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Abstract: The APGAS programming model abstracts deep memory hierarchy such as distributed memory and GPU
device memory by a global view of data and asynchronous operations on massively parallel computing environments.
However, how much GPUs accelerate applications using the APGAS model remains unclear. In order to understand the
effectiveness of using GPUs in the APGAS model, we give a comparative performance analysis of the APGAS model
in X10 on GPUs with a standard massage passing model using lattice QCD. Our experimental results on TSUBAME?2.5
show that our X10 CUDA implementation on 32 GPUs exhibits 19.4x speedup over X10 C++ on multi-core CPUs,
and comparative performance with MPI CUDA in weak scaling. The results indicate that the APGAS programming
model on GPUs scales well and accelerates the lattice QCD application significantly.

1. Introduction

It is expected that the first exascale supercomputer will be de-
ployed within the next 10 years, but the programming model that
allows us easy development and high performance is still un-
known. Recent supercomputers deploy manycore accelerators
such as GPUs in order to accelerate a wide range of applications.
The Asynchronous Partitioned Global Address Space (APGAS)
programming model abstracts deep memory hierarchy such as
distributed memory and GPU device memory through the com-
bination of a global view of data and asynchronous operations.
The APGAS model offers a flexible way for a wide range of ap-
plications to express many patterns of concurrency, communica-
tion, and control for computing on massively parallel computing
environments. The APGAS model is a possible programming
model for computing on exascale supercomputers since the AP-
GAS model can utilize multiple nodes as well as multiple GPUs
with high productivity.

Although the APGAS model can utilize multiple GPUs, how
much GPUs accelerate applications using APGAS model remains
unclear. While the APGAS model allows us highly productive
programming for massively parallel computing, the abstraction
of deep memory hierarchy may limit performance since the mem-
ory abstraction limits domains of performance tuning. Moreover,
when using multiple GPUs, the scalability of multiple GPUs in
the APGAS model is also an open problem.

In order to address the problems, we give a comparative analy-
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sis of the APGAS model in X10 with a standard message passing
model, by using lattice Quantum Chromodynamics (QCD) as an
example, which is one of the most challenging applications for
supercomputers. We further analyze the performance of lattice
QCD in X10 on multiple GPUs. We firstly implement a CPU-
based lattice QCD in X10 by fully porting a sequential CPU im-
plementation in C into X10. Then we extend the X10 implemen-
tation into a multi-GPU-based implementation by implementing
CUDA kernels and partitioning four-dimensional grid into mul-
tiple places in order to handle memories on multiple nodes and
GPU device memory, where the place indicates a part of memory
that corresponds to a host memory or a device memory on a com-
pute node. We further apply several optimizations including data
layout optimization for coalesced memory access on GPUs and
communication overlapping using asynchronous memory copy
functions in X10.

Our experimental results on TSUBAME?2.5 show that our X10
implementation on multiple GPUs outperforms a X10 implemen-
tation on multi-core CPUs in both strong and weak scalabilities
using multiple nodes. The strong scalability evaluation shows our
X10 implementation on 16 GPUs exhibits 8.28x speedup, and the
weak scalability evaluation shows our X10 implementation on 32
GPUs exhibits 19.4x speedup over X10 on multi-core CPUs. We
also show that X10 CUDA exhibits comparative scalability with
MPI CUDA in weak scaling. The results indicate that the AP-
GAS programming model on GPUs scales well and accelerates
the lattice QCD application significantly.

Here we describe a summary of our contributions:

e We describe an implementation of lattice QCD in X10
CUDA.

e We give a detailed performance analysis of X10 on GPUs.

e We reveal that X10 CUDA achieves significant speedup
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from CPU-based implementations, and exhibits comparative
performance with MPI CUDA in weak scaling.

2. Background

We explain APGAS programming model with X10 program-
ming language. Then introduction of GPU computing is de-
scribed. After that we introduce lattice QCD application, which
is used as a benchmark application for large-scale computing en-
vironments.

2.1 APGAS Programming Model and X10

Partitioned Global Address Space (PGAS) model [1] is a
programming model which virtualizes distributed memory as a
global address space where a object can be placed over multi-
ple locations on the distributed memory. There are several PGAS
programming languages such as Co-Array Fortran [2] and Uni-
fied Parallel C [3].

APGAS (Asynchronous PGAS) programming model [4] is a
PGAS model which enables dynamic task creation under pro-
grammer control. APGAS programming model mainly consists
of two parts: places and activities. A place is simply coherent
portion of the address space; a collection of data together with
the activities that operate on that data. Places have a important
property that they are not required to be single-threaded. That is,
multiple activities may be active simultaneously in a single place.
An async is the denotational mechanism to express activities that
perform computation in a place. An activity is launched at a given
place and stays at that place for its lifetime.

X10 [5], [6], [7] is a language which implements APGAS pro-
gramming model. In X10, PGAS memories are called places,
where each place is allocated on a process. Programmer con-
trols places by moving to other place by using at statement. A
new activity, which is allocated on the same place, is created dy-
namically by using async statement. There are language specific
limitations on how activities reference remote data. In X10, an
activity cannot access locations at remote places. If it desires to
operate on remote locations it has access to, it must launch a new
activity at that place. Activities may be used not just to run com-
putations at a remote place but also to specify data-transfers such
as array copies from an array at a place p to an array at a place q.
asyncCopy conducts a place-to-place asynchronous data trans-
fer. Activities in a place can be spawned locally or remotely. To
control their execution, finish statement is introduced; a syn-
chronization construct that allows a parent computation to wait
for the completion of all its children activities. finish captures
the very powerful notion of distributed termination detection [8].

2.2 GPU Computing in APGAS Programming Model

X10 also supports using accelerators such as GPU and FPGA.
Cunningham et al. implements CUDA supports for X10 [9].
Fig.1 shows an overview of APGAS programming model with
accelerators. As the same way as the APGAS model without ac-
celerators, the APGAS model provides a global view of memory
among multiple memories by using places and activities and the
main activity can create another activity by async statement and
can move to another place by at statement with the destination
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Fig.1 APGAS programming model with accelerators.

place. When using accelerators, an accelerator is regarded as a
child place, where a child place is bound to a place on CPUs. By
moving to a child place by at statement, an activity can move
to an accelerator. Then we can gain the massive parallelism of
many core accelerators by creating as many numbers of activities
as the number of threads the application requires. After that, we
can execute operations on the accelerator by giving operations on
the activities created on the accelerator. We can also copy objects
on a place on a host memory to a place on a device memory by
simply using asyncCopy statement in the same way as a host-
to-host copy. During a copy between a place on a host memory
and a place on a device memory, we can overlap computations on
accelerators.

When using GPUs in X10, we can write X10 codes on GPUs
similar to native CUDA codes. X10 CUDA supports most of the
operations in CUDA such as allocating memory on GPUs, copy-
ing memory between CPU and GPU, invoking threads, blocks,
and shared memory, barrier synchronization.

2.3 Lattice QCD Application

Lattice QCD [10] is a common technique to simulate a field
theory of quantum chromodynamics (QCD) theory of quarks and
gluons on 4D lattice consisting of 3D space and 1D time. The
quark fields are placed on the sites of 4D lattice and the gauge
fields are placed as the links of the lattice sites to represent the
effect of the gluons as the transporters of the quark fields. The
simulation of lattice QCD uses a finite difference method to solve
the interactions.

Lattice QCD computation mainly consists of Monte-Carlo sim-
ulations on 4D lattice. The computation is dominated by solving
a system of linear equations of matrix-vector multiplication us-
ing iterative methods, such as conjugate gradient (CG) method.
The most computation and communication intensive procedure
in lattice QCD is solving the following equation for Dirac matrix:

MU)x=b (D

where M is the discretized Dirac operator which is a sparse matrix
whose elements are a function of a background field U, and b and
x are the source and solution vectors respectively. Wilson-Dirac
operator is used to calculate the physical exchange between 4D
lattice sites through the effects of the gluon fields , by multiplying
spinor and gauge matrix on 8 neighbors of x, y, z, t dimensions
with positive or negative signs. This problem accounts for the
majority of operations in lattice QCD.
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Fig. 2 Two data layouts: (Top) Array of Structure (AoS), and (Bottom)
Structure of Array (SoA). The two different colors in elements indi-
cate colors of spinors.

2.4 Implementation of Lattice QCD in X10 C++

In our earlier work, we implement a CPU-based lattice QCD
in X10 by fully porting a sequential CPU-based implementa-
tion [11] in C++ [12] into X10 [13]. We applied multi-threading
by using async statement to invoke multiple threads. Based on
the single node implementation, we extended it to multiple nodes
by using multiple places.

We also applied several optimizations including multi-
dimensional communication overlapping among multiple places.
As for the communication overlapping, the X10 C++ imple-
mentation overlaps between boundary exchanges and bulk
computations. The communications are overlapped by using
the asyncCopy method of the Rail class. The asyncCopy
method create a new activity and transfers data asynchronously
on the activity. While the boundary data is being transferred
from the activity, the main activity continues bulk computation.
After calling the bulk computation, the main activity waits the
completion of the boundary exchange by using £inish statement
and barrier synchronization. We also applied other optimizations
such as hybrid parallelization of invoking multiple threads and
multiple places per node. Our previous experimental results
showed that our X10 C++ implementation scales well at least up
to 256 places.

3. Implementation of Lattice QCD in X10
CUDA

We describe how we extend the CPU-based X10 implementa-
tion which is introduced in section 2.4 into a multi-GPU-based
X10 implementation.

3.1 Basic Idea

We extend a CPU-based lattice QCD in X10 into X10 CUDA.
We port lattice QCD in X10 C++ into the one in X10 CUDA, by
porting whole solvers into CUDA kernels in X10 and partition-
ing four-dimensional grid into multiple places in order to handle
memories on multiple nodes and GPU device memory. As for
porting X10 C++ into X10 CUDA, we port whole computation
into CUDA kernels in X10, in order to avoid waste memory copy
overheads between CPU and GPU except boundary data trans-
fers. We basically port each compute kernel into CUDA kernel,
including operations in the Wilson-Dirac operator and the other
BLAS level 1 operations such as dot product and reduce opera-
tions. We also implement boundary data transfer between mul-
tiple GPUs. We extend our lattice QCD in X10 C++ for GPUs.
We add memory copy operations from GPU to CPU before mem-
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Fig. 3 Implementation of Wilson-Dirac operation of lattice QCD in X10
CUDA.

ory copy operations between CPU to CPU, and after that we also
add memory copy operations from CPU to GPU. We apply over-
lapping technique between bulk computations on GPUs, memory
copy operations between GPU and CPU as well as copy opera-
tions between CPU and CPU.

We apply several optimizations into lattice QCD in X10
CUDA, including data layout optimization for coalesced mem-
ory access on GPUs and communication overlapping using asyn-
chronous memory copy functions in X10. The detail of the over-
lapping technique as well as other optimizations are explained in
section 3.2 and section 3.3.

3.2 Data Layout Optimization

The first optimization for X10 CUDA is data layout opti-
mization. Fig.2 shows two data layouts of spinors (elements of
quarks). The top bar indicates AoS (Array of Structure) and SoA
(Structure of Array) layouts. In our CPU-based lattice QCD, the
data layout is based on AoS, which is suitable for running on
multi-core CPU. However, the AoS data layout is not suitable in
the GPU case, since GPU is suitable for coalesced memory access
while the AoS data layout is non-contiguous data. In order to en-
able coalesced memory access, we translate from AoS to SoA,
which is consisting of contiguous data.

3.3 Communication Overlapping in X10 CUDA

The second optimization is communication optimization. We
apply two communication optimizations; multi-dimensional par-
titioning and communication overlapping. We apply the multi-
dimensional partitioning in the similar way as our CPU-based
lattice QCD in X10. In the GPU case, the difference from the
CPU case is that we overlap memory copy operations between
GPU and CPU in addition to memory copy operations between
CPU and CPU. The overview of our overlapping technique is de-
scribed in Fig.3. X-axis indicates time and y-axis indicates the
four dimensions of the lattice. Green bars indicate GPU kernels,
light blue bars indicate memory copy between CPU and GPU,
and dark blue bars indicate data transfer between places on CPUs.
The red vertical line indicates the synchronization point by using
the finish statement on a place where a place waits completion
of all activities (i.e. eight activities in each dimension with posi-
tive and negative signs in this case) invoked by the place.

Fig. 4 shows the pseudo code of an implementation of Wilson-
Dirac operator in X10 CUDA. The implementation applies Put-
wise data transfer in the same way as the X10 C++ implementa-
tion [13]. We extend the X10 C++ implementation to X10 CUDA
by adding copy operations between CPU and GPU and imple-
menting CUDA kernels in X10. Fig.5 shows the copy method
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def Dopr_Put(dv CUDAW:ilsonVectorField ,
du : CUDASU3MatrixField ,
dw : CUDAWilsonVectorField ,
cks : Double,
bx : CUDALatticecComm) {
// make sure all places finished prev. operation
Team .WORLD. barrier ();
finish {
// compute in T plus direction
val iTP = bx.neighbors ()(bx.TP);
// move to remote place to recv. boundary data
at (Place(iTP)) async {
MakeTPBndKernel (bx.dSendBuf(bx.TP), dw);
// copy from remote device to local host
// via remote host
bx.SendBndDevicetoRemoteHost (bx.TP);
}
// compute in T minus direction
val iTM = bx.neighbors ()(bx.TM);
at (Place(iTM)) async {
MakeTMBndKernel (bx .dSendBuf(bx.TM), dw, du);
bx.SendBndDevicetoRemoteHost (bx.TM);
}
... // compute in the other directions
dv.Copy(dv, dw);
// bulk computation
MultKernel (dv, du, dw, —cks);
} // wait copy to local host and local comp.
// copy from local host to local device
bx.RecvBndHostToDevice ();
// set boundary part
SetTPBndKernel (bx.dRecvBuf(bx.TP), dv, du, —cks);
SetTMBndKernel (bx.dRecvBuf(bx.TP), dv, —cks);

def SendBndDevicetoRemoteHost(dir : Long) {

val size = hSendBuf(dir). size;

// copy from device to host

finish {

Rail . asyncCopy(dSendBuf(dir), O,
hSendBuf(dir), 0, Size(dir));

}

// copy from host to remote host

Rail .asyncCopy (hSendBuf(dir), O,

hRemoteRecvBuf(dir), 0, Size(dir));

}

def RecvBndHostToDevice () {
// copy from host to device
finish {
Rail . asyncCopy (hRecvBuf(TP), O,
dRecvBuf (TP), 0, Size(TP));
Rail . asyncCopy (hRecvBuf(TM), O,
dRecvBuf(TM), 0, Size(TM));
// copy in the other directions

Fig.4 Pseudo source code of Wilson-Dirac operator using GPUs

which copies data from a device to remote host through a host
which has the device. The method first copies data from a device
to a host using the asyncCopy method. Then the data on the host
is copied to remote host using asyncCopy again.

A drawback of this implementation is that the domain of com-
munication overlapping is limited by finish-based synchroniza-
tion. We can further overlap in the case of MPI, since MPI has a
feature to call one-to-one synchronization by using MPI_Isend,
MPI_Irecv, and MPI_Wait. We also tried one-to-one synchro-
nization in X10 by avoiding finish synchronization by us-
ing callback function, which is called when the copy using the
uncountedCopy method is complete. However, we observe poor
performance and deadlock when using multiple places in this
implementation. As for further communication optimization in
CUDA, we can further overlap communication and computation
by using multiple CUDA streams. However, we could not ap-
ply this optimization, since the current version of X10 statically
allocate a single CUDA stream for each computation and com-
munication and does not provide a feature to dynamically invoke
multiple CUDA streams.

4. Evaluation

In order to understand the effectiveness of using GPUs in X10,
we evaluate the performance of lattice QCD on GPUs in X10.
The objective of the evaluation is to understand how much GPUs
can accelerate applications in the APGAS programming model.
We compare the performance of lattice QCD in X10 CUDA with
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Fig.5 Pseudo source code of data transfer between CPU and GPU

in CPU-based implementations in X10 and MPI C as well as with
a GPU-based MPI implementation. Also, we conduct scalabil-
ity study on multiple GPUs to see the efficiency of using multi-
ple GPUs in the APGAS programming model. We conduct both
weak and strong scalability studies, as well as detailed analysis
including performance breakdown and comparison of productiv-
ity with MPI CUDA.

We use the TSUBAME2.5 supercomputer [14] located at
Tokyo Insitute of Technology for the performance experiments.
TSUBAME?2.5 mainly consists of 1408 compute nodes, each
of which has 2 sockets of Intel Xeon X5670 (Westmere EP,
2.93GHz, 6 cores) CPU, 54GB of DDR3 main memory, 3 de-
vices of NVIDIA Tesla K20X GPU with 6GB of discrete GDDR5
memory connected to PCI-Express 2.0 X 16 buses, and 2 cards
of QDR InfiniBand HBA (40Gbps each) connected to the dual
rail interconnect network with full bisection fat tree, and runs
on SUSE Linux Enterprise 11 SP3. We use up to 32 compute
nodes of TSUBAME?2.5 in the experiments. We use X10 version
2.4.3.2, CUDA version 6.0, GCC version 4.3.4 and OpenMPI ver-
sion 1.6.5.

As for experimental configurations, We use one place per node,
one GPU per place in X10 CUDA, and 12 threads per place in
X10 C++ and in MPI C. Note that here we use one GPU per node,
since we observe using multiple child places on a node causes
deadlock in the current version of X10. We measure average it-
eration time of one convergence of the CG solver. We observe
one convergence typically includes 300 to 400 iterations. As for
lattice QCD in X10 CUDA, we measured two precisions; sin-
gle precision (X10 CUDA SP) and double precision (X10 CUDA
DP). Note that we use one dimensional partitioning in the strong
scalability study while we use four dimensional partitioning in the
weak scalability study, since we observe one dimensional parti-
tioning exhibits better strong scalability than multi-dimensional
partitioning while we observe good weak scalability using four
dimensional partitioning.
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4.1 Weak Scaling

We conduct weak scalability study in X10 CUDA. Firstly we
compare weak scaling in X10 CUDA with CPU-based implemen-
tations using MPI or X10 on up to 32 nodes of TSUBAME?2.5.
We use the problem size (X, y, z, t) = (24, 24, 24, 96) per place
by increasing problem size in proportional to the total number
of places to use. Fig. 6 shows the results of performance, where
x-axis indicates the number of places and y-axis indicates aver-
age performance of one GC iteration in Gigaflops. Fig.7 shows
the results of elapsed time, where x-axis indicates the number
of places and y-axis indicates average elapsed time of one CG
iteration in milliseconds. The results show that lattice QCD in
X10 CUDA outperforms both X10 C++ and MPI C. X10 CUDA
performs 19.4x and 11.0x faster than X10 C++ and MPI C re-
spectively on 32 GPUs. The results also show that X10 CUDA
exhibits good scalability at least up to 32 GPUs. This behavior
indicates that X10 CUDA does not incur significant communica-
tional penalty when the amount of computation is sufficient for
hiding communication.

We also conduct comparative weak scaling experiments of
our X10 CUDA implementation with a MPI CUDA implemen-
tation on up to 32 nodes of TSUBAME-KFC. Each compute of
TSUBAME-KFC consists of 2 sockets of Intel Xeon E5-2620 v2
(Ivy Bridge EP, 2.10GHz, 6 cores) CPU, 64GB of DDR3 main
memory, 4 devices of NVIDIA Tesla K20X GPU with 6GB of
discrete GDDRS5 memory connected to PCI-Express 2.0 x 16
buses, and 1 card of FDR InfiniBand HBA (56Gbps) connected
to a single rail interconnect network, and runs on CentOS release
6.4. We use Open MPI 1.7.2 with GNU GCC 4.4.7 for the MPI
implementation, and CUDA driver 5.5 and CUDA runtime 5.5 for
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the GPU implementation. We use X10 2.5.1 for experiments on
TSUBAME-KFC. We use the problem size (X, y, z, t) = (24, 24,
24, 24) per place by increasing problem size in proportional to
the total number of places to use. Fig. 8 shows the results of per-
formance, where x-axis indicates the number of places and y-axis
indicates average performance of one GC iteration in Gigaflops.
Fig. 9 shows the results of elapsed time, where x-axis indicates
the number of places and y-axis indicates average elapsed time
of one CG iteration in milliseconds. The results show that lat-
tice QCD in X10 CUDA exhibits similar weak scaling with MPI
CUDA in Fig. 8. The results also show that elapsed time in X10
CUDA increases as the number of nodes increases in Fig. 9. The
result of X10 CUDA on 32 nodes takes 1.63x longer time com-
pared with that on 1 node. This elapsed time increase indicates
X10 CUDA suffers significant overhead using multiple nodes.

4.2 Strong Scaling

We also conduct strong scalability study in X10 CUDA. We
compare the performance in X10 CUDA with X10 C++ and MPI
C using the problem size (X, y, z, t) = (24, 24, 24, 96), whose data
size is the largest size to fit on one Tesla K20X GPU.

Fig. 10 shows the results of performance, where x-axis indi-
cates the number of places and y-axis indicates average perfor-
mance of one CG iteration in Gigaflops. The results show that lat-
tice QCD in X10 CUDA outperforms both X10 C++ and MPI C.
X10 CUDA is 4.57x and 8.28x faster than MPI C and X10 C++
respectively on 16 GPUs. A reason for this speedup is that com-
putational kernels of the Wilson-Dirac operation and the BLAS
level 1 operations are highly accelerated by using GPUs. As for
multi-GPU scalability, X10 CUDA scales well on small number
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of GPUs. However, the results also show that the scalability of
X10 CUDA gets smaller as the number of places increases. A
possible reason for this degradation is that communicational time
increases and computational time decreases since problem size
on a GPU decreases as the number of places increases.

We also compare strong scalability with MPI CUDA on
TSUBAME-KFC. Fig. 11 shows the comparative results. X10
CUDA exhibits comparative performance up to 4 nodes, while
exhibits performance degradation from 8 nodes. The results indi-
cate that the X10 CUDA implementation suffers heavy overheads
derived from X10 CUDA. We consider two possibilities of over-
heads: communication overhead and overhead of X10 CUDA on
one GPU. As for the communication overhead, ratio of commu-
nication cost increases while computational cost decreases when
using larger number of GPUs, since problem size for each GPU
decreases while the number of neighbor GPUs to transfer bound-
ary data increases. Besides, the X10 CUDA implementation in-
cludes less overlapping of boundary data exchange and inner ker-
nel computation of Wilson-Dirac operation compared with the
MPI-based implementation. As for the overhead of X10 CUDA
on one GPU, overhead of X10 CUDA may increase due to short
computation time on smaller problem size when increasing the
number of nodes. We further investigate the two possible over-
heads in the following of this section and section 4.3.

We investigate Fig. 12 shows performance breakdown in X10
CUDA using the same problem size in single precision, where
x-axis indicates the number of places and y-axis indicates av-
erage elapsed time of each part. We divide total elapsed time
of lattice QCD into four parts; computational time of Wilson-
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Dirac operation, computational time of BLAS level 1 operations,
communicational time of boundary exchange between GPU and
GPU (including communications from GPU to CPU, from CPU
to CPU, and from CPU to GPU), and communicational time of
the MPI Allreduce operation. The figure also indicates the ratio of
communication overhead over total time of lattice QCD compu-
tation. The results show that both computational parts of Wilson-
Dirac and BLAS scales well. However, the results also show that
communicational overhead increases significantly when increas-
ing the number of places, in both boundary exchange and MPI
Allreduce.

Fig. 13 shows further breakdown of the Wilson-Dirac opera-
tion, where x-axis indicates the number of places and y-axis in-
dicates average elapsed time of each part in Wilson-Dirac. The
blue bars indicate longer elapsed time between bulk computation
and the sum of boundary creation and boundary data transfer. Ac-
tually elapsed time is the longer time between them since these
bulk and boundary operations are synchronized by finish state-
ment as illustrated in Fig. 3. The light blue and yellow lines in-
dicates elapsed time of the bulk and boundary operations each
other. The figure shows that these two lines cross over when
the number of places is increased from 8 to 16. This result in-
dicates that communication becomes dominant when using more
than 16 places. This crossover results in a cause of the limit of
strong scaling. Possible ways to improve the scalability include
applying one-to-one synchronization in X10 or improve commu-
nication and synchronization operations in the X10 runtime. As
for MPI Allreduce, we simply use a collective API in X10 called
Team, so decreasing the overhead of Team collective API itself is
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Fig. 14 Performance of data size scaling on a single node of TSUBAME-
KFC.

required to improve strong scalability.

4.3 Performance on Different Problem Sizes

In order to investigate overheads of the strong scaling per-
formance of X10 CUDA, we conduct performance experiments
on different problem sizes on a single node of TSUBAME-KFC.
Fig. 14 shows comparative performance on four different prob-
lem sizes: (x,, z, t) = (4, 4, 4, 8), (8, 8, 8, 16), (12, 12, 12, 48),
and (24, 24, 24, 96). The results show that X10 CUDA exhibits
similar performance with MPI CUDA on larger problem sizes.
However, X10 CUDA exhibits significant performance degrada-
tion when we use smaller problem sizes; X10 CUDA exhibits
6.02x slower performance than MPI CUDA on problem size (4,
4, 4, 8). These results indicate that the X10 CUDA implemen-
tation suffers additional overhead derives from the X10 CUDA
runtime. We consider this additional overhead is a possible cause
of the limit of strong scaling in X10 CUDA.

4.4 Multi-GPU Scaling

We also conduct experiments of multi-GPU scalability on a
single node of TSUBAME-KFC. We use problem size (x, y, z,
t) = (24, 24, 24, 96) and use up to 4 GPUs on a single node
of TSUBAME-KFC. When we use multiple GPUs, we invoke
multiple processes such that the number of processes is equal to
the number of GPUs to use, and assign one GPU per process.
Fig. 15 shows the results of strong scaling performance on multi-
ple GPUs on a single node. The results indicate the X10 CUDA
implementation performs comparatively with the MPI CUDA im-
plementation on up to 2 GPUs. Although the X10 CUDA imple-
mentation also improves performance using 4 GPUs, MPI CUDA
performs 1.39x faster than X10 CUDA. We consider this perfor-
mance gap derives from the fact that X10 CUDA suffers addi-
tional overhead on smaller problem size as we see in section 4.3.

4.5 Comparison of Productivity

We also conduct comparative analysis of productivity in terms
of the number of lines of code and compilation time of source
code between MPI CUDA and X10 CUDA. Firstly, Table 1
shows the number of lines of code of the MPI CUDA and X10
CUDA implementations. The results show that the X10 CUDA
implementation contains 4.10x and 1.92x larger number of lines
in the Wilson-Dirac operation and in total respectively compared
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Fig. 15 Performance of multi-GPU scaling using the problem size (X, y, z,
t) = (24, 24, 24, 96) on a single node of TSUBAME-KFC.

with MPI CUDA. This significant increase of lines of code in
X10 CUDA derives from the fact that currently X10 CUDA does
not support calling CUDA device functions inside CUDA global
functions. These limitations result in multiple copies of inlined
operations on each direction of operations such as Wilson-Dirac
operation.

Secondly, Table 2 shows the compilation time of the MPI
CUDA and X10 CUDA implementations. The results show that
the X10 CUDA implementation takes 11.3x longer compilation
time than the MPI CUDA implementation.

4.6 Discussion

We see advantages and disadvantages of X10 CUDA from the
performance experiments. In terms of the advantages, we could
extend our X10 code into X10 CUDA in a straightforward man-
ner; simply porting computation kernels into CUDA and adding
memory copy operations between CPU and GPU. We see that
our X10 CUDA implementation exhibits speedup over X10 C++
and MPI C implementations. We also see good scalability of
X10 CUDA on multiple GPUs. On the other hand, we also see
drawbacks of X10 CUDA, in both the productivity and perfor-
mance perspectives. In terms of productivity, we observe some
limitations including that we could not call CUDA methods in-
side a CUDA place, which caused the increase of the lines of
code. In terms of performance, the current version of X10 CUDA
has some limitations preventing performance tuning. Currently
X10 CUDA does not support creating CUDA streams, which en-
ables GPUs overlap multiple CUDA kernels and multiple mem-
ory copies between CPU and GPU. We also see that the strong
scalability in X10 CUDA is limited when increasing the number
of GPUs. The implementation of communication overlapping
based on finish statement has overhead of waiting all dimen-
sions at the same time, while MPI can wait each dimension sep-
arately. We consider the reason why this scalability limitation is
revealed is that the computational kernels are highly accelerated
by using GPUs.

5. Related Work

There has been a lot of efforts on high performance large-scale
lattice QCD implementations. Doi et al. work on a peta-scale
lattice QCD implementation [15] on Blue Gene/Q supercom-
puter [16]. The implementation fully optimizes overlapping com-
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Table 1 Comparison of the number of lines of code of Wilson-Dirac opera-
tion and the total.

MPI CUDA X10 CUDA
Wilson-Dirac | 1590 6512
Total 4667 8942

munication by computation. The implementation also applies
node-mapping optimizations for fully utilizing network topology
on Blue Gene/Q. In our earlier work, we compare the scalability
of our lattice QCD implementation in X10 with in MPI [13]. Our
implementation in MPI also applies overlapping technique in the
same way as this work.

There are several efforts on accelerating lattice QCD using
many core accelerators such as GPUs and Xeon Phi. Clark et al.
implemented lattice QCD in CUDA called QUDA and applied
optimizations [17]. Babich et al. extended lattice QCD in CUDA
onto multiple GPUs [18]. Their implementation invokes multi-
ple CUDA streams so that multiple kernels and memory copies
between CPU and GPU can be overlapped. We also apply simi-
lar optimizations as their work including data ordering and over-
lapping of computation and communication. However, our X10
implementation has less overlapping domains since we see that
currently X10 could not invoke multiple CUDA streams. Jo6 el
al. optimized lattice QCD for Intel Xeon Phi [19].

There is also work about PGAS language extension for multi-
node GPU clusters [20]. They extended the XcalableMP PGAS
language [21] for GPU and demonstrated their N-body imple-
mentation scales well. However, they did not compare their per-
formance with neither their CPU-based PGAS implementation
nor a MPI-based implementation. We compare the performance
of X10 CUDA with MPI C and X10 C++ and revealed that X10
CUDA accelerates the CPU-based implementations significantly.

6. Conclusions

We give a comparative analysis of X10 on GPUs with X10
on CPUs and a standard message passing model, by using lat-
tice Quantum Chromodynamics (QCD) as an example, which
is one of the most challenging applications for supercomputers.
We implement lattice QCD in X10 CUDA and apply several
optimizations including data layout optimization for coalesced
memory access on GPUs and communication overlapping using
asynchronous memory copy functions in X10. Our experimen-
tal results on TSUBAME2.5 show that our X10 implementation
on multiple GPUs outperforms a MPI implementation on multi-
core CPUs using multiple nodes. The weak scalability evaluation
also shows our X10 implementation on 32 GPUs exhibits 19.4x
speedup over X10 on multi-core CPUs. The results also show that
X10 CUDA exhibits comparative performance with MPI CUDA
in weak scaling. The results indicate that the APGAS program-
ming model on GPUs scales well and accelerates the lattice QCD
application significantly.

Future work includes improving the performance of lattice
QCD in X10 CUDA; tuning single GPU performance in X10
CUDA and improving strong scalability of multiple GPUs. We
also plan to conduct experiments on large number of GPUs.
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Table 2 Compilation of compilation time of MPI CUDA and X10 CUDA
implementations in seconds.

MPICUDA  X10 CUDA
Compilation Time [sec] 15.19 171.50
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