep.),
total number of nodes generated (#nodes), and
CPU time in seconds. Each row is the average
of 10 independent runs.

From these tables, we observe the following:
• We are able to solve problems with up to

1000 items within reasonable CPU time.
• The problem becomes harder to solve, with

respect to both memory requirement and
computation time, as n, m, and/or c in-
crease.

• The number of iterations in interval reduc-
tion remains almost constant for various
values of n, c and η.

Next, Table 4 compares the CPU time
(in seconds on an IBM RS/6000 44P Model
270) required of an integer programming solver
employing branch and bound method (B&B)
against ours (Impl Enum). For B&B we used
the FORTRAN code to solve general integer
programming problems developed by Ibaraki

Table 4 Comparison against an integer
programming solver.

c α n B&B Impl Enum
100 0.3 0.32

0.01
200 102.3 0.87
300 298.0 4.75

1000 400 - 33.47
100 2.0 1.24

0.02 200 166.7 2.95
300 - 19.56
100 1.1 3.57

0.01
200 75.5 2.73
300 165.6 75.78

2000 400 - 49.81
100 1.2 20.03

0.02 200 253.7 13.55
300 - 58.42

and Fukushima 6). Here dash (-) shows that
the problem was unsolvable due to insufficient
memory. Thus usually our method solves larger
problems in smaller CPU time than the B&B
approach.

6. Conclusion

We have formulated DCKP and developed
both heuristic and exact algorithms. Espe-
cially, using the implicit enumeration algorithm
combined with an interval reduction method
we were able to solve problems with up to
1,000 items. To solve larger problems to opti-

2870 IPSJ Journal Sep. 2002

mality, however, more sophisticated algorithms
equipped with improved pruning methods are
needed.

References

1) Aarts, E. and Lenstra, J.K. (Eds.): Local
Search in Combinatorial Optimization, John
Wiley & Sons, Chichester, England (1997).

2) Baase, S.: Computer Algorithms: Introduc-
tion to Design and Analysis, 2nd ed., Addison-
Wesley, Reading, Massachusetts (1993).

3) Chvátal, V.: Linear Programming, Free-
man and Company, San Francisco, California
(1983).

4) Fourer, R.: Software Survey: Linear Program-
ming, OR/MS Today, Vol.26. pp.64–71 (1999).

5) Garey, M.R. and Johnson, D.S.: Computers
and Intractability: A Guide to the Theory of
NP-Completeness, Freeman and Company, San
Francisco, CA (1979).

6) Ibaraki, T. and Fukushima, M.: FORTRAN77
Optimization Programming (in Japanese),
Iwanami, Tokyo (1991).

7) Land, A.H. and Doig, A.G.: An Automatic
Method for Solving Discrete Programming
Problems, Econometrica, Vol.28, pp.497–550
(1960).

8) Luenberger, D.G.: Linear and Nonlinear Pro-
gramming, 2nd ed., Addison-Wesley, Reading,
Massachusetts (1984).

9) Martello, S. and Toth, P.: Knapsack Prob-
lems: Algorithms and Computer Implementa-
tions, John Wiley & Sons, Chichester, England
(1990).

10) Nemhauser, G.L. and Wolsey, L.A.: Integer
and Combinatorial Optimization, John Wiley
& Sons, New York (1988).

11) Salkin, S.M.: The Knapsack Problem: A Sur-
vey, Naval Research Logistic Quarterly, Vol.27,
pp.127–144 (1975).

12) Sedgewick, R.: Algorithms in C, 3rd ed.,
Addison-Wesley, Reading, Massachusetts (1998).

13) Wolsey, L.A.: Integer Programming, John Wi-
ley & Sons, New York (1998).

(Received April 2, 2002)
(Accepted July 2, 2002)

Takeo Yamada received his
B.S. degree from Kyoto Univ.
in 1970, and M.S. and Ph.D.
degrees from Stanford Univ.
in 1980 and 1983 respectively.
Since 1972 he has been with
the National Defense Academy,

where he is now a professor of computer science.
His current research interests focus on mathe-
matical programming, combinatorial optimiza-
tion and computer algorithms to solve these
problems. He has published extensively on
these subjects in American and European pro-
fessional journals, and received an Outstanding
Paper Award from IEEE Control Systems Soci-
ety in 1985. He is a member of ORSJ, JSIAM,
JIMA, SICE and IEEE, as well as an Interna-
tional Advisory Board member of JOR.

Seiji Kataoka was born in
1961. He received his B.E.,
M.E. and Ph.D. degrees all from
Waseda Univ. in 1985, 1987, and
1993 respectively. Currently he
is an associate professor of com-
puter science at the National

Defense Academy. His research interest is
in combinatorial optimization algorithms and
their applications to actual problems. He has
published in such journals as JORSJ, EJOR
and this journal. He is a member of ORSJ,
MPS and IPSJ.

Kohtaro Watanabe was
born in 1965. He received
his B.S. and M.S. degrees from
Tokyo Institute of Technology
in 1989 and 1991 respectively.
He is now a research associate
at the Department of Computer

Science, the National Defense Academy. His
current research interests are in inverse prob-
lems in partial differential equations and com-
binatorial optimization problems. He is a mem-
ber of MSJ, JSIAM, IECIE and IPSJ.

