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Abstract: We propose a human lower body pose estimation method for team sport videos, which is integrated with
tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked
window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multi-
class classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of
player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate
poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression
or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can
estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to
estimate with only one model. Experimental results show the advantage of our method for side running poses and
non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team
sports videos.
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1. Introduction

Video-based player tracking has drawn interest in computer
vision. Since video-based object detection and tracking tech-
niques have shown rapid improvement [1], the applications of
tracking team sports players are becoming increasingly more at-
tractive for professional sports. Body pose information would be
a middle-level feature for classifying the detailed action of each
player. Like activity recognition methods [2], [3] using a pose es-
timated by single image pose estimation techniques [4] suggest,
the pose (joint location of the person in 2D or 3D) can be a sta-
ble and clear cue for detailed and fine-grained activity recogni-
tion. While action recognition methods using spatio-temporal lo-
cal features [5], [6] can estimate the semantic action class (e.g.,
running or standing) of the player, inner-class action difference
(e.g., how widely the person moves his or her legs while running)
cannot be easily estimated. Even for semantic action recogni-
tion, an action classifier using a pose feature (annotated joints)
performs better than one using low-level feature (dense flow) as
Ref. [7] illustrated in their experiments.

In particular, using the lower body pose (or lower body joint
positions) from team sports videos would be a new way of recog-
nizing each action of a player in detail. Since running is the very
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basic and most frequent action in all team sports, leg movements
are one of the most important cues for recognizing player actions.
For example, when the subject player is running, the joint pose
can precisely measure the number of steps of the player, which
can be the cue for classifying the step types (normal step or cross
step), and which can be the contact point with the foot in soccer.
However lower body pose estimation has rarely been investigated
in computer vision.

Human pose estimation from video is still an open problem in
computer vision while depth-based methods using RGB-D sen-
sors has already been realized as a highly robust system [8]. We
cannot yet estimate the pose of the sports players in all types
of sports videos, while pose estimation of some limited peri-
odic actions (such as walking) has only been solved using non-
parametric regression techniques [9]. On the other hand, the
frontal human pose of sports players can be robustly estimated
from an image with methods using part detectors and pictorial
structures such as the flexible mixture-of-parts model (FMP)[4].
However, part-based methods usually fail to estimate non-frontal
poses in team sports videos where players tend to frequently be
displayed as side poses. The reason is that these methods need
enough space between parts to become a star-shaped tree con-
figuration of body parts. Even multi-view part-based pictorial
structure techniques [10] with pan-tiled cameras cannot robustly
estimate the side and part-occluded poses in team sports videos
because they still depend on the discriminative part classification
as Ref. [8] does. If the side poses of sports players could be es-
timated with monocular videos, a broad range of possibilities of
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Fig. 1 Example result of our framework. Images in the upper row show
the tracked player images in each frame of the input video with the
estimated joint position as colored circles in each frame. The lower
image shows an input frame of the video. The rectangle is the tracked
player window, and the green circle is the center of the window.

Fig. 2 Label-Grid Classifier. The red circle on the grid is the classified joint
location l j

t ∈ N2 on each player window from the learned Label-
Grid class candidates (pink circles). In this example, the Label-Grid
classifier for the j-th joint is on the (6 × 8) grid structure, and the es-
timated Label-Grid is on l j

t = (1, 7) on all three images. The number
of the class of the Label-Grid classifier of the left foot is 21 (sum of
pink circles and red circles).

vision-based human motion and behavioral understanding would
be opened up.

We propose a novel grid-wise pose estimation classifier for
monocular team sports videos, which we call the Label-Grid

classifier, integrated with a standard tracking-by-detection frame-
work, such as Ref. [11]. Our Label-Grid classifier estimates the
lower body human joint location with Label-Grid resolution us-
ing the whole body appearance of the tracked window estimated
by the player tracker (Fig. 1). In other words, the player tracker
first tracks the player window in each frame, then the Label-Grid
classifier estimates the joint location (grid position in the player
widow (See Fig. 2).

To the best of our knowledge, our method is the first human
pose estimation method that can estimate the pose of side-running
players with scale changes, which part-based methods [4], [12]
cannot estimate very well. As the example results in Fig. 1 show,
our method can robustly estimate the poses of the side running

sequence. Similar to (frontal) facial recognition techniques [13],
our Label-Grid classifier embeds all types of aligned player win-
dow image into only one multi-class classifier, which enables
pose estimation when they are running sideways.

Since our framework employs Histograms of Oriented Gradi-
ents (HOG) [14] as whole body gradient histogram features, it can
estimate the joint location even from a low-resolution videos ow-
ing to the deformation invariance and contrast invariance of the
HOG feature. In addition, it can estimate poses that have similar
appearances between parts (e.g., pants with only one color) that
part-based methods find it difficult to estimate, because part ap-
pearances become too ambiguous to detect (e.g., while crossing
the legs).

The contributions of this paper can be summarized as having
the following advantages:
• Label-Grid classifier whose 2D unit blocks (Label-Grid) are

synchronized with the resolution of Grid-Histogram features
via multi-class classifier (in this paper we use HOG features
randomized by Random Decision Forests).

• Align the tracking window with a pelvis-aligned detector to
provide center-aligned visual features (selected from HOG
by Random Decision Forests) to easily classify the class of
Label-Grid classifiers.

• Can also estimate the pose of side running sequences, which
frequently appear in team sports videos.

• Per-frame estimation without temporal pose motion models
of a specific action, such as Ref. [9], which uses a walking
pose manifold or temporal pose prior.

• Per-frame pose estimation for videos without pictorial struc-
ture and part detectors. Our ignorance of pictorial structure
framework achieved fast pose estimation (about 1 fps com-
putational time).

The rest of the paper is organized as follows. In Section 2 we
first review the related work for human pose estimation methods
for images and videos. Our framework is presented in Section 3.
Section 4 describes how to learn the Label-Grid classifier with
a prepared dataset. Section 5 illustrates the experimental results
and evaluates the performance of our framework. Finally, Sec-
tion 6 is the conclusion.

2. Related Work

First, we review human pose estimation methods using the
classical silhouette-based template matching technique for team
sport videos (Section 2.1), which is not robust and is just for
graphics visualization. Then we review two types of human pose
estimation techniques: human pose estimation from a single im-
age using pictorial structure (Section 2.2), and motion model
regression (Section 2.3). Finally, we review instance template
detection techniques such as poselets [15] and Exemplar-SVMs
(Section 2.4).

2.1 Exemplar-based Pose Search Methods
Germann et al. [16] proposed silhouette-based database match-

ing methods for soccer players. These methods first construct an
exemplar-pose database with silhouette images of players. At test
time, their method first finds the most similar silhouette from the
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database in each frame, and then applies optimization through
multiple temporal multiple frames. The resulting poses are not
very accurate because the exemplars cannot include every type of
human poses, and are sensitive when extracting the silhouette via
background subtraction. Moreover, this approach involves a high
computational optimization cost.

2.2 Single Image Pose Estimation Using Deformable Part
Models

The FMP [4] is the extension of the deformable part models
(DPM) [12] that are used to estimate the pose of the human by
inferring from the best part configuration. DPM was originally
a weakly-supervised model using latent support vector machines
(latent SVM) to learn the appearances and locations of each part
detector automatically from the labeled whole object window. On
the other hand, FMP is a supervised version of DPM and uses
mixture-of-parts to represent the discrete changes of each part ap-
pearance. FMP [12] accurately estimates frontal poses of subjects
opening their legs and arms. However, FMP cannot precisely es-
timate the poses that have feet and arms occluded, because it de-
pends on the part-detection scores and depends on the tree-graph
where each subnode (arms and feet) is widely open.

For this reason, FMP tends to estimate the pose of a person who
looks right or left and even frontal poses incorrectly, because it is
hard to detect each arm or leg part in those poses owing to their
ambiguous and incomplete part appearances. Moreover, it is dif-
ficult to model the configuration with one tree-structure model for
frontal, side and bending poses. The model needs to learn those
models separately.

More recently, poselets-based [15] part-based approaches have
been studied [17], [18]. Although those methods overcome the
weakness of FMP by representing the relationship between parts
using poselets (which are larger parts than parts of FMP), they
are still poor at hard occlusion cases because they still depend
on the pictorial structure. A multi-camera approach [10] helps to
deal with part-occlusions, but even this methods is not able to
tackle with side running scenarios where part-occlusions occur
frequently.

There is also a method involving an occlusion handling scheme
using an occlusion detector and part-based regression [19]. While
this method provides good results with small occlusions between
parts, it also cannot estimate side poses because it still depends
on the pictorial structure.

2.3 Motion Model Regression and Pose Manifold Methods
for Pedestrians

If the human pose model only includes the pose types within
one action class, such as walking or swinging a golf club, pose
estimation can be solved using regression techniques with fixed-
view training images. The tracking method using Gaussian Pro-
cess Regression [9] is popular for learning a (latent) 3D pose man-
ifold from cyclic pedestrian images from one camera view. For
pedestrian pose estimation, Gammeter et al. [20] proposed a peo-
ple tracking and pose estimation method for pedestrians using
Gaussian Process Regression. Rogez et al. [21] proposed a per-
frame pose estimation of human pose estimation based on Ran-

dom Decision Forests [22] and pose manifolds of a gait sequence
with HOG features. Reference [21] is close to our method in us-
ing Random Decision Forests for pose classification. However,
their Random Decision Forests class is based on camera views
and gait manifold cycle, while our Label-Grid class is the grid
of HOG features. Additionally, they do not predict the joint po-
sitions precisely because they just find the most similar walking
pose exemplar on the gait manifold. These methods only inves-
tigated the pose distribution of walking people. They can learn
the latent transitions between the poses of pedestrians, but cannot
afford to include every types of poses.

2.4 Poselets and Exemplar-SVMs
Our pelvis-aligned detector and Label-Grid classifier are both

inspired by the poselets framework [15]. Poselets are the detector

of one specific pose of a middle-level human part detector, which
can be learned from training images with the same aligned pose
and same scale images but from different subjects (e.g., upper
body Poselets with their arms crossed).

Exemplar-SVM [23] is an object detection method using per-
exemplar detectors. It detects exemplars using each exemplar-
SVM to detect multiple appearance types of an object class.
Exemplar-SVMs separately learn each pose or view with one
exemplar-SVM (e.g., left-view car SVM, frontal-view car SVM,
jump-pose human SVM).

On the other hand, our pelvis-aligned detector learns multiple
scales and poses of an object class altogether. This one-detector
solution makes it easy to integrate with a tracking-by-detection
scheme, while the goal of Exemplar-SVMs is robust object de-
tection even with only one image using multiple SVMs that know
the hard-negatives.

3. Proposed Framework

The proposed framework (Fig. 3) is composed of two mod-
ules: a tracking player with tracking-by-detection technique with
the pelvis-aligned detector (Section 3.1), and estimating the four
joint positions on the grid structure independently using Label-
Grid classifiers (Section 3.2).

These two modules share the tracked player window as HOG
(Histogram-of-Oriented Gradients) feature [14] to estimate the
pose (locations of four joints) in each frame of the video (Sec-
tion 3.2). At test time, the only input of our framework is the
player window position (rectangle) of the subject player in the
first frame of the video. All the lower body poses in each frame
are estimated automatically by tracking the player and are esti-
mated by Label-Grid classifiers in each frame.

We learn four Label-Grid classifiers of each lower-body joint
separately; left-knee Llk(x), right-knee Lrk(x), left-foot Ll f (x),
and right-foot Lr f (x). Note that left or right means left in the
image and right in the image respectively. Our Label-Grid clas-
sifier learns the position of the left and right joints in the image
plane just like the other pose estimators such as FMP [4] *1.

*1 This is the typical limitation of the two-dimensional human pose esti-
mation methods. To overcome this, we will use the three dimensional
information inferred by the other approaches in the future.
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Fig. 3 Flowchart of the proposed framework.

3.1 Player Tracking with Pelvis-aligned Detector
Our first module is the player tracking method with standard

tracking-by-detection, such as Ref. [11], to provide an aligned
player window for the second module. We also used this
pelvis-aligned detector in our upper body pose estimation frame-
work [24], the explanation in Ref. [24] was very short because of
the page limit. Hence, this paper provides a more detailed proce-
dure to prepare the dataset of our pelvis-aligned player detector
in Section 3.3.

For tracking-by-detection, we use the player detector learned
from the dataset Dall (Section 3.3). We use a Kalman Filter (in-
stead of Particle Filter in Ref. [11]) to track the player whose like-
lihood in each frame is a non-maximum suppression result of the
detections within the local area around the predicted player lo-
cation. Since our method mainly targets at estimating side poses
during running or walking, which occurs very often in team sports
videos (as mentioned in the introduction), we choose a Kalman
Filter by assuming the simple and monotonous trajectory of the
subject players in typical team sports videos on large fields.

This tracking procedure provides the smoothed and the center
of the tracked window in each frame, and these tracked windows
are expected to be aligned to the pelvis position. This first mod-
ule provides the aligned window that works well for the Label-
Grid Classifier in the second module. Since we use HOG feature
for classifying the pose, we expect around 1 or 1.5 grid errors in
this tracker to ensure that the Label-Grid classifiers can use the
aligned HOG feature leaned from the pelvis-aligned dataset.

3.2 Label-Grid Classifier for Estimating Joint Grid Position
The second module estimates the four joint locations using four

Label-Grid classifiers. The proposed Label-Grid classifier is a
multi-class classifier whose label classes are assigned to the grid
locations of grid histogram feature such as HOG features [14].
The Label Grid classifier L j(xt) = {F j(xt),M j(ŷ j

t )} (for the j-
th joint) consists of a multi-class classifier F j(xt) and the class-
to-grid mapping function M j(ŷ j

t ), where we denote the input vi-
sual feature vector (in our case, normalized three-level HOG) as
xt ∈ RD at frame t, and the estimated Label-Grid class label of

F j(xt) is y j
t ∈ {l = 1, 2, . . . , L}.

Each class l of F j(xt) learns the appearances (or poses) of play-
ers with its j-th joint is on the same grid (See Fig. 2). At test time,
the classifier F j(xt) of L j(xt) first estimates the class yt from the
input visual feature vector xt:

ŷ j
t = F j(xt) (1)

The reason why we use not only the lower body but also the
full body window for the HOG feature is that we aim to lever-
age the whole upper body appearance for classifiers, which result
in capturing a wide variation in upper body appearances in each
lower body joint position. We expect that this strategy of includ-
ing upper body appearance makes the Label-Grid classifier eas-
ier to discriminate the pose of a specific joint position from the
other poses even when the pelvis is not aligned, while the HOG
of only the lower body could cause too much sensitivity to the
mis-registration of the tracker *2.

After estimating the class label ŷ j
t from the input feature vector,

we map ŷ j
t to the corresponding 2D grid location with M j(ŷ j

t ):

l j
t = M j(ŷ j

t ) (2)

where M j is the dictionary function for the j-th joint to map each
class ŷ j

t to the corresponding grid location l j
t ∈ N2, which we call

Label-Grid. This mapping dictionary M j is built during training.
We typically assign each class y j

t to the grid from left to right and
from top to bottom if there is more than one sample labeled on
the grid (see Fig. 2 for the example grid index assignment). Note
that we need the inverse mapping of M j(ŷ j

t ) during training, be-
cause we first have to assign each Label-Grid l j

t in theDall to the
l-th class in L-class classifier. However, at test time, we need only
M j(ŷ j

t ) for converting ŷ j
t to l j

t .
The training dataset for the Label-Grid classifier must include

most of the types and scales of players’ appearances that could
occur in the target videos. Hence, our system can estimate the
lower body pose in any location of the image (in our case, the

*2 If the estimation of the pelvis is perfect with any other methods, we need
to use only the lower body appearance.
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sports field) where player scale varies according to the position
and the pose of the camera.

3.3 Dataset Preparation
We share the same data-augmented dataset Dall between two

modules to learn the pelvis-aligned Detector and four Label-Grid
classifiers. To share the player window with its center aligned to
the pelvis of a player, the player detector and the Label-Grid clas-
sifier are learned from the same images and labels from Dall. To
create Dall, we perform data augmentation with different scales

Fig. 4 Data Augmentation. Using hpla
i (height of the blue window), im-

ages are scaled to the scale s so that the center position ppel
i keeps to

the center of the Label-Grid even in the scaled images. By perform-
ing this aligned image sampling of the training dataset, the feature
space of the Label-Grid classifier can be augmented to the multi-
scale player sizes within the Label-Grid window.

Fig. 5 Learning procedure.

and mirrored images from the original datasetDori (Fig. 4).
We first prepare a training datasetDall = {Dsca,Dmir} from re-

alistic team sports videos to learn both player detector and Label-
Grid classifiers. Dsca (Fig. 4 (a)) is the resampled player window
images and their labels from the original dataset Dori for which
we should only need to prepare the labels. Dmir (Fig. 4 (b)) is the
mirrored dataset ofDsca whose images and labels are flipped hor-
izontally. See the left half of the Fig. 5 for this dataset preparation
procedure.

First, we prepare a dataset Dori with N images I =

[I1, I2, . . . , IN] and labels of each image Ii so that the im-
ages includes various types of poses of players in one specific
sport. Each player window image Ii in Dori has labels Li =

[p1
i , p

2
i , p

3
i , p

4
i , p

pel
i , h

pla
i ], where pj

i ∈ RD is the j-th joint loca-
tion of the i-th image Ii on the image plane, and hpla

i is the player
height for resampling the original images. ppel

i ∈ RD is the loca-
tion of the pelvis of the i-th image Ii on the image plane, which
is always at the center of the player window and becomes the in-
formation of the location of the player window. Images I are all
clipped from the team sports videos so that their window centers
ppel

i are all aligned to the center of the window, and the labeling
person manually inputs hpla

i as a length between the top of head
and the bottom of the foot of the player in Ii. This labeling pro-
cedure determines the scale of the player height hpla

i to the fixed
size window in each sample.

For resampling the original image of Dori to multiple scales,
we resize all the images and labels inDori to the resampled player
scales s = hpla

i /h
win, where hwin is the height of the Label-Grid

widnow. Dsca includes several player scales with regular inter-
vals (e.g., 0.80, 0.85, . . . , 1.00) by resizingDori (Fig. 4 (a)).

Finally, we acquire Dmir by flipping the images and labels
of Dsca horizontally to learn the mirrored features and labels
(Fig. 4 (b)).

The player detector uses only the images of Dall because the
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centers of the players’ window images in Dall are all aligned
to the pelvis of the players. In contrast, images and Label-Grid
classes ofDall are used to learn the classifier. Any types of multi-
class classifier can be used as a Label-Grid classifier. However,
for its high precision and fast computational time, we use Ran-
dom Decision Forests [22] as a Label-Grid classifier in our exper-
iments.

4. Learning Label-Grid Classifier

The Label-Grid classifier is a multi-class classifier with its
class labels (Label-Grid) assigned to the 2D grid location of a
feature type with a grid structure such as HOG features. The
Label-Grid classifier can be any types of multi-class classifier
(e.g., Support Vector Machine, Random Decision Forests, etc.),
but preparing the dataset for a Label-Grid classifier to classify the
lower body grid-position of the player is our original approach to
using a general multi-class classifier.

Every one class (Label-Grid) of the Label-Grid classifier learns
the HOG features whose joint is on the same grid position
(Fig. 2). Given the grid feature of a player in a W × H window,
classifying the Label-Grid of a specific joint (e.g., left-knee) can
be regarded as an L-class grid classification problem, where the
task is to choose a grid position (i, j) from L candidate positions
(pink circles are marked as candidate positions in Fig. 2). The
other N grids in the grid feature are just ignored from label-grids
to learn. The number of Label-Grids L is decided when building
M j(y j

t ) (see Section 4.1). For instance, if you use HOG features
with 6 × 10 cells in a player window and if there are 35 classes
where the joint label-grid exists more than one joint position in
the training dataset, the Label-Grid classifier becomes 35-class
classifiers. The other 25 (= 6 × 10 − 35) grids, which have no
joint labels in the training dataset, are ignored for the classifica-
tion of the joint.

4.1 Learning Procedure
We will explain how to learn a Label-Grid Classifier for clas-

sifying the j-th joint (e.g., the left knee joint). Figure 5 shows
the whole procedure, used to learn the Label-Grid Classifiers
(Llk(x), Lrk(x), Ll f (x), and Lr f (x)) and the pelvis-aligned detector
by preparing a datasetDall.

Given a data-augmented datasetDall, we first calculate the grid
location l j

i from the j-th joint pj
i of the i-th image in Dall using

pelvis position and the size of Label-Grid (e.g., each grid is 8 × 8
and the window size is 64 × 128).

After calculating all l j
i inDall, we then build the mapping func-

tion M j(y j
i ) to decide the number of the class N of the Label-Grid

Classifier and all the Label-Grid indices y j
i of the i-th image in

Dall. After M j(y j
i ) has been built, we can finally learn F j(xi)

(using Random Decision Forests, in this paper) with Label-Grid
s and the calculated feature xall that we will explain in the next
subsection.

4.2 Multi-level HOG Feature and Feature Selection
We use a three-level image pyramid from the player window

for calculating three-level HOG features x1
t , x

2
t , x

3
t for making the

feature vector xt = [x1
t x2

t x3
t ] for a Label-Grid classifier. Learning

multiple resolution of the HOG appearance makes the Label-Grid
classifier restrict the label-grid candidates at each resolution level,
which helps to avoid the bad classification result far from the true
position.

To decrease the effect of the difference of feature scales be-
tween the three levels, we normalize the feature vector xt to L2

unit vector both at training time and test time.
We use L-class Random Decision Forests as the L-class Classi-

fication Forests [22] as F j(xt) of the Label-Grid classifier, which
results in performing feature selection from these normalized
three-level HOG features xt. After learning the L-class, each split
function uses two randomly selected values of the multi-level fea-
ture vector xt to estimate the class label y j

t .

5. Experiments

We tested our framework in two scenarios: frontal pose se-
quences (Section 5.3.1), which part-based pose estimator [4] can
also estimate robustly, and side pose sequences (Section 5.3.2),
which part-based pose estimator cannnot predict properly as ar-
gued in Section 2.2.

5.1 Experimental setup
We performed experimental evaluations on our system with

American Football videos in professional league matches. The
size of each video is 1,280 × 780. The videos are taken from
the matches of Panasonic IMPULSE *3. All videos were captured
from the high place in the stadium with fixed cameras. All videos
were converted to 29 fps videos while the original videos were
recorded at 59 fps. These videos include players from a team with
a white-colored uniform and players from the other team with
a black-colored uniform. Although we captured high-resolution
videos, motion blur of moving legs and arms sometimes occurs
and the players are captured with a relatively low resolution. We
created 10 test sequences (test (1)–(10)) for the five frontal pose
tests and five side pose tests from these videos (see Fig. 6 to see
the player trajectories on each sequence). Each test video is com-
posed of 40 frames. We will show the detail behavior (pose) on
each sequence in Section 5.3.1 for the frontal pose sequences and
Section 5.3.2 for side pose sequences.

We manually clipped player windows from video frames and
assigned labels to create our original dataset Dori for training
both Label-Grid classifiers and the player detector. We tried to
include as many pose patterns (and also views of the pose) as pos-
sible in the dataset Dori to make the Label-Grid classifiers learn
the whole possible appearance patterns in the American Football
videos. We randomly selected the images from all the videos
so that the original dataset includes more versatile player poses,
and the original dataset becomes 977 images and its labels. Note
that approximately 10% of the original training images shares the
same images with test dataset sequences of test (7) and test (8).
Then we resampled 977 images and labels ofDori with 13 scales
s = {0.70, 0.725, 0.75, . . . , 0.975, 1.0} and finally prepared 25,402
images (25,402 = 977×13×2) for training four Label-Grid clas-
sifiers independently.

*3 http://panasonic.co.jp/es/go-go-impulse/
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Fig. 6 Tracked results of all tests (1)–(10). Test (1)–(5) are the results of the
frontal pose sequences while tests (6)–(10) are the results on the side
pose sequences. Green dots show the player window center locations
in each frame.

HOG window size was 64 × 128 pixels (width × height), and
the cell size was 8 × 8 both for our pelvis-aligned player detec-
tor and the four Label-Grid classifiers. For learning the pelvis-
aligned player detector, we only used 64 × 128 HOG and labels
of Dall. For the Label-Grid classifiers, we also created pyramid
images 48×64 and 24×32 from the tracked 64×128 window im-
age in one frame. We then calculated three-level HOG x1

t , x
2
t , x

3
t

from each level pyramid image with 8× 8 cell size and combined
them. Finally, we obtained a 2268-dimensional L2-normalized
feature vector xt as the input of each Label-Grid classifier.

We learned four Label-Grid classifiers as Random Decision
Forests [22] with the feature vector xt for each lower body joint

Fig. 7 Four Label-Grid classifiers with 8 × 12 Label-Grids, which we use
in our experiments. Each red circle shows the candidate Label-Grid
class of the classifier.

independently (right/left knee and right/left foot) from the train-
ing dataset Dall. Consequently, we had 34-class left knee Label-
Grid classifier, 34-class right knee Label-Grid classifier, 38-class
left foot Label-Grid classifier, and 39-class right foot Label-Grid
classifier (see Fig. 7 for the class assignment).

To apply FMP [4] as a baseline, we used PartsBasedDetector
software [25]. We used 26-parts frontal person models as FMP
and regard center positions of the 4 part-detector as four lower
body joints to compare with our joint location classifiers (index
12 as left knee joint, index 13 as left foot joint, index 24 as right
knee joint, index 25 as right foot joint). We assume that the center
of the rectangle of each detected part is the corresponding joint
position in the image.

5.2 Evaluation Manner
5.2.1 Pixel Error of the Joint Position

For measuring the performance of our lower body pose system,
we define the Euclidean distance error as below:

Et = d(p̂t, pGT
t ) (3)

where p̂t = (x, y) is the center point of the estimated Label-Grid
location and the pGT

t is the ground truth position. Since our Label-
Grid classifiers are learned with 8×8 Label-Grid, the center posi-
tion p̂t becomes (4, 4) from the left-top point (0, 0) in each Label-
Grid.

Note that the running speed of the player is fast in most of
our experimental videos because we apply our method to the iso-
lated running players, such as Quarterback, Runningback, and
Linebacker. For this reason, the length of each video is very short
(40 frames). Another reason is that we cannot collect many se-
quences of long running isolated play easily, because each Amer-
ican football play is around only 10 seconds and players tend to
be occluded and congested frequently.
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Fig. 8 Example results from frontal pose experiments. The left tow panels in each subfigure (a)–(e) show
the results of our Label-Grid classifiers, and the right panels show the result of the FMP, where
only the four detected joints are shown (no visualization of joints means that FMP could not detect
anyone in the frame).

Although we would like to compare our methods with FMP us-
ing the PCP [26] score, which is broadly applied to the evaluation
of part-based methods, we cannot calculate the PCP score be-
cause our method does not infer the stick area of each part which
is needed for calculating PCP scores. This is one of the reasons
why we used the Euclidean distance for the evaluation.
5.2.2 Detection Rate of FMP and How to Apply FMP to Our

Videos
To test the limitations of FMP for side poses in our videos, we

defined the detection rate R as R = k/N, where k is the number
of detections against the number of frames N in one test video (in
our case, N = 40 frames).

Since FMP [4] was the object detector (but jointly estimate
the pose while detecting the object), we automatically clipped
the magnified and margin-added image to apply the FMP detec-
tor. We first clipped the player window from the tracking-by-
detection tracking module (Section 3.2) by adding 40 × 40 mar-

gin, and magnified it 200% to enable FMP to detect the players
in our video. Each of images in Fig. 8 shows the clipped images
with this procedure.

5.3 Experimental Results
Figure 9 (a) shows the detection rate of FMP [4] in tests (1)–

(5). Since the movement of the players in tests (2)–(4) are di-
agonal and curved (Fig. 6), most of their poses were difficult for
FMP with hard occlusion and low-resolution, even though we de-
fined those tests as frontal tests. However, since our method does
not use any part-models and just use tracked (whole) player win-
dow appearance in each frame, it can classify the joint position
in all frames in test (1)–(5). For example, in the Fig. 8 (d), while
FMP could not detect the player in each frame, our Label-Grid
classifier estimated the joint positions correctly from the same
images. While we wanted to compare the position error between
our methods and FMP, we abandoned the calculation of the pixel
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(a) Detection rate of FMP [4] in frontal pose tests (1)–(5).

(b) Detection rate of FMP [4] in side pose tests (6)–(10).

Fig. 9 Detection Rate of FMP [4] in each test.

Table 1 Average estimation error of each joint in the frontal pose tests (1)–
(5). All errors are in pixels.

Joints (1) (2) (3) (4) (5)
Left knee 15.07 14.92 15.58 14.13 13.66
Right knee 9.29 13.01 22.28 15.71 20.26
Left foot 9.89 9.98 13.60 16.28 11.50
Right foot 10.99 23.28 20.31 16.62 10.83
Pelvis 6.06 4.42 4.91 4.93 6.80

error for FMP since we were not able to get enough detections
from even frontal poses (Fig. 9 (a)).
5.3.1 Frontal Pose Experiment

We tested our system on the following frontal pose scenarios
to compare the performance or detection rate with FMP [4].

We prepared the following five sequences for a frontal pose
dataset (Fig. 6, left column):
• Test (1): The player walks to the start position while facing

their frontal upper body to the camera.
• Test (2): The player runs up to the upper side of the field.
• Test (3): The player begins to run from the start position.
• Test (4): The player runs diagonally.
• Test (5): A large player walks to the outside of the field.
Figure 6 shows the tracked trajectory of pelvis position (center

of the player window) in each of tests (1)–(10). The panels in the
left column show the results of frontal pose tests (1)–(5). Table 1
shows the average error of our method and FMP [4] for each joint.

Table 2 Average estimation error of each joint in the side pose tests (6)–
(10). All errors are in pixels.

Joints (6) (7) (8) (9) (10)
Left knee 9.65 14.40 8.08 16.22 5.93
Right knee 9.62 15.99 11.45 8.34 16.93
Left foot 6.81 16.19 24.83 11.56 6.80
Right foot 20.58 19.31 28.67 19.10 21.34
Pelvis 4.26 6.33 13.01 3.50 5.08

Note that our Label-Grid is 8 × 8 pixels for all tests. While FMP
sometimes failed to detect a player who had occluded parts, our
method could detect non tree-structured poses. Figure 8 shows
the example results of our method and FMP to compare with each
other.
5.3.2 Side Pose Experiment

Just as for the frontal pose experiment in the previous section,
we also performed evaluation of our method and FMP with the
following five side pose scenarios (Fig. 6, right column):
• Test (6): The player runs straight (namely, almost no scale

change) at relatively slow speed from left to right.
• Test (7): The player runs very fast from right to left.
• Test (8): The Runningback player runs diagonally from the

starting position.
• Test (9): The Runningback runs straight from the starting

position.
• Test (10): The player walks backward.
We collected these side pose test videos so that the upper body

direction of the player was almost the same as the lower body
direction.

Table 2 shows the average error of our method in these side
pose tests and Fig. 10 shows the example results of tests (6)–(8).
Figure 9 (b) shows the detection rate of FMP [4] in side pose tests
(6)–(8). As Fig. 10 shows, FMP can rarely detect the player in
side pose tests. FMP detects player with a detection rate 0.15
to 0.25. Compared with these results of FMP, our method could
estimate the pose in all frames via its tracking and classification
procedure within about two Label-Grid errors (Table 2).

5.4 Discussions by Topic
5.4.1 Whole Body Appearance Feature as Multi-level HOG

As already argued in Section 3.2, we use the whole body ap-
pearance to classify the lower body pose. Our HOG-based clas-
sification approach can be viewed as the modern replacement of
the classical silhouette-matching schemes using background sub-
traction, such as Ref. [16]. We instead use randomized HOG fea-
tures (learned by Random Decision Forests) to robustly classify
the pose with machine learning. Our strategy has richer infor-
mation with which to discriminate Label-Grid classes than using
only the lower body appearance. We instead use the whole body
HOG appearance to estimate the joint position.

Moreover, owning to the deformation invariance of the HOG
features, our Label-Grid classifier can estimate the pose of a
larger or slimmer person until the gradient distribution changes
from the feature distribution of the dataset. For instance, we
performed an experiment using a large player in test (5) (see
Fig. 8 (e)). Even though we only included middle-sized and thin
players in the original datasetDori, our classifiers could still esti-
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Fig. 10 Example results from side pose experiments. Each row shows the results of side pose test (6),
(7), and (8).

mate the joint location of the large-sized player.
5.4.2 Disregard of Pictorial Structure and Low-resolution

Invariance of Our Method
Another important part of the nature of our method is that our

framework disregards the pictorial structure strategy [27] while it
depends on the aligned window appearance. As we showed in our
experimental results for side pose tests (Fig. 10), our method can
model any types of pose including hardly occluded side poses,
which pictorial picture models cannot infer very well owing to
their tree-models. As we already argued in Section 4.2, our three-
level HOG feature and the Randomized feature selection helps to
restrict the error as much as possible. Since the Random Decision
Forests technique takes advantage of the spatial grid structure to
learn the distance between classes, the error seems to be restricted
within neighboring Label-Grid (See Fig. 8 and Fig. 10).

While FMP and the other part-detector techniques assume
clear and non-blurred images, our multi-level HOG-based Label-
Grid classifiers can even classify the poses in low-resolution and
motion-blurred images because the HOG feature is robust for
contrast change (between image scales) using grid-wise edge his-
togram pooling and block-wise normalization [14].
5.4.3 Sport-specific Classifier

While our method is able to estimate the lower body pose with
various types of poses in American Football robustly, our Label-

Grid classifier is learned from the same clothing type while the
pictorial structure includes various types of clothing. In our ex-
periments, we learned Label-Grid classifiers from two American
Football teams, but the classifiers can classify the lower body
pose with the appearances of both teams.
5.4.4 Alignment and Scale of the Window is Important

As already mentioned, our framework depends on the align-
ment of the player window between the tracking module and the
classification module. In our experiments, our player detector is
learned with a HOG of 8 × 8 cell size, which tracks the player
within a cell error. This means that Label-Grid classifiers can
only deal with the window patterns within one or two (at most)
cell size drift. Hence, Label-Grid classifiers can robustly estimate
the grid location if the tracker can provide well-aligned windows.

Figure 11 shows the temporal analysis of the side pose test (9).
By observing Fig. 11 (a), the left foot position gradually becomes
unstable as the left leg is out of the window. This sequence shows
the nature of our window alignment scheme. While you can use
wider windows for the Label-Grid classifiers to prevent this case
by restricting the person within the window, you need to make
more patterns for the dataset because the number of classes in-
creases with a wider Label-Grid widow.

Figure 11 (b) shows the error values of four lower body joints
and the pelvis position in each frame of the test (9). Owing to the
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Fig. 11 Temporal analysis of test (9).

Fig. 12 Walking back result of test (10).

dependence of the alignment of the tracker, Label-Grid classifiers
tend to have more errors along with an increase in pelvis posi-
tion error. In Fig. 11 (a), each joint errors tends to increase when
pelvis error becomes large.

In addition, whether the player is within the scales of the
dataset during the test time is also important. In the experiments,
we used scales s = {0.70, 0.725, . . . , 1.0} for creating the aug-
mented training images. If the player scale within the window is
too small or too large, the three-level pyramid HOG features will
become an unknown pattern for the Label-Grid classifier (Ran-
dom Decision Forests).

Our framework has two advantages for overcoming this prob-
lem. First, Random Decision Forests can learn the inter-class dis-
tance, as our Label-Grid classifier tends to misclassify the sam-
ple with the neighboring Label-Grid. In addition, the three-level
pyramid HOG features also help the appearance over three res-
olution levels and help to evade misclassification to the distant

Label-Grid class. Even though these two advantages help to em-
bed as many (continuous) scales of features (in Random Decision
Forests feature space) as possible, the failure happens if the player
is an unknown scale (e.g., s = 0.60).
5.4.5 Per Frame Estimation for Moving back Players

In team sports videos, players during defensive action tend to
have a pose or body direction that is not the same as the player’s
moving direction. Figure 12 shows the result of test (10).

This shows the ability of our method to classify the pose cor-
rectly even when the player is moving backward. This feature
shows the high applicability to team sports videos, whereas walk-
ing and running backwards only rarely appears in surveillance
videos.

6. Conclusion

To estimate lower body poses from low-resolution images, we
proposed a new human pose estimation method using a Label-
Grid classifier that is integrated with an object tracker. Our Label-
Grid classifier does not use the pictorial structures, but use the
alignment of the player’s pelvis position to classify various types
and scales of poses into a grid structure with off-the-shelf multi-
class classifiers (we use Random Decision Forests in this pa-
per). Alignment between the tracking-by-detection module and
the Label-Grid classification module is the key to realize the esti-
mation of lower body poses with all poses in team sports videos.

Our system can even estimate poses of the isolated player with
part-occlusions and non-upright poses, which are difficult to es-
timate with the methods using pictorial structures and part detec-
tors. Our pose classification strategy using a whole person HOG
makes it possible to classify the lower body joint locations of a
player even during the side running poses. Our framework can
be viewed as a revisited version of Ref. [16] by using machine-
learning and dense visual features. In other words, traditional sil-
houette matching strategy for pose estimation was innovated by
our approach using HOG features and Random Decision Forests
to embed all pose appearance patterns into the randomized fea-
ture space.

In this work, we only investigated the possibility of our frame-
work for an isolated player without any occlusion between play-
ers. However, the lower body pose estimation of isolated players
will be useful for many team sports videos because players are
mostly isolated during play.

As our experiments showed, our system can estimate all types
of poses with only monocular RGB videos if a sufficient amount
of poses are prepared in datasets. In addition, our method can
estimate side-running poses while FMP [4] can only detect star-
shaped part configurations and cannot estimate non-star side run-
ning poses. However, the estimation fails when the alignment is
not very accurate because of the drift of the tracker.

We believe that this method’s advantage over previous pose
estimation methods will open up the wide range of potential of
player activity recognition from the estimated joint positions us-
ing only monocular cameras and any low-resolution settings of
people tracking. Joint positions of the lower body will provide
a new source of richer information for sports data analysis with
only passive sensing.

c© 2015 Information Processing Society of Japan 28



IPSJ Transactions on Computer Vision and Applications Vol.7 18–30 (Feb. 2015)

Our future work includes joint estimation of multiple joints and
probabilistic formulation using a kinematic body model (while
this paper only investigates one-shot classification as a first sim-
ple proposal of grid-wise classification for pose estimation).
Moreover, we will use 3D pose information such as the upper
body pose, which we are exploring in other research [24], or
movement direction to restrict the pose feature space using these
types of information as priors. For behavior understanding using
the lower body pose, we will investigate the leg-based activity
recognition such as recognizing foot steps and key-pose extrac-
tion for sports video summarization and retrieval.
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