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The Convex Configurations of Dissection Puzzles with
Seven Pieces

Kazuho Katsumata1 Ryuhei Uehara1

Abstract: The most famous dissection puzzle is the tangram, which originated in China more than two centuries ago.
From around the same time, there is a similar Japanese puzzle called Sei Shonagon Chie no Ita. Both are derived
by cutting a square of material with straight incisions into seven different-sized pieces, and each piece consists of a
few identical right isosceles triangle units. The right isosceles triangle unit is of 1/16 of the square, and the set of 16
units can form 20 different convex polygons. It is known that the tangram can form thirteen convex polygons among
20 convex polygons, and the Sei Shonagon Chie no Ita can form sixteen among them. Therefore, in a sense, the
Sei Shonagon Chie no Ita is more expressive than the tangram. Last year, Fox-Epstein and Uehara proposed a more
expressive pattern that can form nineteen convex polygons, and show that no set of seven pieces made from sixteen
identical right isosceles triangles can form 20. In this paper, we refine their analysis, obtain four expressive patterns
that satisfy the condition, and show that these four patterns are all.

Keywords: Dissection puzzles, Sei Shonagon Chie no Ita, Tangram.

1. Introduction

Fig. 1 Left: the tangram in square configuration. Right: Sei Shonagon Chie

no Ita pieces in square configuration.

A dissection puzzle is a game where, given a set of polygons,

one must decide whether they can be placed in the plane in such

a way that their union is a target polygon. Rotation and reflection

are allowed but scaling and overlapping are not. Formally, a set of

polygons S can form a polygon P if there is an isomorphism up to

rotation and reflection between a partition of P and the polygons

of S (i.e. a bijection f (·) from a partition of P to S such that x
and f (x) are congruent for all x).

The tangram is a set of polygons consisting of a square of ma-

terial cut by straight incisions into different-sized pieces. See

the left diagram in Fig. 1. Of anonymous origin, their first

known reference in literature is from 1813 in China [Slo04].

The tangram has grown to be extremely popular throughout the

world; now, over 2000 dissection and related puzzles exist for it

([Slo04][Gar87]).

Much less famous is a quite similar Japanese puzzle called Sei
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Fig. 2 A set of plates in the form of Sei Shonagon Chie no Ita pieces, crafted

by Tomomi Takeda in Kanazawa, Japan.

Fig. 3 A typical Sei Shonagon Chie no Ita layout as a square configuration

with a hole missing.

Shonagon Chie no Ita. Sei Shonagon was a courtier and famous

novelist in Japan, but there is no evidence that the puzzle existed a

millennium ago when she was living. Chie no ita means wisdom
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Fig. 5 Four patterns that can form nineteen convex polygons.

plates, which refers to this type of physical puzzle. It is said that

the puzzle is named after Sei Shonagon’s wisdom. Historically,

the Sei Shonagon Chie no Ita first appeared in literature in 1742

[Slo04]. Even in Japan, the tangram is more popular than Sei

Shonagon Chie no Ita, though Sei Shonagon Chie no Ita is com-

mon enough to have been made into ceramic dinner plates (see

e.g. Fig. 2, [Tak14]), and in puzzle communities, it is admired

for being able to form some more interesting shapes that the tan-

gram cannot, such as a square configuration with a hole missing

(Fig. 3).

Wang and Hsiung considered the number of possible convex

(filled) polygons formed by the tangram [WH42]. They first

noted that, given sixteen identical isosceles right triangles, one

can create the tangram pieces by gluing some edges together.

So, clearly, the set of convex polygons one can create from the

tangram is a subset of those that sixteen identical isosceles right

triangles can form. Embedded in the proof of their main theo-

rem, Wang and Hsiung [WH42] demonstrate that sixteen identi-

cal isosceles right triangles can form exactly 20 convex polygons.

These 20 are illustrated in Fig. 4. The tangram can realize thirteen

of those 20.

It is quite natural to ask how many of these twenty convex poly-

gons the Sei Shonagon Chie no Ita pieces can form. Fox-Epstein

and Uehara showed that Sei Shonagon Chie no Ita achieves six-

teen convex polygons out of twenty [FEU14]*1. Therefore, in a

sense, we can conclude Sei Shonagon Chie no Ita is more expres-

sive than the tangram: while both the tangram and Sei Shonagon

Chie no Ita contain seven pieces made from sixteen identical

isosceles right triangles, Sei Shonagon Chie no Ita can form more

convex polygons than the tangram. One might next wonder if

this can be improved with different shapes. Fox-Epstein and Ue-

hara also show a set of seven pieces that can form nineteen con-

vex polygons among twenty candidates, and that to realize all

twenty convex polygons, it is necessary and sufficient to have

*1 Later, we found out that this fact is a folklore in the puzzle society in

Japan.

eleven shapes [FEU14]. In this paper, we refine their analysis,

and state that there are four patterns that satisfy the condition

(Fig. 5); that is, each of four pattern can form nineteen convex

polygons among twenty candidates, and there are no other pat-

tern that has the property.

2. Preliminaries
We first notice that the pieces of the Sei Shonagon Chie no Ita

can be decomposed into sixteen identical right isosceles triangles,

just like the tangram.

We make use of two important results from Wang and Hsiung

[WH42]. First, there are only 20 candidate convex polygons that

we need to consider (Fig. 4). Second, in any convex polygon they

can form, the bases of the sixteen triangles can be pairwise colin-

ear, parallel, or perpendicular ([WH42], Lemma 1). This means

we only need to consider configurations that could be embedded

with triangle and target polygon vertices on integer coordinates.

Hereafter, one of the sixteen identical right isosceles triangles

is called a tile for short. As shown in [FEU14], there is a set of

seven polygons composed from sixteen tiles that can form nine-

teen distinct convex polygons. Furthermore, no set of seven poly-

gons composed of sixteen tiles can form 20 distinct convex poly-

gons. Hereafter, we enumerate four possible sets of seven poly-

gons composed from sixteen tiles that can form nineteen distinct

convex polygons. This is shown by a case analysis, hence it is

easy to follow that there is no other set.

3. Optimal seven piece puzzles

10

1 (a)(b)
(b)

(b)
(a)

(a)

Fig. 6 Two skinny shapes and piece of three tiles.

Our first lemma states that we can fix the nineteen convex poly-

gons out of twenty that can be filled by our puzzle.

Lemma 1 Any set of seven pieces composed from sixteen

tiles can fill nineteen of twenty convex polygons except the con-

vex shape 10 in Fig. 4.

Proof. We first observe that the average number of tiles in a piece

is 16/7 = 2.285 · · · . Therefore, any dissection pattern contains at

least one piece containing at least three tiles. Then, there are two

possible pieces that consists of three tiles (a) and (b) as shown

in Fig. 6. If we choose (a), we cannot fill the polygon 10. On

the other hand, if we choose (b), we cannot fill the polygon 1.

However, when we omit the polygon 1, we also have to omit the

polygons 2 and 3 in Fig. 4. Therefore, to fill nineteen of them, we

have to omit 10. �
In the proof of Lemma 1, we choose polygons 1, 2, and 3 and

omit the polygon 10. Then we can also say that any piece con-

taining at least three tiles should be extended from the tile (a) in

Fig. 6, and we cannot use the tile (b) and its extensions. To fill the
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Fig. 7 Extensions of piece of size three.
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Fig. 8 Pieces of four/five tiles that cannot fill the polygon 12.

shape 1, the possible tiles of size at least three are given in Fig. 7.

However, if the number of tiles is greater than 4, it cannot fill the

polygon 12 (Fig. 8(a)). Moreover, even if the number of tiles is

4, two of three possible pieces cannot fill the polygon 12, either

(Fig. 8(b)(c)). Therefore, the only possible piece of four tiles is

one in Fig. 8(d). From above discussion, now we can summary

the possible pieces below:

Lemma 2 Any set of seven pieces that can fill nineteen con-

vex polygons should contain the elements in Fig. 9.

We name each tile as t4, t3, t2-1, t2-2, t2-3, and t1 as in the figure.

We also call any of t2-1, t2-2, and t2-3 tile t2 if we do not need to

distinguish them.

t4 t3

t2-1 t2-2 t2-3

t1

Fig. 9 Possible pieces to make nineteen convex polygons by seven pieces.

Let v, w, x, y be the number of tiles t4, t3, t2, and

t1, respectively. Then they are integers, and we have

v + w + x + y = 7 and 4v + 3w + 2x + y = 16.

The conditions are satisfied only when (v, w, x, y) =

(3, 0, 0, 4), (2, 1, 1, 3), (2, 0, 3, 2), (1, 3, 0, 3), (1, 2, 2, 2), (1, 1, 4, 1),

(1, 0, 6, 0), (0, 4, 1, 2), (0, 3, 3, 1), (0, 2, 5, 0). For each of

(v, w, x, y) for x > 0, we have three kinds of t2 tiles. Con-

sidering the combinations, we obtain 98 candidates of the sets.

We analyze one by one by our hands:

(3,0,0,4),(1,3,0,3)
We have one set in each case, and it cannot fill the convex poly-

gon 14 (or square).

(2,1,1,3)
We have three sets. When we choose t2-3, we have the set (a)

in Fig. 5. Using the other two, we cannot fill the square.

(2,0,3,2)
We have ten combinations for t2 tiles. Among them, we can

find the set (b) in Fig. 5. Two sets cannot fill the convex polygon

17, and the other sets cannot fill the square.

(1,2,2,2)
We have six sets, and one is the set (c) in Fig. 5. The other sets

cannot fill the square.

(1,1,4,1)
We have 15 sets, and one of them is the set (d) in Fig. 5. The

other sets cannot fill either the convex polygons 17, 19, or the

square.

(1,0,6,0)
We have 28 sets, but none of them can fill the polygon 1.

(0,4,1,2),(0,3,3,1),(0,2,5,0)
We have 34 sets in total, but none of them can fill the polygon

19 or the square.

Therefore, we conclude that there are four possible sets that

can fill nineteen out of twenty convex polygons shown in Fig. 4.
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Fig. 4 All 20 potential convex polygons.
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