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Detection of network problems is a crucial step in automating network management. It has
a direct impact on the accuracy of fault, performance and security management functions. In
this paper, we propose an adaptive technique for network fault and performance detection.
Network operations normal baseline is parameterized as a finite mixture model, and model
parameters are estimated from data using the Expectation Maximization algorithm. We
propose a novel method for online residual generation, based on repeated identification of
model parameters. The resulting multivariate residuals are shown to be approximately Normal
with the mean 0 and unit variance under normal conditions, and the mean jumps suddenly to
a different value, once anomaly occurs. To achieve fast detection, we formulate the problem
of detection as a sequential disruption problem, where the task is to detect departures from
the baseline distribution as soon as the disruption happens. An analytical expression of
false alarm rate allows us to choose the threshold, automatically. Experimental results on a
real network showed that the monitoring agent is able to detect even slight changes in the
characteristics of the network, while maintaining a low false alarm rate.

1. Introduction

Networks and distributed processing systems
have become an important substrate of mod-
ern information technology. The rapid growth
of these systems throughout the workplace has
given rise to a discontinuity in expertise of hu-
man operators to manage them. There is a need
for automating the management functions to re-
duce network operations and management cost.

Detection of network problems is a crucial
step in automating network management. It
has a direct impact on the accuracy of fault,
performance and security management func-
tions. From a control viewpoint, well designed
fault and performance problems detection algo-
rithms enhance the network control capability,
by providing timely indication of network incip-
ient problems. The possibility of early detec-
tion of performance degradation can alleviate
the constant fire-fighting of network managers.
Early warnings from the monitoring agent can
trigger preventive actions, and serious and ex-
pensive outages can be avoided.

Most of the existing research assumed that
the alarm generating mechanism is accu-
rate, and network problems are given a pri-
ori 6),7),25). Current practice in network man-
agement rely on user-defined thresholds for de-
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tection. Alarms are generated when some vari-
able of interest crosses a predefined threshold.
Generally, the predefined value of the thresh-
old is no more than an estimation of the nor-
mal range within which the measured feature
is believed to operate. Not only there is lit-
tle objective insights on how to choose these
thresholds, but also there is a risk of missing
subtle changes in the network state 5). In addi-
tion, the complexity and size of current network
systems makes them vulnerable to novel faults
and performance degradation patterns.

The main difficulty of network anomaly de-
tection is the lack of a general definition of
what constitutes normal behavior 8). The dy-
namics of the network normal operations need
to be identified from routine operation data. To
this end,11) characterizes the normal behavior
by different templates, obtained by taking the
standard deviations of observations (typically
Ethernet load and packets count), at different
operating times. An observation is declared ab-
normal if it exceeds the upper bound of the en-
velope. Given the bursty nature of network
traffic, the standard deviation estimates are
likely to be distorted, making subtle changes
in the network state go undetected. To miti-
gate the effect of the non-stationary nature of
network traffic 5), considered the model formed
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by segmenting time series obtained form SNMP
MIB objects. Observations are declared abnor-
mal if they do not fit an auto-regressive model
of the traffic inside segments. In20) the obser-
vation are declared abnormal after a statistical
test with the mean of 24-hour period sample. In
these approaches, the assumption of piece-wise
constancy of the traffic is questionable, since
the traffic burst is not sustained long enough
to allow accurate estimation, and the combin-
ing scheme for correlating different alarms from
the objects is ad-hoc.

In this paper, we address the problem of per-
formance problems detection in IP-Networks,
where the knowledge about the problems to
be detected is not required. The emphasis is
on fast detection with minimal human super-
vision – an important requirement for reducing
potential impact of problems on network ser-
vices users. We propose a model of the net-
work operations in terms of MIB objects de-
pendencies, and we show that the parametric
characterization of this dependency can be de-
scribed as a finite mixture of simple regression
models. Model parameters are identified from
routine operation data, using the expectation
maximization algorithm.

A new method for residual generation, based
on successive parameter identification, is intro-
duced. The residuals are shown to be approx-
imately multivariate Normal, with mean zero
under normal operations, and sudden jumps in
this mean are characteristics of abnormal con-
ditions. The detection problem is formulated
as a change point problem. A real-time on-
line change detection algorithm is designed to
processes, sequentially, the residuals and raise
an alarm as soon as the anomaly occurs. We
motivate this formulation through a real prob-
lem scenario that occurred in Saitama univer-
sity network. The proposed approach requires
neither the set of faults and performance degra-
dation nor the thresholds to be supplied by the
user. Experimental results showed the effec-
tiveness of the method on real data. A very
low alarm rate and a high detection capability
has been demonstrated.

This paper is arranged as follows: Section 2
introduces our proposed model of the network
normal behavior, and the learning algorithm
for parameter identification from routine oper-
ation data. Section 3 introduces our proposed
approach for residual generation, and the for-
mulation of the network problem detection. In

Table 1 Object clusters for performance problem
detection.

Dependent Vari-
able (Y)

Independent Variable (X)

ifInNUcastPkts
ipInReceives ifInPkts for all interfaces
ipInDelivers ipInReceives + ifInPkts (loop-

back interface)
ipForwDatagrams ipInReceives - ipInDelivers
ifOutPkts for all
interfaces

ipForwDatagrams + ipOutRe-
quests

ifOutNUcastPkts

Section 4, we present results of our experiments
in a real network. We conclude in section 6.

2. Normal Operations Baselining

MIB objects are designed to reflect the activ-
ity of the network at each protocol layer entity.
The goal of this section is to characterize net-
work normal behavior using these objects, and
to identify network model parameters from rou-
tine operation data.

2.1 Network Model
Our proposed model is to define the network

normal behavior model in terms of the rela-
tionships between selected MIB objects. That
is, instead of studying individual objects, the
normal behavior of the network is defined as
the parametric characterization of clusters of
dependent variables in the interface and net-
work layers. The node’s view of the of the
network behavior is, then, the aggregation of
these models. Table 1 shows object dependen-
cies at the network and interface level, as can
be extracted from the functional requirement of
TCP/IP protocol stack, or case diagrams 19).

This approach has three main benefits. First,
examining the relationship between dependent
variables provides a robust method for detect-
ing network anomalies: it allows the model to
interpret individual variable values in conjunc-
tion with dependent variable values. For ex-
ample, the number of interface errors alone is
not a clear-cut indication of network problems
unless studied in relation to the total amount
of inbound traffic 9). Second, the statistical
characteristics of individual variables is non-
stationary, and better characterization of nor-
mal behavior can be obtained by examining
explicitly variables dependency. Segmentation
of individual variables, as proposed in Refs. 5),
20), overlooks the effect of variables on each
other. Clearly, the segmentation of the vari-
able ipInReceives, for instance, could be better
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done if all incoming packets ifInPkts are taken
into account. Third, the specific nature of the
MIB-II 12) shows that structural change in the
dependency between these variables is a symp-
tom of an abnormal behavior. For example, if
the relation between ifInPkts and ipInReceives
changes, it is because of errors caused by lack
of buffer space, line noise or unknown proto-
cols packets and so on. In this sense, selected
objects form a sufficient subset that needs to
be continuously monitored. In addition, it is
guaranteed that these variables statistics are
available across most operating systems kernels.
Currently, there is little support for detailed in-
terface error statistics.

Most of operating systems share the same de-
pendency as in Table 1, except for some systems
that put loop-back packets directly in the IP in-
put queue, rather than requiring network inter-
face cards to read their own transmissions. We
can account for this case by adding the loop-
back packets to the ipInReceives as shown in
Table 1.

2.2 Objects Dependency Parametric
Model

To be able to identify the network operation
parameters from operation data, we have to de-
fine a parametric model for network operations.
Our approach to network model parameteriza-
tion is to view each cluster (X, Y ) as switching
between different regimes, where each regime is
a simple linear regression model. This is a form
of what referred to in the literature as switching
regression 13),15). The observations (xi, yi) are
generated by one of the K linear regression, as
shown in the following equations:

yi = b′kxi + εki k = 1, . . . , K (1)

p(yi|xi) =
K∑

i=1

πk√
2πσk

exp
−(yi − b′kxi)2

2σ2
k

(2)

For the case of single variables in Table 1, such
as IfInNUcastPkts, we have:

yi = mk + εki k = 1, . . . , K (3)

p(yi) =
K∑

i=1

πk√
2πσk

exp
−(yi − mk)2

2σ2
k

(4)

The errors εk are assumed to be Gaussian, with
mean 0 and variance σk. The column vector bk

is made of the slope and the intercept for the
regime k. Abusing the notation slightly, the in-
teger K denotes the number of regimes, for both
the mixture of regression and Normal distribu-

tions. Each regime k has a mixing probability,
denoted by πk.

Finite mixture models for network opera-
tion baselining captures both clusters that may
be described parsimoniously by linear relation-
ships, and more generally non-linear dynamics
of any given cluster. In fact, finite Gaussian
mixture models are general enough to approxi-
mate any continuous function with a finite num-
ber of discontinuities, under appropriate regu-
larity conditions 22). For any cluster of variables
(X, Y ) that are linearly related, or even locally
linear with slowly time-varying parameters, an
adaptive algorithm with suitably chosen forget-
ting factor can track the model parameters. In
general, however, breaks in the linear relation-
ship are normal, and the idea then is to explic-
itly accommodate these breaks in the network
model. The resulting model is, then, a mixture
of regimes, where each regime describe a given
mode of network operations.

The network normal behavior is then charac-
terized by the parameters of the finite mixture
model. In the next subsection, we show how
these parameters are identified.

2.3 Learning Model Parameters
Identifying the network normal operations

from routine operation data amounts to es-
timate the parameter θ of the switching re-
gression. The vector θ consists of the vec-
tors b1, . . . , bK , the variances σ1, . . . , σK and
the mixing probabilities π1, . . . , πK . Given a
training set of N independent and identically
distributed data points (xi, yi), the Maximum
Likelihood (ML) estimator is the vector θ̂ that
maximizes the likelihood function L(θ), given
by:

θ̂ = arg max
θ

L(θ) (5)

L(θ) =
N∑

i=1

K∑
k=1

πkfik (6)

fik =
1√

2πσk

exp
(−(yi − b′kxi)2

2σ2
k

)
(7)

For the case of mixture of Normal distributions,
fik is given by:

fik =
1√

2πσk

exp
(−(yi − mk)2

2σ2
k

)
(8)

If we note (x, y, z) the complete sample infor-
mation, and given the values of the separation
variable z, that assigns each observation to its
corresponding regime, maximum likelihood es-
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timation is straightforward. In the absence of
this complete information explicit maximiza-
tion of the likelihood function is not tractable.
However, viewing the separation variable z as
missing, the estimation can be formally identi-
fied with the Expectation Maximization (EM)
algorithm 4). The EM algorithm 2),16) estimate
the unknown parameter θ by iteratively max-
imizing the expected log likelihood Q(θ|θ′).
Given an initial parameter θ0, the following two
steps are iterated until convergence:

E-Step: Given a current approximation θm,
determine the expected log likelihood Q(θ|θm):

Q(θ|θm) =
N∑

i=1

K∑
k=1

wki log(fik) (9)

wki =
πkfik∑K

k=1 πkfik

(10)

M-Step: The new refined estimate θm+1 is
the solution of the maximization:

θm+1 = arg max
θ∈Θ

Q(θ|θm) (11)

The EM algorithm has a number of appealing
properties. It is numerically stable, in the sense
that the incomplete data likelihood is increased
at each iteration 2). Also, since the M-Step re-
lies on the complete data, the maximization in
this step is analytically solvable. In fact, in our
case the M-Step is simply the weighted least
squares, where the weights are wki, obtained
by calculating the posterior probability of each
observation with respect to each of the regimes,
as shown in Eq. (10). Similar reasoning can be
done for the case of finite Normal distributions
mixtures.

3. Online Network Problems Detec-
tion

The previous section showed how the dynam-
ics of the networks are identified. In this sec-
tion we turn to discuss how the residuals are
generated, and our formulation of the problem
of anomaly detection.

3.1 Residual Generation
The residual generation method we propose

is based on the algorithm for parameter esti-
mation. After convergence of the learning algo-
rithm (Sec. 2.3), we keep updating the slopes
bk and the means mk of each regime, assuming
that only one iteration of the EM algorithm is
used for each new observation (xn, yn). It can
be shown, that:

bn
k = bn−1

k +
wknxn(yn − bn−1

k xn)∑n
i=1 wkix2

i

(12)

b0
k = b̂k (13)

For the case of mixture of Normal distributions,
the mean mk of each regime k is updated as
follows:

mn
k = mn

k +
wkn(yn − mn−1

k )∑n
i=1 wki

(14)

m0
k = m̂k (15)

Where bn
k and mn

k are the estimate of the slope
parameter bk and mean mk at iteration n, re-
spectively. Xn is a n× 1 vector made of the re-
gressor xi, and X ′

n is its transpose vector. Wkn

is the n×n diagonal matrix, made of the weights
wki. The initial parameters b0 and µ0 are the
estimates obtained using the batch EM (Sec.
2.3). It is worth nothing to note that Eq. (12)
is very similar to the recursive parameter es-
timation proposed in21), where parameters are
updated online for each new observation. In the
sequel, we are interested only in the changes
of the parameters bk, and mk of the network
model.

Under normal conditions, the difference be-
tween the successive values bn and bn−1 is ex-
pected to fluctuate around zero. This difference
should not drift constantly in a fixed direction.
On the other hand, if this difference drifts sys-
tematically over long duration, then the new
observations are generated by a different model,
and the recursion in Eq. (12) will alter the pa-
rameter b to its new value. The idea, then, is
to generate the residuals based on the K-variate
random variable (bn−bn−1). The mean value of
this difference is a good indicator of the health
of the network.

There is two major advantages of the residu-
als generated this way. First, successive identi-
fication of the parameters allows the model to
adaptively track local changes in its parame-
ters. It is unrealistic to assume that the model
parameters will remain exactly the same over
all the operating times of the network. Sec-
ond, the difference (bn − bn−1) does not depend
on the “true” value of the parameter b. This
is very important since, in practice, we do not
know this “true” value, and the only available
information is the value b̂, estimated from the
data. Approximating b with b̂, and studying the
difference (bn − b̂) is possible, but our experi-
ments showed that this approach is inefficient.
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(a) (b)

Fig. 1 Behavior of the drifts of two typical clusters of objects, (a) drifts (bn
k −

bn−1
k

) and (bn
k − b̂k) under the same network conditions, for the cluster

(IfInPkts, ipInReceives), (b) drifts (mn
k −mn−1

k
) and (mn

k −m̂k) under
the same network conditions, for the variable ifOutNUcastPkts.

(a) (b)

Fig. 2 Residuals plots under the same network conditions as in Fig. 1: (a)
Univariate residuals ekn for regime k of the switching regression, as
given by Eq. (16), (b) ekn for finite Normal mixtures, as given by
Eq. (18).

Figure 1 compares both differences for a dura-
tion of one hour under the same network condi-
tions. Results are shown only for one of the two
regimes of the cluster, denoted by k. It is clear
that the difference (bn

k − b̂k) is not symmetric
around zero, while the difference (bn

k − bn−1
k ) is

both symmetric and very close to zero under
normal conditions. We showed empirically 3)

that the K-variate residuals en given by:

en = (bn − bn−1)T Λ−1(bn − bn−1) (16)

Λ = diag
(√

wknxnσ̂k

XT
n WknXn

)
(17)

For the case of mixture of Normal distributions,
the residuals en are given by:

en = (mn − mn−1)T Λ−1(mn − mn−1)
(18)

Λ = diag
( √

wknσ̂k∑n
i=1 wki

)
(19)

are approximately Normal, with mean zero un-
der network normal conditions. Note that
en given in Eq. (16) (respectively Eq. (18)) is
simply the difference (bn − bn−1) (respectively
(mn − mn−1) ), scaled such that its variance-
covariance matrix becomes Identity. Figure 2
shows the behavior of the residuals ekn under
the same network conditions as in Fig. 1. It can
be seen that these residuals are stable, and their
mean is very close to 0.

In summary, network operations are charac-
terized by the distribution of the residuals en.
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(a) (b)

Fig. 3 Residuals generated by one of the two regimes of (ifInPkts, IpIn-
Receives), under abnormal conditions: (a) structural break variables
relationship, (b) slight change in the mean of the residuals just before
the break.

We showed that, under normal operations, the
residuals en are approximately Normal with
mean zero and variance Identity matrix. The
next section shows the behavior of the resid-
uals under abnormal conditions, and how we
formulate and solve the detection problem.

3.2 Anomaly Detection
Anomaly detection is determining the dis-

crepancy between the normal behavior and the
predicted behavior. Figure 3 shows the be-
havior of the residuals generated by the model
under a real abnormal condition that affected
Saitama university network, due to badly for-
matted packets. As shown in Fig. 3-a, this ab-
normal condition causes a sudden jump in the
mean of the residuals. Fig. 3-b shows the behav-
ior of the residuals just before the sudden jump
in the mean. Interestingly, we notice that the
sudden jump is preceded by a slight change in
the mean of residuals. If the detection approach
is designed to be sensitive to slight changes in
the operating characteristics of the network, we
could have predicted the problem of Fig. 3 at
least 19 minutes before it became serious. The
problem could have been avoided, or at least
addressed immediately after its occurrence. In
general, however, we do not expect all prob-
lems to present signs to allow their prediction.
In this case, we require our detection method
to raise alarm as soon as change in the mean
occurs.

Consider the residuals En
c obtained by ob-

serving sequentially the residuals ei from time
point c to n. Under the normal operations
of the network, the sample of en follows a K-

variate Normal distribution with mean 0 and
Identity covariance matrix (Sec. 3.1). At some
unknown time point c, a change happens in the
model, and the new generated residuals shift
to a new distribution. The goal is to find a
decision function and a stopping rule that de-
tects this change and raise an alarm as soon
as possible, under a controlled false alarm rate.
This formulation is known in sequential anal-
ysis literature as the disruption problem. The
main difference with classical hypothesis testing
is that the sample size is a function of the obser-
vations made so far (i.e., not fixed a priori), and
the distribution of the residuals is known, when
the process being monitored, is in control. The
goal is to achieve fast detection of change, by
using no more than the necessary sample size
to decide whether an alarm is to be raised or
not.

It is well-known that for known probability
distribution after change, Page-Lorden cumu-
lative sum (CUSUM) 10),14) test is optimal, in
the sense that it minimizes the delay to detec-
tion, among all tests with a given false alarm
rate. However, in the present case of network
anomaly detection, we do not have a priori
knowledge about the distribution probability
after change Pθ1 , and the change point c. The
common extension of Page-Lorden CUSUM
test consists of estimating the post-change dis-
tribution mean, and the change point from the
data. This approach is known as the General-
ized Likelihood Ratio (GLR) test 1),23). That is,
the unknown parameter θ1 of the distribution of
Pθ1(ei) after change, and the change point c are
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estimated from data, using the maximum likeli-
hood estimator. The resulting decision function
is given by:

Rn = sup
1≤c≤n

sup
θ1

ln
P (En

c |θ1, c)
P (En

c |θ0)
(20)

Tn = inf{n : Rn > λ} (21)
In our case, where pre-change and post-

change distributions are Normal, the maximiza-
tion problem of Eq. (20) can be worked out ex-
plicitly. It has a simple form, given by:

S0 = (0, . . . , 0)T Sn =
n∑

i=1

ei (22)

Tn = inf{n : max
0≤c<n

‖ Sn − Sc ‖√
n − c

> λ}
(23)

The equation assumes that after change, the
distribution of the residuals is still Normal, but
with different mean. For the abnormal case, it
is hard to obtain an unbiased fit of the post-
change distribution Pθ1(ei). Fortunately such
accurate estimation is not crucial. What is
needed is that, when an anomaly occurs, the
closest Normal distribution, obtained by maxi-
mum likelihood estimation, has a mean signifi-
cantly different from zero.

3.3 Tuning the Threshold λ
So far we have introduced the decision func-

tion and the stopping rule used for online detec-
tion of network faults and performance degra-
dation. The remainder of our problem set-up
concerns the choice of the design threshold λ.

It can be shown that the expectation of the
stopping rule, under no change denoted by
E∞(T ), is given by17):

E∞(T ) ∼ Γ(K/2)2K/2exp(λ2/2)

λK
∫ λ

0
xv2(x)dx

asλ → ∞

(24)

v(x) = 2x2exp

(
−2

∞∑
1

n−1Φ
(−xn1/2

2

))
,

x > 0 (25)
where Φ denotes the normal distribution func-
tion. For calculation, see17),18) for an approxi-
mation of v(x). Not surprisingly, Eq. (24) turns
out to be the mean time between false alarms.
It follows that, given a desired false alarm rate,
we can recover the design threshold λ, by solv-
ing Eq. (24).

4. Evaluation and Results

The network monitoring algorithms de-
scribed earlier has been implemented in a real
networks. This section discusses how the data
is collected, and the results that validate the
agent capabilities.

4.1 Experimental Setting
The network traffic is monitored using the

standard MIB-II information base. To ensure
reliable data sets, the agent is implemented to
fetch the network statistics directly from the
OS kernel. The agent is written in C++, and
currently runs on both Solaris 2.6 and AIX 4.1.
To validate the agent results, we implemented
a program to access the underlying data-link
layer for fault injection. The program is written
using the Data Link Provider Interface (DLPI),
on Solaris 2.6 operating system. The goal is
not to simulate all possible faults, but rather to
prove that alarms generated by the agent are,
effectively, due to abnormal network conditions.

4.2 Implementation Aspects
To allow our model to track time varying

parameters, we introduce an exponential for-
getting factor 0 < ζ ≤ 1, that reduces the
effect of old observations, much in the same
way as proposed in24). Evaluating the sum∑n

i=1 wkix
2
i (Eq. (12), Sec. 3.1) is then replaced

by
∑n

i=1 ζiwkix
2
i . Similar modification is done

for finite Normal mixture parameter updating
(Eq. (14)).

Unfortunately, Eq. (23) can not be written re-
cursively. Consequently, the number of resid-
uals to be inspected can grow large. To cir-
cumvent this difficulty, we use a moving hori-
zon of fixed length, where the starting point of
the horizon moves one step forward as new ob-
servation are made available to inspection. For
the mean false alarm rate (Sec. 3.3), it is fixed
to 8640, which corresponds to 24-hours period,
given that samples are collected every 10 sec-
onds. Finally, for the number of components K,
it was found empirically that at most 4 regimes
are enough to describe the data satisfactorily.
Work is underway to infer the number of com-
ponents automatically from data.

4.3 Detection Capability
The agent detection capability is first illus-

trated using the network problem, introduced
earlier in Section 3.2. The problem occurred in
Saitama university, on November 24th, 2000.
It showed up as a streaming network interface
card card sending excessively badly formatted
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(a) (b)

Fig. 4 Behavior of the test static for the problem that occurred in Saitama
university network.

(a) (b)

(c) (d)

Fig. 5 Behavior of the test statistic corresponding to excessive ARP packets,
excessive inbound broadcasts, excessive outbound broadcasts, and IP
packet loss problems: (a) IP packet discards, (b) Outbound broadcast
packets, (c) Inbound broadcast packets, (d) Inbound ARP packets.

packets. Figure 4 shows the behavior of the
residuals and test statistic as detected by the
cluster (ifInPkts, ipInReceives). As shown in
the figure, it takes approximately 30 samples

(5 minutes) to detect the slight change in the
residuals. In this particular case, the threshold
is crossed 19 minutes before the sudden disrup-
tion. It could have been possible to address the
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problem, proactively, before it became serious,
or at least draw the attention of network oper-
ators earlier, before the impact of the problem
is felt by all network users.

Detection capability of the agent is tested
with other problems. The obtained results are
shown in Fig. 5. For IP packet loss and exces-
sive outbound broadcasts, appropriately assem-
bled packets are sent every two seconds. For the
remaining problems, assembled packets are in-
jected every one second. It can be seen that the
agent could detect all of these problems, with
reasonably short delay.

We note that, apart from reasons given in
Section 2.1 for defining network model as the
parametric characterization of dependent ob-
jects, there is no MIB counter for ARP oper-
ations. Also, for the problem of packet loss
induced by assembling Ethernet packets with
non-existent protocol type, some kernels do not
have any entry for this type of errors, even if
this object is part of the standard MIB-II in-
formation base. For IP operations, one can
easily check that IpInDelivers and IpInReceives
can be sometimes very large, without noticing
any change in IP related errors. This is true
even when we take into consideration the fact
that loopback packets are to be added to Ip-
InReceives. With current under-instrumented
networks, our approach to network modeling
and performance problems detection can pro-
vide useful insights about incipient problems.

In conclusion, we showed that our proposed
approach is very efficient. In all the results re-
ported here, we actually stress tested the agent
detection capability. The total amount of all in-
jected packets is smoothed over the whole test
duration. In practice, network problems are ex-
pected to induce large magnitude changes in the
model residuals. The detection is expected to
even work better.

4.4 Alarm Rate
Ideally, we would like to estimate the false

alarm rate, given that the network is operating
normally. Unfortunately, it is difficult to gain
perfect knowledge about all the subtle changes
in the network behavior. Instead, Table 2
shows the average alarm rate per hour, for data
collected during a period of 24-hours.

We note that ifOutNUcastPkts is very stable,
recording a zero alarm rate per 24-hours. The
same comment is also true for ifInNUcastPkts.
This raises questions about whether the switch-
ing regression model adds any accuracy to the

Table 2 Average number of alarms per hour for each
of the clusters of network model.

Clusters Average alarm
rate per hour

ifInNUcastPkts 0.04
ipInReceives, 0.50
ifInPkts
ipInReceives, 0.08
ipInDelivers
ipForwDatagrams, 0.04 ☆

ipInReceive - ipInDelivers
ifOutPkts, ipForwDatagrams 0.16
+ ipOutRequests
ifOutNUcastPkts 0.00

Fig. 6 CPU time percentage consumed by the
monitoring process.

model. It is probably enough to model all the
variable by a finite mixture model. We plan to
investigate this question in detail in the future.

5. CPU Time

The final aspect we investigate in our pro-
posed approach is the amount of CPU time
consumed by the monitoring agent. In this ex-
periment, another process is set to sample the
agent’s CPU time usage, every 10 seconds. The
agent runs on SunOS Release 5.8, with SPARC
CPU (333 MHz). Figure 6 shows the CPU
time consumed by the agent, for monitoring si-
multaneously 10 variables, 20 variables, and 30
variables.

It can be clearly seen that the monitoring
consumes a very small amount of the CPU time.
The obtained results shows that for monitoring
10 variables simultaneously, the process con-
sumes an average of 0.34 CPU time. The av-
erage is calculated by sampling the CPU usage
every 10 seconds, for an overall duration of 24

☆ Results are from an internal router of Saitama Uni-
versity network.



Vol. 44 No. 2 Network Operation Baselining and Adaptive Detection of Faults 395

hours. Scaling this figure to 20 variables, an av-
erage of 0.76 CPU usage has been recorded. Fi-
nally with 30 variables 1.27 have been achieved.
It is safe, then, to claim that our approach can
scale well with large number of variables.

Overall results shows a highly efficient net-
work monitoring scheme. The methods for both
monitoring are generic to be readily tailored to
specific scenarios. It is, however, important to
note that convergence of learning algorithm for
parameter identification needs very large data
sets. It is recommended that a sample of at
least two week to one month of data points is
to be used for normal operations baselining.

6. Conclusion

In this paper, we developed an online tech-
nique for fast detection of performance prob-
lems in IP-Networks. We proposed a model of
the network operations in terms of MIB objects
dependencies, and we showed that the para-
metric characterization of this dependency is
amenable to a finite mixture model. Model pa-
rameters are identified from routine operation
data, using the expectation maximization algo-
rithm. A new method for residual generation,
based on successive parameter identification, is
introduced. The residuals are shown to be ap-
proximately Normal, with mean zero under nor-
mal operations, and sudden jumps in this mean
are characteristics of abnormal conditions. A
real-time online change detection algorithm is
designed to process the residuals sequentially,
and raise an alarm as soon as the anomaly oc-
curs. The proposed approach requires neither
the set of faults and performance degradation
nor the thresholds to be supplied by the user.
Experimental results showed the effectiveness
of the method on real data. A low false alarm
rate and a high detection capability has been
demonstrated.

References

1) Basseville, M. and Nikiforov, I.V.: Detection
of Abrupt Changes: Theory and Application,
Prentice-Hall (1993).

2) Dempster, A., Laird, N. and Rubin, D.: Maxi-
mum Likelihood from Incomplete Data via the
EM Algorithm, J.R. Statist. Soc. B, Vol.39,
pp.1–38 (1977).

3) Hajji, H. and Far, B.H.: Continuous Network
Monitoring for Fast Detection of Performance
Problems, Proc. 2001 International Symposium
on Performance Evaluation of Computer and

Telecommunication Systems (2001).
4) Hartley, M.J.: Comment on “Estimating mix-

tures of Normal Distributions and Switch-
ing Regressions”, J. Am. Stat. Assoc., Vol.73,
pp.738–741 (1978).

5) Hood, C. and Ji, C.: Proactive Network Fault
Detection, IEEE Trans. Reliability, Vol.46,
No.3, pp.333–341 (1997).

6) Jakobson, G. and Weissman, M.D.: Alarm
Correlation, IEEE Network, pp.52–59 (1993).

7) Katzela, I. and Schwarz, M.: Schemes For
Fault Identification is Communication Net-
works, IEEE/ACM Trans. Networking, Vol.3,
pp.753–764 (1995).

8) LaBarre, L.: Management by Exception: OSI
event generation, reporting, and logging, Proc.
Second International Symposium on Integrated
Network Management (1991).

9) Leinwand, A. and Conroy, K.F.: Network
management, a practical perspective, 2nd Edi-
tion, Addison-Wesley (1996).

10) Lorden, G.: Procedures for reacting to a
change in distribution, Annals of Mathemati-
cal Statistics, Vol.42, pp.1897–1908 (1971).

11) Maxion, R.A. and Feather, F.E.: A Case
Study of Ethernet Anomalies in a Distributed
Computing Environments, IEEE Transactions
on Reliability, Vol.39, No.4, pp.433–443 (1990).

12) McCloghrie, K. and Rose, M.: Management
Information Base for Network Management of
TCP/IP-based internets: MIB-II, RFC 1213
(1991).

13) McLachlan, G.J. and Basford, K.E.: Mixture
Models: Inference and Application to Cluster-
ing, New York, Dekker (1988).

14) Page, E.S.: Continuous Inspection Schemes,
Biometrika, Vol.41, pp.100–115 (1954).

15) Quandt, R.E.: A New Approach to Estimat-
ing Switching Regressions, J. Am. Stat. Assoc.,
Vol.67, No.338, pp.306–310 (1972).

16) Redner, R.A. and Walker, H.F.: Mixture Den-
sities, Maximum Likelihood and the EM Algo-
rithm, SIAM Review, Vol.26, No.2, pp.195–239
(1984).

17) Seigmund, D. and Venkatraman, E.S.: Using
the Generalized Likelihood Ratio Statistic for
Sequential Detection of a Change Points, The
Annals of Statistics, Vol.23, No.1, pp.255–271
(1995).

18) Siegmund, D.: Sequential Analysis: Tests
and Confidence Intervals, Springer, New York
(1985).

19) Stalling, W.: The SNMPv1, SNMPv2 and
RMON, Addison-Wesley, Reading, MA, USA
(1999).

20) Thottan, M. and Ji, C.: Statistical Detection
of Enterprise Network problems, Journal of



396 IPSJ Journal Feb. 2003

Network and Systems Management (1999).
21) Titterington, D.M.: Recursive Parameter Es-

timation using Incomplete, Journal of Royal
Statistics Society, Serie B, Vol.46, No.2,
pp.257–267 (1984).

22) Vlassis, N.A.: A Kurtosis-Based Dynamic Ap-
proach to Gaussian Mixture Modeling, IEEE
Transactions On Systems, Man, And Cybernet-
ics, Part A, Vol.29, No.4, pp.393–399 (1999).

23) Willsky, A.S. and Jones, H.L.: A General-
ized Likelihood Ratio Approach to the Detec-
tion and Estimation of Jumps in Linear Sys-
tems, IEEE Transactions on Automatic Con-
trol, Short Paper, pp.108–112 (1976).

24) Weinstein, E., Feder, M. and Oppenheim,
A.V.: Sequential algorithms for parameter esti-
mation based on Kullback-Leibler information
measure, IEEE Trans. Acous., Speech, Signal
Processing, Vol.38, No.9, pp.1652–1654 (1990).

25) Yemini, S., Kliger, S., Mozes, E., Yemini, Y.
and Ohsie, D.: High speed and robust event
correlation, IEEE Communication Magazine,
pp.82–90 (1996).

(Received August 7, 2001)
(Accepted November 5, 2002)

Hassan Hajji received his
BS.c degree from Mohamed Pre-
mier University, Morocco in
1995, MSc. and Ph.D degrees
from Saitama University, Japan
in 1999 and 2002, respectively.
He is currently with IBM re-

search, Tokyo Research Laboratory, Japan. His
current research interests include network and
system management, traffic modeling and anal-
ysis, and autonomic computing. Dr. Hassan
Hajji is a member of IEEE computer society
and IPSJ.

Behrouz Homayoun Far
received BSc. and MSc. degrees
in Electrical Engineering in 1993
and 1986, respectively, from
Tehran University, Iran. He has
received his Ph.D degree from
Chiba University, Japan in 1990.

He is currently an Associate Professor at the
Department of Electrical and Computer Engi-
neering, University of Calgary, Canada, where
he is the coordinator of the Intelligent Systems
Group at the University of Calgary. The re-
search fields of his interests are automatic pro-
gramming, software quality management and
distributed AI. Dr. Far is a member of the
ACM, IEEE computer society, JSAI, and IPSJ.


