
Vol. 44 No. 1 IPSJ Journal Jan. 2003

Regular Paper

Two Stage Explicit Runge-Kutta Type Method

Using Second and Third Derivatives

Toshinobu Yoshida† and Harumi Ono††

A two stage explicit Runge-Kutta type method for solving non-stiff initial-value problems of
autonomous ordinary differential equations is proposed. The method uses first- to third-order
derivatives of the solution in the first stage, and second-order pseudo-derivatives in the second
stage; which are the product of the Jacobian matrix of the equations and a vector which is
the linear combination of the first-order derivatives and all values obtained in the first stage.
In these stages, the derivatives and the pseudo-derivatives are assumed to be computed using
automatic differentiation. Consequently, these computations can be performed quite easily
and efficiently. The order conditions of the method are solved, and the parameters in the
method are shown as functions of a free parameter. This is followed by the presentation
of the D2RK245 formulas, the fifth-order formula, and the fourth-order formula which is
embedded in the fifth-order formula. The leading truncation error terms of these formulas as
functions of the free parameter are discussed. Finally, numerical examples are presented to
compare the accuracy, CPU time and step control of the proposed method with conventional
methods.

1. Introduction

We consider non-stiff initial value problems of
autonomous differential equations of the form:

dy

dt
= f(y) , y(t0) = y0 (1)

where y and f are vectors and f is assumed to
be sufficiently smooth.

We propose a two-stage explicit Runge-Kutta
type method for solving Eq. (1). The method
uses first- to third-order derivatives of the so-
lution in the first stage. The second stage in-
volves the use of the product of the Jacobian
matrix fy(y) and a vector f̃ , which is the linear
combination of the first-order derivatives f(y)
and all values obtained in the first stage. We
refer to this product as second-order pseudo-
derivatives.

Methods using second-order derivatives have
already been proposed by Shintani 13),14). He
proposed r-stage methods which require one
calculation of the first-order derivatives ẏ =
f(y) and r calculations of the second-order
derivatives ÿ = fy(y)f(y). It has been shown
that explicit methods of order r + 2 exist for
r = 1, 2, 3, 4, and 5. Mitsui also proposed (1, q)-
stage method using q calculations of the second-
order derivatives 7). Furthermore, Kastlunger
and Wanner have proposed a general form of

† The University of Electro-Communications
†† Current address: 3-22-11, Hachimanyama, Seta-

gaya, Tokyo 156-0056

Runge-Kutta type s-stage q-derivative meth-
ods 6).

Toda derived two types of five-stage fifth-
order limiting formulas 15). In one of them, by
taking the limit as the distance between the
last two abscissas approaches zero, the form
of the pseudo-derivative appears. Ono et al.
have proposed explicit two-stage Runge-Kutta
type DRK234 formulas 8),9). These formulas,
which use the second-order derivatives in the
first stage and second-order pseudo-derivatives
in the sencond stage, achieve fourth-order accu-
racy in which third-order formula is embedded.
They have also shown that three-stage methods
using second-order derivatives in the first stage
and second-order pseudo-derivatives in the sen-
cond and third stages can not have pairs of for-
mulas one of which is embedded in the other.

Ono has proposed the Runge-Kutta type
seventh-order limiting formula, RKD7 10). It
is the limiting case where the second and third
abscissas approach the first one, and last two
abscissas approach each other. In these lim-
its, second- and third-order derivatives appear
in the first stage, and the pseudo-derivatives in
the last stage. There are no other methods us-
ing the second-order pseudo-derivatives that we
are aware of.

The proposed two-stage method can achieve
fifth-order accuracy in which fourth-order for-
mula is embedded. Therefore, we name the
method D2RK245.

This method assumes that the derivatives

82

Vol. 44 No. 1 Two Stage Explicit Runge-Kutta Type Method 83

and the pseudo-derivatives are computed using
automatic differentiation 5),12),17), which can
produce the exact, efficient and compact codes
for these derivatives.

In the following section we introduce general
formulas which illustrate the method, and solve
the order conditions. Then we show that these
formulas are fifth-order formula with embedded
fourth-order formula. Section three illustrates
methods for the computation of the derivatives.
Section four presents numerical examples to
compare the accuracy, the CPU time and step
control of the proposed formulas with those of
conventional formulas.

2. Two-stage Formulas Using Second
and Third Derivatives

In this section we present general formulas for
the proposed method, and then derive the or-
der conditions and show that the formulas can
not be sixth-order. Next, we investigate the
leading truncation error terms of these formu-
las, and show that there is a free parameter in
the fifth-order formula, and a free parameter in
the fourth-order formula. This is followed by a
discussion of the values of the parameters for
minimizing the truncation errors. Finally, we
introduce formulas using actual values of these
parameters.

2.1 Formulas
We consider the following formulas:

yn = y(tn)
f1 = f(yn) = ẏ(tn),

ḟ1 =
df

dt

∣∣∣∣
y=yn

= fy(yn)f1 = ÿ(tn),

f̈1 =
d2f

dt2

∣∣∣∣
y=yn

=
...
y (tn),

y2 = yn + ha21f1

+h2ā21ḟ1 + h3¯̄a21f̈1,
f2 = f(y2), (2)
f̃2 = f2 + α21f1 + hᾱ21ḟ1 + h2 ¯̄α21f̈1,
˜̇f2 = fy(y2)f̃2,

ŷn+1 = yn + h(b̂1f1 + b̂2f2)

+h2(ˆ̄b1ḟ1 + ˆ̄b2
˜̇
f2) + h3ˆ̄̄b1f̈1,

yn+1 = yn + h(b1f1 + b2f2)

+h2(b̄1ḟ1 + b̄2
˜̇f2) + h3¯̄b1f̈1,

E = yn+1 − ŷn+1

where ŷn+1 is assumed to be a lower order for-
mula embedded in yn+1. E is an estimation
of the truncation error of ŷn+1. It should be

noted that ḟ1 and f̈1 are the second- and third-
order derivative in the first-stage, and ˜̇f2 is the
second-order pseudo-derivative in the second-
stage.

2.2 Order Conditions
We expand yn+1 around t = tn up to the

h6-th term, and compare it with the Taylor ex-
pansion of y(tn +h). Although there are twenty
sixth-order elementary derivatives 1) in the Tay-
lor expansion of y(tn+h), the coefficients of four
of these twenty terms are zero in the expansion
of yn+1. Therefore the formulas (2) can not be
sixth-order formulas.

In order for the solution yn+1 to be of the
fifth-order, the corresponding terms must be
equal up to the h5-th term, as follows:

h1f : b1 + b2 = 1

h2fjfj : b̄1 + b2a21 + b̄2(α21 + 1) =
1
2

h3fjkfjfk : ¯̄b1 +
1
2
b2a

2
21

+b̄2a21(α21 + 1) =
1
6

h3fjf
j
kf

k : ¯̄b1 + b2ā21

+b̄2(ᾱ21 + a21) =
1
6

h4fjklf
jfkfl :

1
6
b2a

3
21

+
1
2
b̄2a

2
21(α21 + 1) =

1
24

h4fjkf
j
l f

lfk : b2a21ā21

+b̄2(a21(ᾱ21 + a21)

+ā21(α21 + 1)) =
1
8

h4fjf
j
klf

kfl : b2¯̄a21

+b̄2

(
¯̄α21 +

1
2
a2
21

)
=

1
24

h4fjf
j
kf

k
l f

l : b2¯̄a21

+b̄2(¯̄α21 + ā21) =
1
24

h5fjklmfjfkflfm :
1
24

b2a
4
21

+
1
6
b̄2a

3
21(α21 + 1) =

1
120

h5fjklf
j
mfmfkfl :

1
2
b2a

2
21ā21 (3)

+
1
2
b̄2a21(a21(ᾱ21 + a21)

+2ā21(α21 + 1)) =
1
20

84 IPSJ Journal Jan. 2003

h5fjkf
j
l f

lfkmfm :
1
2
b2ā

2
21

+b̄2ā21(ᾱ21 + a21) =
1
40

h5fjkf
j
lmflfmfk : b2a21¯̄a21

+b̄2

(
a21

(
¯̄α21 +

1
2
a2
21

)

+¯̄a21(α21 + 1)
)

=
1
30

h5fjkf
j
l f

l
mfmfk : b2a21¯̄a21

+b̄2(a21(¯̄α21 + ā21)

+¯̄a21(α21 + 1)) =
1
30

h5fjf
j
klmfkflfm :

1
6
b̄2a

3
21 =

1
120

h5fjf
j
klf

k
mfmfl : b̄2a21ā21 =

1
40

h5fjf
j
kf

k
lmflfm : b̄2¯̄a21 =

1
120

h5fjf
j
kf

k
l f

l
mfm : b̄2¯̄a21 =

1
120

.

where fij1j2···jn
denotes an nth-order elementary

differential 1) of the ith component of f , and the
summation convention is used. This non-linear
system of equations can be solved using a free
parameter c2 (c2 �= 0) as follows:

a21 = c2, ā21 =
c2
2

2
, ¯̄a21 =

c3
2

6
,

α21 = (3 − 5c2), ᾱ21 = c2(3 − 5c2), (4)

¯̄α21 =
c2
2(3 − 5c2)

2
,

b1 =
5c4

2 − 5c2 + 3
5c4

2

,

b̄1 =
10c3

2 − 15c2 + 8
20c3

2

, (5)

¯̄b1 =
10c2

2 − 15c2 + 6
60c2

2

,

b2 =
5c2 − 3

5c4
2

, b̄2 =
1

20c3
2

.

In the case of c2 = 3/5, α21, ᾱ21, and ¯̄α21 are
all zero, and ˜̇f2 becomes an ordinary derivative:

˜̇f2 = fy(y2)f̃2 = fy(y2)f2. (6)

The order conditions for the embedded
fourth-order solution ŷn+1 are obtained by
making the corresponding coefficients of Tay-
lor expansion of ŷn+1 and y(tn +h) equal up to
the h4-th term, as follows:

h1f : b̂1 + b̂2 = 1,

h2fjfj : ˆ̄b1 + c2b̂2 + (4 − 5c2)ˆ̄b2 =
1
2
,

h3fjkfjfk, h3fjf
j
kf

k : (7)
ˆ̄̄
b1 +

1
2
c2
2b̂2 + c2(4 − 5c2)ˆ̄b2 =

1
6
,

h4fjklfjfkfl, h4fjkf
j
l f

lfk,

h4fjf
j
klf

kfl, h4fjf
j
kf

k
l f

l :
1
6
c3
2b̂2 +

1
2
c2
2(4 − 5c2)ˆ̄b2 =

1
24

where we use the parameters a21, ā21, ¯̄a21, α21,
ᾱ21, and ¯̄α21 given in Eq. (4).

This non-linear system of equations can be
solved using the parameter ˆ̄b2 as follows:

b̂1 =
4c3

2 − 1
4c3

2

+ 3
4 − 5c2

c2

ˆ̄b2

b̂2 =
1

4c3
2

− 3
4 − 5c2

c2

ˆ̄b2 (8)

ˆ̄b1 =
2c2

2 − 1
4c2

2

+ 2(4 − 5c2)ˆ̄b2

ˆ̄̄
b1 =

4c2 − 3
24c2

+
1
2
c2(4 − 5c2)ˆ̄b2

where c2 is the same parameter as in Eq. (4).
If ˆ̄b2 = b̄2, then b̂1 = b1,

ˆ̄b1 = b̄1,
ˆ̄̄
b1 = ¯̄b1,

and b̂2 = b2. In this case ŷn+1 is the same
solution as the fifth-order solution yn+1. Thus,
for ˆ̄b2 �= b̄2 we obtain the fourth-order formula
embedded in the fifth-order formula.

We note that if c2 = 4/5 and ˆ̄b2 �= b̄2, then
b̂1 = b1,

ˆ̄b1 = b̄1,
ˆ̄̄
b1 = ¯̄b1, b̂2 = b2, and E =

h2(b̄2 − ˆ̄b2)
˜̇f2. Hence, the estimation E of the

truncation error of ŷn+1 becomes very simple.
2.3 Truncation Errors
This section examines the leading trunca-

tion error terms of yn+1 and ŷn+1. We de-
fine the truncation error of a term in the ex-
pansion of yn+1 as the difference between the
coefficient of the term and the coefficient of
the corresponding term in the Taylor expan-
sion of y(tn + h). We define a relative error
of the term as the ratio of the truncation error
to the coefficient of the Taylor expansion. The
twenty h6 terms in the Taylor expansion are di-
vided into four groups. The first group consists
of the terms fjklmnfjfkflfmfn, fjklmfjnfnfkflfm,
fjklfjmfmfknfnfl, fjklfjmnfmfnfkfl, fjkf

j
lmflfmfknfn,

fjklfjmfmn fnfkfl, and fjkf
j
l f

l
mfmfknfn, which

have a relative error of | − 10 + 24c2 −
15c2

2|/10. The second group consists of

Vol. 44 No. 1 Two Stage Explicit Runge-Kutta Type Method 85

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1/2 3/5 2/3 3/4 4/5 5/6 1

re
la

tiv
e

er
ro

r

c2

group 1
group 2
group 3
group 4

Fig. 1 Relative errors of h6 terms.

the terms fjkf
j
lmnflfmfnfk, fjkf

j
lmflnfnfmfk,

fjkf
j
l f

l
mnfmfnfk, and fjkf

j
l f

l
mfmn fnfk, which have

a relative error of |6c2 − 5|/5. The third
group consists of the terms fjf

j
klmnfkflfmfn,

fjf
j
klmfknfnflfm, fjf

j
klf

k
mfmflnfn, fjf

j
klf

k
mnfmfnfl,

and fjf
j
klf

k
mfmn fnfl, which have a relative error of

|3c2−2|/2. The last group consists of the terms
fjf

j
kf

k
lmnflfmfn, fjf

j
kf

k
lmflnfnfm, fjf

j
kf

k
l f

l
mnfmfn,

and fjf
j
kf

k
l f

l
mfmn fn, which do not appear in the

expansion of yn+1. Therefore, the relative er-
ror of these terms is 1. The relative errors as a
function of c2 of the four groups are shown in
Fig. 1.

From Fig. 1, we see that each curves de-
creases monotonously for c2 < 2/3, and in-
creases monotonously for 5/6 < c2.

Next, we examine the relative error of the
forth-order solution ŷn+1. The nine h5 terms
of the Taylor expansion are divided into two
groups. The first group consists of the terms
fjklmfjfkflfm, fjklfjmfmfkfl, fjkf

j
l f

lfkmfm,
fjkf

j
lmflfmfk, and fjkf

j
l f

l
mfmfk, which have a

relative error of (|4 − 5c2|/4)|ˆ̄b2 − b̄2|. The sec-
ond group consists of the terms fjf

j
klmfkflfm,

fjf
j
klf

k
mfmfl, fjf

j
kf

k
lmflfm, and fjf

j
kf

k
l f

l
mfm,

which have a relative error of |ˆ̄b2 − b̄2|.
If c2 = 4/5, then the relative error of the

first group is zero. Hence, there is a greater
probability that the error estimation E will be
zero. Although determining E is very simple,
the fourth-order solution ŷn+1 for c2 = 4/5 is
not adequate for an embedded solution.

2.4 D2RK245 Formulas
From the above discussion of the case when

c2 = 4/5, we do not choose c2 = 4/5. Instead,
we use c2 = 3/4 in the interval [2/3, 5/6] be-
cause it is a simple fraction, and the relative

errors are small. In order to reduce the relative
errors of ŷn+1, we use ˆ̄b2 = 1/9. We call the re-
sulting formulas D2RK245, and write them as
follows:

f1 = f(yn)
ḟ1 = fy(yn)f1,

f̈1 =
d2f

dt2

∣∣∣∣
y=yn

,

y2 = yn +
3
4
hf1 +

9
32

h2ḟ1 +
9

128
h3f̈1,

f2 = f(y2),

f̃2 = f2 − 3
4
f1 − 9

16
hḟ1 − 27

128
h2f̈1,

˜̇f2 = fy(y2)f̃2, (9)

ŷn+1 = yn + h

(
14
27

f1 +
13
27

f2

)

+h2

(
1
9
ḟ1 +

1
9

˜̇
f2

)
+ h3 1

96
f̈1,

yn+1 = yn + h

(
71
135

f1 +
64
135

f2

)

+h2

(
31
270

ḟ1 +
16
135

˜̇f2

)
+ h3 1

90
f̈1,

E = h
1

135
(f1 − f2)

+h2

(
1

270
ḟ1 +

1
135

˜̇
f2

)
+ h3 1

1440
f̈1.

3. Computation of Derivatives

The proposed method assumes the use of au-
tomatic differentiation for the derivative com-
putations.

In the formulas Eq. (2), ḟ1 and ˜̇f2 can be
evaluated efficiently by employing the forward
method of automatic differentiation 5),12),17).
The forward method computes the product of
the Jacobian matrix fy(y) and a vector v with-
out computing the Jacobian matrix itself. The
number of operations required to compute the
product fy(y)v by this method is at most three
times the number of operations required to
compute f(y).

The higher derivatives f̈1 can be evaluated
efficiently by using recursive computation of
Taylor coefficients 3),12). The solution y(t) of
Eq. (1), and its derivative f(y(t)) can be ex-
panded as follows:

y(tn+h)=β0 + β1 h + β2 h2 + · · · (10)
f(y(tn+h))=γ0 + γ1 h + γ2 h2 + · · · (11)

86 IPSJ Journal Jan. 2003

where β0, β1, β2, · · · , γ0, γ1, γ2, · · · are Taylor co-
efficients defined by

βk =
1
k!

dky

dtk

∣∣∣∣
t=tn

, γk =
1
k!

dkf

dtk

∣∣∣∣
t=tn

.

(12)
Furthermore, we note that the following rela-
tion holds:

βk =
1
k

γk−1, for k = 1, 2, · · ·. (13)
First, we determine the value of γ0 (=

f(y(tn))) using β0 (= y(tn)). Next, using the
relation (13), we set β1 = γ0, and compute γ1

by the recursive method. The number of opera-
tions required by this step is at most three times
the number of operations required to compute
γ0. Finally, we set β2 = γ1/2 and compute γ2.
The number of operations required by this step
is at most five times the number of operations
required to compute γ0. Therefore, we can ob-
tain f̈1 = 2γ2 with, at most, eight times the
number of operations required to compute γ0.

4. Numerical Examples and Conclu-
sions

In this section we solve an ordinary differ-
ential equation C5 in DETEST 4), which rep-
resents the motion of five outer planets about
the sun, using the D2RK245 formula, Taylor
method 12) and Dormand-Prince’s seven-stage
fifth-order formula with fourth-order embedded
solution, DOPRI5 2). First, we compare the
CPU time and the accuracy of these methods
without step control. Then we solve the equa-
tion with step control using embedded formu-
las.

4.1 CPU Time and Accuracy
We integrate the equation C5 from t = 0

to t = 20 with step size h = 2k(k = 2, 1,
0,−1,−2, · · · ,−10). For each k, we compute
the accumulated truncation error e which is de-
fined by the root mean square of the errors at
t = 20. The numerical computations were per-
formed in quadruple precision Fortran on dual
processors of alpha21264 (750MHz) with 2 GB
of RAM. The CPU time in seconds and the er-
ror e of each methods are listed in Table 1.

It can be seen that the D2RK245 method re-
sults in a similar degree of accuracy as the Tay-
lor method and the DOPRI5 method, besides
the CPU time of our method are less than that
of the other two methods.

In general, if the function f contains elemen-
tary functions such as square root, exponential,

Table 1 CPU time and errors in the numerical
solutions of C5.

log2 h
D2RK245 Taylor DOPRI5

time log2 |e| time log2 |e| time log2 |e|
2 0.00 −6.86 0.00 −6.22 0.00 −5.62
1 0.00 −11.77 0.01 −11.55 0.01 −11.68
0 0.01 −16.74 0.01 −16.88 0.02 −17.70

−1 0.02 −21.74 0.02 −22.11 0.03 −23.54
−2 0.04 −26.74 0.04 −27.26 0.06 −29.14
−3 0.07 −31.74 0.09 −32.34 0.12 −34.50
−4 0.14 −36.74 0.19 −37.39 0.24 −39.70
−5 0.29 −41.74 0.36 −42.41 0.48 −44.80
−6 0.57 −46.74 0.73 −47.42 0.96 −49.85
−7 1.15 −51.74 1.44 −52.43 1.91 −54.88
−8 2.28 −56.74 2.92 −57.43 3.82 −59.89
−9 4.57 −61.74 5.79 −62.43 7.63 −64.90

−10 9.14 −66.74 11.55 −67.43 15.26 −69.90

Table 2 Results with step control.

Method Tolerance
No.of Percent Relative
steps decieved error

10−3 2 50.0 51.3
D2RK245 10−6 14 14.3 22.1

10−9 62 6.5 19.9
10−3 6 16.7 2.1

Taylor 10−6 24 12.5 0.5
10−9 100 4.0 0.4
10−3 4 25.0 107.0

DOPRI5 10−6 15 13.3 22.3
10−9 62 4.8 6.4

etc., then the conventional methods must eval-
uate these high-cost functions in every stage.
However, the D2RK245 method calculates these
functions only twice, and computes the deriva-
tives of the functions using only arithmetical
operations. Therefore, the D2RK245 method
has a clear advantage in computational cost.

4.2 Step Control Using Embedded
Formulas

We integrate the equation C5 from t = 0 to
t = 20 with initial step size h = 0.01 and tol-
erances 10−3, 10−6 and 10−9. The step size is
controled by the routines which use the differ-
ence of the fifth-order solution and forth-order
solution based on the routines in Press et al. 11).
These computations were performed in double
precision gcc on a single pentium4 processor
(2.2 GHz) with 1 GB of RAM. The number of
steps, the percent of steps for which the local
error exeeded the tolerance and the relative er-
rors at t = 20 of each methods are listed in
Table 2.

In this table, the relative error is maxi||(yi −
yt,i)/yt,i||∞/τ , where y is the numerical solu-
tion at t = 20, yt is the true solution at t = 20
and τ is the tolerance.

Vol. 44 No. 1 Two Stage Explicit Runge-Kutta Type Method 87

In the D2RK245 method, f1, ḟ1 and f̈1 are
evaluated for each step, f2 and ˜̇f2 are evalu-
ated for each step and moreover for the decieved
case where the local error exceeded the toler-
ance. In the Taylor method, the function f and
it’s derivatives are evaluated for each step. In
the DOPRI5 method, the function f are called
seven times for each step and six times for the
decieved case.

The D2RK245 method controls the step
width as well as the DOPRI5 method.

Acknowledgments Professor Gerhard
Wanner informed the authors of the higher-
order formulas, for which the authors are deeply
grateful to him. They would also like to thank
the reviewers who gave them valuable com-
ments. They also thank Professor Mamoru
Hoshi for his helpful advice.

References

1) Butcher, J.C.: The Numerical Analysis of Or-
dinary Differential Equations, Wiley, New York
(1987).

2) Dormand, J.R. and Prince, P.J.: A family of
embedded Runge-Kutta formulae, J. Compu-
tational and Applied Mathematics, Vol.6, No.1,
pp.19–26 (1980).

3) Hairer, E., Nørsett, S.P. and Wanner, G.: Solv-
ing Ordinary Differential Equations I, Non-stiff
Problems, Springer-Verlag, Berlin (1993).

4) Hull, T.E., Enright, W.H., Fellen, B.M. and
Sedgwick, A.E.: Comparing Numerical Meth-
ods for Ordinary Differential Equations, SIAM
J. Numer. Anal., Vol.9, No.4, pp.603–637
(1972).

5) Iri, M.: Simultaneous Computation of Func-
tions, Partial Derivatives and Estimates of
Rounding Errors — Complexity and Practi-
cality, Jpn. J. Appl. Math., Vol.1, pp.223–252
(1984).

6) Kastlunger, K.H. and Wanner, G.: Runge
Kutta processes with multiple nodes, Comput-
ing, Vol.9, pp.9–24 (1972).

7) Mitsui, T.: Runge-Kutta Type Integration
Formulas Including the Evaluation of the Sec-
ond Derivative Part I, Publ. RIMS, Kyoto
Univ., Vol.18, pp.325–364 (1982).

8) Ono, H., Toda, H. and Iri, M.: Runge-Kutta
type two stage imbedded formulas using the
second derivatives (in Japanese), Trans. IPS
Jpn., Vol.28, pp.807–814 (1987).

9) Ono, H. and Toda, H.: Explicit Runge-Kutta
methods using second derivatives, Annals of
Numer. Math., Vol.1, pp.171–182 (1994).

10) Ono, H. and Toda, H.: Runge-Kutta Type

Seventh-order Limiting Formula, J. Info. Proc.,
Vol.12, pp.286–298 (1989).

11) Press, W.H., et al.: Numerical Recipes in C:
the art of scientific computing, Cambridge Uni-
versity Press, Cambridge (1988).

12) Rall, L.B.: Automatic Differentiation Tech-
niques and Applications, Springer, Berlin Hei-
delberg (1981).

13) Shintani, H.: On One-step Methods Utiliz-
ing the Second Derivative, Hiroshima Math. J.,
Vol.1, pp.349–372 (1971).

14) Shintani, H.: On Explicit One-step Meth-
ods Utilizing the Second Derivative, Hiroshima
Math. J., Vol.2, pp.353–368 (1972).

15) Toda, H.: On the truncation error of a lim-
iting formula of Runge-Kutta methods (in
Japanese), Trans. IPS Jpn., Vol.21, pp.285–296
(1980).

16) Verner, J.H.: Families of Imbedded Runge-
Kutta Methods, SIAM J.Numer.Anal., Vol.16,
pp.857–875 (1979).

17) Yoshida, T.: Automatic Derivative Derivation
System (in Japanese), Trans. IPS Jpn., Vol.30,
pp.799–806 (1989).

(Received February 22, 2002)
(Accepted October 7, 2002)

Toshinobu Yoshida was
born in 1951. He received his
B.E. degree from the Univer-
sity of Electro-Communications
in 1973, and his M.E. and D.E.
degrees from the University of
Tokyo in 1975 and 1978 respec-

tively. He had worked in Chiba University
as an assistant, and had worked in Gunma
University as an associate professor. Since
1992 he had been in the University of Electro-
Communications as an associate professor and
has been as a professor since 2000. His cur-
rent research interests are speech language pro-
cessing, neural networks and numerical analy-
sis. He is a member of IPSJ, IEICE, JSIAM,
JNNS, and ASJ.

Harumi Ono was born in
1932. She received her B.S. de-
gree from Ochanomizu Univer-
sity in 1954, and her D.E. degree
from the University of Tokyo in
1985. She had been in Chiba
University as an associate pro-

fessor until March 1997. Her main research in-
terest is numerical analysis. She is a member
of IPSJ, JSIAM, and JSAS.

