
IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

[DOI: 10.2197/ipsjtbio.8.2]

Original Paper

A Memory Efficient Short Read De Novo Assembly
Algorithm

Yuki Endo1,a) Fubito Toyama1 Chikafumi Chiba2 HiroshiMori1 Kenji Shoji1

Received: October 17, 2014, Accepted: October 29, 2014, Released: January 27, 2015

Abstract: Sequencing the whole genome of various species has many applications, not only in understanding bio-
logical systems, but also in medicine, pharmacy, and agriculture. In recent years, the emergence of high-throughput
next generation sequencing technologies has dramatically reduced the time and costs for whole genome sequencing.
These new technologies provide ultrahigh throughput with a lower per-unit data cost. However, the data are generated
from very short fragments of DNA. Thus, it is very important to develop algorithms for merging these fragments. One
method of merging these fragments without using a reference dataset is called de novo assembly. Many algorithms for
de novo assembly have been proposed in recent years. Velvet and SOAPdenovo2 are well-known assembly algorithms,
which have good performance in terms of memory and time consumption. However, memory consumption increases
dramatically when the size of input fragments is larger. Therefore, it is necessary to develop an alternative algorithm
with low memory usage. In this paper, we propose an algorithm for de novo assembly with lower memory. In our
experiments using E.coli K-12 strain MG 1655 and human chromosome 14, the memory consumption of our proposed
algorithm was less than that of other popular assemblers.

Keywords: bioinformatics, next generation sequencing, de novo assembly, de Bruijn graph

1. Introduction

Determining whole genome sequences of various species has
many applications not only in understanding biological systems,
but also in medicine, pharmacy, and agriculture. In recent years,
the emergence of high-throughput next-generation sequencing
(NGS) technologies has dramatically reduced the time and cost
for whole genome sequencing. These new technologies provide
ultrahigh throughput with a lower per-unit data cost. However,
these technologies generate sequence data from many very small
fragments (sometimes fewer than 100 base pairs) of DNA. These
fragments are typically called reads. The precision of NGS is
not perfect, and reads might include sequencing errors. Thus, de-
veloping algorithms for merging these reads is very important.
Merging reads without reference data is called de novo assembly.

The de novo assembly algorithms can be classified into two
approaches based on their features: overlap-layout-consensus
(OLC) and de Bruijn graph. OLC relies on an overlap graph.
Edena [1], MIRA [2], Celera [3], SSAKE [4], and VCAKE [5] as-
semblers are based on the OLC approach. In the OLC strategy,
overlaps are found by all-against-all pair-wise comparison. Over-
lap graphs are constructed from pair-wise overlaps. In the overlap
graphs, a vertex represents a read and an edge denotes an overlap
between two connected vertices (reads). Consensus sequences
are determined by tracing paths in the graph. On the other hand,

1 Graduate School of Engineering, Utsunomiya University, Utsunomiya,
Tochigi 321–8585, Japan

2 Faculty of Life and Environmental Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305–8572, Japan

a) 00.endo@gmail.com

Velvet [6], ABySS [7], ALLPATHS [8], and SOAPdenovo [9] as-
semblers are based on de Bruijn graph approach. In the de Bruijn
graph, a vertex represents a sequence of k bases (k-mer), where
k is any positive integer. An edge represents an overlap of k-1
bases. Thus, two connected vertices are denoted by a k-1 over-
lap between their vertices (k-mers). After the de Bruijn graph is
constructed from reads obtained by NGS, contigs are determined
by tracing paths in the graph. The de Bruijn graph approach is
most widely applied to the short reads from Solexa and SOLiD
platforms. In this approach, fixed-length (k-1) overlaps are found
and redundant k-mers (subsequences) are compressed, making it
suitable for assembling vast quantities of short reads. However,
memory consumption increases dramatically when the size of in-
put reads is extremely large (more than several gigabytes) and it
is hard to use them for large-scale assemblies.

To overcome this problem, several algorithms [10], [11], [12],
[13] have been proposed in recent years. These algorithms are
also based on de Bruijn graph approach. In these algorithms, the
data structures for representing the de Bruijn graphs are designed
with small size. To realize the compact de Bruijn graph, succinct
data structures [10], [11], Bloom filter [12] and FM-index [13]
are used. However, the overall costs, including the costs for
constructing the compact graph, are not discussed in detail be-
cause these papers focused on how to represent the compact de
Bruijn graph. In general, the processes of constructing de Bruijn
graph (such as k-mer counting) consume much memory and time.
Therefore, developing an algorithm in consideration of overall
costs is very important.

In this paper, we propose an algorithm for large scale de novo

c© 2015 Information Processing Society of Japan 2

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

assembly with low memory usage. Although our algorithm is
based on de Bruijn graph approach in the same way as Velvet,
edge information is not kept in the main memory. Thus, the
amount of memory usage can be greatly reduced by our method.
The maximum memory usage in overall assembly processes is
evaluated and compared in our experiments. Therefore, in the
proposed method, the overall costs for de novo assembly are taken
into account. In addition, the data structure for representing de
Bruijn graph is simple, and external storage for an assembly is
not required. All required data for an assembly are stored in the
main memory. In our experiments using the E.coli K-12 strain
MG 1655, the average maximum memory consumption of the
proposed method was approximately 13–19% of that of the pop-
ular assemblers. Moreover, in the experiments using human chro-
mosome 14, the average amount of memory of our method was
approximately 54–63% of that of the popular assemblers.

2. Assembly Algorithms with Low Memory
Consumption

In this paper, we propose an algorithm for large scale de novo

assembly with low memory usage. Figure 1 shows the outline of
our algorithm. First, all k-mers obtained by segmenting sequence
reads are recorded. At the same time, the number of occurrences
of each k-mer is also counted. Second, the de Bruijn graph is
constructed using k-mers. Then, the graph is partitioned into sub-
graphs such that the subgraph has a simple path or a simple cycle.
The simple path does not have repeating vertices or edges in the
graph. Then subgraphs are connected to make a larger simple
path. The data about the number of occurrences of a k-mer are
used to make an informed selection of path connections. Finally,
contigs are generated by tracing vertices in each of the connected
graphs.

2.1 Extraction of k-mers
From all reads, k-mers are extracted. They are kept in a

database in the memory as “k-mer integers.” As shown in Ta-
ble 1, a k-mer integer is a one-to-one numeric representation of
each k-mer. Specifically, bases “A,” “C,” “G,” and “T” correspond
to the integers 0, 1, 2, and 3, respectively. Thus, a k-mer sequence
is expressed as a quaternary numeral. For example, a 5-mer base
sequence “ACGTA” is converted to the quaternary number 01230.
This is converted to the decimal number 108. Thus, 108 is k-mer
integer corresponding to “ACGTA”. If a k-mer sequence was rep-
resented by a string, the required memory usage would be k bytes.
Using the k-mer integer representation, the amount of memory for
k-mer sequences can be reduced to one fourth of that of the re-
quired to represent the k-mer as a string. Using k-mer integers
not only improves memory usage, but also processing time. For-
ward and reverse complement k-mer sequences are recorded as
the same sequence in our method, which means that either of the
two complementary sequences can be registered in the database
kept in the main memory.

In this work, k-mer integers and the number of occurrences
of the k-mers corresponding to the k-mer integer are kept in the
main memory. In order to lower memory usage, other data (such
as edges in the de Bruijn graph) are not kept in the main memory.

Fig. 1 Outline of the proposed method.

Therefore, since information about which k-mers are extracted
from which reads is not stored, this information cannot be used
in process of path tracing or graph construction. Although these
features might affect the quality of the assembly, the amount of
memory usage can be greatly reduced. The k-mer sequences in
which the number of occurrences is small (less than a threshold)
are not used in the graph construction because it is likely that such
k-mer sequences contain sequencing errors. In our experiments,
the threshold was set to 5. Figure 2 shows the extraction of k-
mers and the contents of the database in the proposed method.

2.2 Graph Construction
The de Bruijn graph is constructed using k-mers. In the de

Bruijn graph, each vertex represents a k-mer. An edge represents
an overlap of k-1 bases. Thus, two connected vertices denote a
k-1 overlap between their vertices (k-mers). For example, there
is an edge between the two vertices corresponding to “ACGTA”
and “CGTAC.” The direction of the edge is from “ACGTA” to

c© 2015 Information Processing Society of Japan 3

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

Table 1 k-mer sequence corresponding to k-mer integer (in case of 5-mer).

k-mer Quaternary Binary
k-mer integer

(decimal)
AAAAA 0 0 0
AAAAC 1 1 1
AAAAG 2 10 2
AAAAT 3 11 3
AAACA 10 100 4
AAACC 11 101 5
AAACG 12 110 6
AAACT 13 111 7
AAAGA 21 1000 8
AAAGC 22 1001 9

Fig. 2 Extraction of k-mer and the contents of database in the proposed
method (in case of 3-mer).

“CGTAC.” The contigs are generated by tracing vertices in the de
Bruijn. However, de Bruijn graph constructed from short reads
has numerous branches and cycles. Therefore, it is difficult to
find the paths from which contigs are constructed. The method
for finding paths is described in Section 2.3. In the proposed
method, if there is a k-1 overlap between k-mers (vertices), an
edge is constructed between their vertices (k-mers). On the other
hand, in popular de novo assemblers, an edge is constructed by a
k-1 overlap between k-mers which are extracted from k+1-mer in
a read. Therefore, the de Bruijn graph constructed by our method
is a little different from others. However, the line graph con-
structed from k+1-mers by our method is the same as the graph
generated from k-mers by popular de novo assemblers.

In conventional algorithms using de Bruijn graphs, when the
graph is constructed, edge information about which vertices are
connected to each other is also kept in main memory. Since there
are many edges in the graph, keeping all the edge information
consumes a huge amount of memory. In our method, the edge
information is not kept in main memory. Thus, although the com-
putational time for assembly is increased, memory usage can be
reduced. The existence of the edge is calculated only when it
is required. Specifically, the vertices that are connected by a di-
rected edge from a vertex have only 4 types of k-mers because the
k-mers, which are represented by the connected vertices, overlap
by k-1 bases as shown in Fig. 3. Thus, the connected vertices (k-
mer sequences) can be obtained by checking for four values of k-
mer integers in the database. By using this method, although pro-
cessing time to check the values of k-mer integer is increased, the
memory for keeping edge connection data is not required. Only
the data representing the vertices are kept in the database. Thus,

Fig. 3 Example of 4 types of k-mers which are connected to the current
vertex (in case of 3-mer).

the amount of memory can be greatly reduced in our method.
Construction of the graph is finished by registering the k-mer in-
tegers from all k-mer sequences and the number of occurrences
of each in our database.

2.3 Edge Removal
As mentioned in Section 2.2, the constructed graph has numer-

ous branches and cycles. Consequently, it is important to select
the connections in the path from which a contig is constructed.
Figure 4 shows examples of branches. A vertex with multi-
ple edges connecting to other vertices is illustrated in Fig. 4 (a).
A vertex with multiple edges connecting from other vertices is
shown in Fig. 4 (b). Although the outdegree of the vertices with
branches is two in Fig. 4, the maximum number of the out de-
gree is four. Figure 4 (c) shows an example of a cycle. Actually,
these branches and cycles are intricately intertwined. A path from
the directed graph in which branches and cycles are included is
needed to generate a contig. It is necessary to determine a unique
simple path based on some criteria. The edge removal process we
have used is as follows.
(1) A start vertex (k-mer) that has the largest number of occur-

rences is selected.
(2) The start vertex is set to the current vertex.
(3) Check for vertices that are connected to the current vertex.

(a) If one connected vertex is found, the vertex is set to the
current vertex. Go to 3.

(b) If multiple connected vertices are found, one of them is
set to the current vertex. (The details for this selection
are described in later in this section.) Go to 3.

(c) If the connected vertex is not found, the current vertex
is regarded as the end vertex. Go to 4.

(4) Check for additional vertices that have not been selected yet.
(a) If there are additional vertices that have not been se-

lected, a new start vertex with the largest number of
occurrences is selected from the vertices that have not
been checked yet. Go to 2.

(b) If all vertices have been checked, the process is finished.
In this process, the vertices that are put together in a path are as-
signed the same label. A path from the start vertex to the end
vertex represents a subgraph. Multiple subgraphs are created in
this process.

c© 2015 Information Processing Society of Japan 4

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

Fig. 4 Examples of branches and cycle.

Fig. 5 Example of a cycle which is a part of a path.

The inclusion of branches and cycles in vertex selection is as
follow: when there are multiple out going edges from the cur-
rent vertex as shown Fig. 4 (a), the edge connected to the vertex
in which the number of occurrences is the largest is selected, and
the other outgoing edges are removed. When there are multiple
incoming edges as shown in Fig. 4 (b), the edge with the largest
number of occurrences is kept and other incoming edges are re-
moved. In this edge selection process, when the difference in the
number of k-mers between the selected vertex and other unse-
lected vertices is less than a given threshold, the current vertex is
regarded as an end vertex and a new start vertex is selected again.
The current vertex is also regarded as the end vertex when the la-
bel of the selected vertex is the same as that of the current vertex
as shown in Fig. 4 (c) (in the case of a cycle). In many cases, a
cycle is a part of a path as shown in Fig. 5, and the vertices, which
are in a cycle, are assigned the new path label. Thus, a cycle is
identified separately from the current scanning path.

There is also the case in which the selected vertex has been as-
signed to other label as shown in Fig. 6. In this case, all vertices
in the path that has the selected vertex are reassigned to the label
of the current vertex.

2.4 Subgraph Connection and Contig Construction
To construct a longer path, subgraphs obtained by the process

described in previous section are connected. The outline of the
subgraph connection process is as follows. First, a subgraph with
simple path is selected. The subgraph with the longest path is
selected from those subgraphs that have not previously been se-
lected. However, a subgraph with a simple cycle can be selected
more than once. This subgraph is set as the start subgraph. Next,
the subgraphs in which the start vertex or the end vertex are con-
nected to the start or end vertex of the selected subgraph are
searched. The details of selecting connections for the subgraphs
with a simple cycle are described later in this section. The process
of checking the k-mer integers from the subgraphs is the same as
described in the previous section. If a connecting subgraph is

Fig. 6 Example of the label reassignment.

Fig. 7 Example of subgraphs connection.

found, the start (end) vertex is connected to the end (start) vertex,
and the two subgraphs are merged into a single subgraph. This
graph expanding process is repeated until no more merges can be
made. If there are multiple subgraphs that can be connected, the
subgraph with longer simple path is selected. Figure 7 shows an
example of connecting subgraphs. The connection in this exam-
ple is on the left side. The same process is also performed on the
right side.

In addition, when connecting to the subgraphs with a simple
cycle as shown in Fig. 8, the vertex va is the start vertex of sub-
graph Gpath with a simple path. The vertex vb is contained in
subgraph Gcycle with a simple cycle. If the k-mers of the vertex
va and vb overlap each other, the vertex vc that connected to vb is
checked to see if vc is also contained Gcycle. The vertices vb and
vc are regarded as the start (or end) vertex. Then, the Gpath and
Gcycle are merged. If the vertex vc is connected to another ver-
tex that is included in other subgraph, these subgraphs are merged
again as shown in Fig. 8.

After the subgraphs are connected, a list of the vertices is ob-
tained by tracing all the paths that are included in the subgraphs.
A contig is generated by merging the various k-mers that are ref-

c© 2015 Information Processing Society of Japan 5

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

Fig. 8 Example of the connection of subgraph with a simple cycle.

Fig. 9 Generation of contigs.

erenced from the vertices to eliminate the overlapping bases as
shown in Fig. 9. The final contigs are obtained by repeating this
process for all subgraphs. Any contigs that are longer than a given
threshold are output. The threshold was set to length of the reads.

3. Experiments and Results

To evaluate the performance of the proposed method, we com-
pare the performance of our method with that of Velvet (ver.
1.2.08) and SOAPdenovo2 (ver. 2.04). Velvet is one of the most
popular de novo assembly algorithms based on the de Bruijn
graph. In many papers on de novo genome assembly, Velvet is
used as a comparison to assess the assembly performance. SOAP-
denovo is also a popular de novo assembler based on the de Bruijn
graph, which is designed to assemble large genomes. SOAP-
denovo has been successfully used to assemble many published
genomes. SOAPdenovo2 is the successor of SOAPdenovo. In
SOAPdenovo2, assembly performance in memory consumption,
accuracy, and coverage is improved. We assessed the maximum
memory consumption, the running time, the contig length, and
the accuracy of contigs from these programs in comparison to
ours. The experimental assemblies using these three programs
were all carried out on the same machine. (CPU: Intel Xeon E5-
2660 2.2 GHz 8-core, Memory: 189 GByte)

Fig. 10 Comparison of maximum memory consumption (E.coli).

Fig. 11 Comparison of running time (E.coli).

3.1 E.coli De Novo Assembly
In the first experiment, E.coli K-12 strain MG 1655, for which

the complete DNA sequence is known, was used. The sequence
length is approximately 4.6Mbp. The sequence data does not in-
clude gaps (“N”). The experimental assembly was conducted us-
ing reads (35 bp) that were generated from the genome by NGS.
The assemblers were run with the k-mer sizes of 19, 21, 23, 25,
27, 29, and 31. We used the input reads as single end and data in
FASTA format.

Figures 10 and 11 show the maximum memory usage and the
running time of each assembly algorithm for each tested k-mer
in E.coli. The average maximum memory consumption of the
proposed method was approximately 13% of SOAPdenovo2, and
approximately 19% of Velvet. Therefore, we met our goal of re-
ducing memory usage. As shown in Fig. 11, the average running
time of the proposed method was slightly slower than SOAP-
denovo2, and Velvet was faster than both of the other methods
were. In the proposed method, the connection between vertices is
checked each time a path is traced. Thus, the running time is in-
creased because of additional processing time when searching for
the connections between vertices. However, since the path trac-
ing algorithms for resolving branches and cycles are very simple,
there were not large differences in the total running time of each
method. The running time for all programs was shortened as k-
mer size increased in all assemblers. In our proposed method, the
amount of memory was reduced with increasing size of the k-mer.
A relationship between k-mer size and maximum memory usage
was not seen in Velvet and SOAPdenovo2.

Table 2 shows the results of the assemblies for E.coli. The
N50 length is defined as the length of the shortest contig where
the sum of contigs of an equal length or longer is at least 50% of

c© 2015 Information Processing Society of Japan 6

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

Table 2 Comparison of assemblies (E.coli).

Assembler Best k-mer size (bp) N50 (kbp) # of contigs Total (kbp) Genome covered (%) Error rate (%)
Proposed method 25 16.4 602 4,514 96.76863 0.00272
SOAPdenovo2 29 19.0 2008 4,542 98.33118 0.06988
Velvet 29 22.9 754 4,544 98.02691 0.00000

Table 3 Comparison of assemblies (human chromosome 14).

Assembler
Best k-mer size

(bp)
N50
(bp) # of contigs

Total
(kbp)

Genome covered
(%)

Genome covered
without gaps (%)

Error rate
(%)

Proposed method 51 1,119 217,033 101,255 79.39556 96.53553 0.71973
SOAPdenovo2 63 3,682 186,558 91,358 81.15031 98.66909 0.03682
Velvet 63 5,108 73,054 83,706 78.97097 96.01927 0.00026

Fig. 12 Comparison of maximum memory consumption (Human Chr14).

the total length of all contigs. The best k-mer size was the size
providing the largest N50. The results for the best k-mer size are
shown in Table 2. The N50 length of the proposed method was
slightly shorter than that of the others as shown in Table 2. The
main reason for these results is that the path-tracing algorithm
for resolving branches and cycles is very simple in the proposed
method. On the other hand, there were not large differences in the
genome coverage and the error rate. It is difficult to say which of
the methods is better.

3.2 Human Chromosome 14 De Novo Assembly
In the second experiment, the complete DNA sequence for

human chromosome 14 was used. The sequence length is ap-
proximately 107 Mbp, the ungapped sequence is approximately
88 Mbp. Assemblies were performed using the reads (101 bp)
form GAGE [14] datasets. The GAGE (Genome Assembly Gold-
standard Evaluations) is one of the performance comparison
datasets used for de novo assembly algorithms. GAGE has fo-
cused on the quality of the assembly, but not on memory require-
ments. We used the dataset as a single end and FASTA format,
converted from the reads in GAGE datasets, which are paired end
and FASTQ format. The assemblers were run with k-mer sizes of
51, 55, 59, 63, 67, 71, and 75.

Figures 12 and 13 show the maximum memory usage and the
running time of assembly of each k-mer for human chromosome
14. The average maximum memory consumption of the proposed
method for human chromosome 14 was approximately 54% of
SOAPdenovo2, and that was approximately 63% of Velvet. The
amount of memory used by the proposed method was reduced
for both experimental datasets, and the purpose of this method
was achieved. However, as shown in Fig. 13, the average running
time of the proposed method was slower than that of Velvet and

Fig. 13 Comparison of running time (Human Chr14).

slightly faster than that of SOAPdenovo2. The amount of mem-
ory usage was reduced for increased k-mer size in both SOAPden-
ovo2 and Velvet. In the proposed method, a relationship between
k-mer size and maximum memory usage was not consistent for
the human assembly.

Table 3 shows the results of the assemblies for human chro-
mosome 14. The N50 length of the proposed method was shorter
than that of the others as shown in Table 3. This is likely due
to the simplicity of the path-tracing algorithm as mentioned in
Section 3.1. Thus, the maximum length and N50 length could be
improved with a more complicated path-tracing algorithm. On
the other hand, there were not large differences in the genome
coverage and the error rate.

4. Conclusion

In this paper, we propose an algorithm for large-scale de novo

assembly with low memory usage. In our experiments using
the E.coli K-12 strain MG 1655, the average amount of mem-
ory used in the proposed method was approximately 13–19% of
SOAPdenovo2 and Velvet. Moreover, in the experiments using
human chromosome 14, the average amount of memory used by
the proposed method was approximately 54–63% of the memory
used by the other assemblers. These results showed that the pro-
posed method outperformed SOAPdenovo2 and Velvet for mem-
ory consumption. On the other hand, the N50 of contigs obtained
by the proposed method was worse than that of the other assem-
blers. Further investigation is needed to improve the N50 of con-
tigs in our method by modifying the path-tracing algorithm.

Acknowledgments This work was supported by a grant from
the Japan Society for the Promotion of Science (24240062).

c© 2015 Information Processing Society of Japan 7

IPSJ Transactions on Bioinformatics Vol.8 2–8 (Jan. 2015)

References

[1] Hernandez, D., Francois, P., Farinelli, L., Osteras, M. and Schrenzel,
J.: De novo bacterial genome sequencing: Millions of very short
reads assembled on a desktop computer, Genome Res., Vol.18, No.5,
pp.802–809 (2008).

[2] Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A.J., Muller, W.E.,
Wetter, T. and Suhai, S.: Using the miraEST assembler for reliable
and automated mRNA transcript assembly and SNP detection in se-
quenced ESTs, Genome Res., Vol.14, No.6, pp.1147–1159 (2004).

[3] Miller, J.R., Delcher, A.L., Koren, S., Venter, E., Walenz, B.P.,
Brownley, A., Johnson, J., Li, K., Mobarry, C. and Sutton, G.: Ag-
gressive assembly of pyrosequencing reads with mates, Bioinformat-
ics, Vol.24, No.24, pp.2818–2824 (2008).

[4] Warren, R.L., Sutton, G.G., Jones, S.J. and Holt, R.A.: Assem-
bling millions of short DNA sequences using SSAKE, Bioinformatics,
Vol.23, No.4, pp.500–501 (2007).

[5] Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T.,
Magrini, V., Mardis, E.R., Dangl, J.L. and Jones, C.D.: Extending
assembly of short DNA sequences to handle error, Bioinformatics,
Vol.23, No.21, pp.2942–2944 (2007).

[6] Zerbino, D.R. and Birney, E.: Velvet: algorithms for de novo short
read assembly using de Bruijn graphs, Genome Res., Vol.18, No.5,
pp.821–829 (2008).

[7] Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J. and
Birol, I.: ABySS: A parallel assembler for short read sequence data,
Genome Res., Vol.19, No.6, pp.1117–1123 (2009).

[8] Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte,
M.K., Lander, E.S., Nusbaum, C. and Jaffe, D.B.: ALLPATHS: De
novo assembly of whole-genome shotgun microreads, Genome Res.,
Vol.18, No.5, pp.810–820 (2008).

[9] Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S.,
Shan, G., Kristiansen, K., Li, S., Yang, H., Wang, J. and Wang, J.: De
novo assembly of human genomes with massively parallel short read
sequencing, Genome Res., Vol.20, No.2, pp.265–272 (2010).

[10] Conway, T.C. and Bromage, A.J.: Succinct data structures for as-
sembling large genomes, Bioinformatics, Vol.27, No.4, pp.479–486
(2011).

[11] Bowe, A., Onodera, T., Sadakane, K. and Shibuya, T.: Succinct de
Bruijn graphs, WABI, Lecture Notes in Computer Science, Vol.7534,
pp.225–235, Springer (2012).

[12] Chikhi, R. and Rizk, G.: Space-efficient and exact de Bruijn graph rep-
resentation based on a Bloom filter, WABI, Lecture Notes in Computer
Science, Vol.7534, pp.236–248, Springer (2012).

[13] Chikhi, R., Limasset, A., Jackman, S., Simpson, J. and Medvedev, P.:
On the Representation of de Bruijn Graphs, RECOMB, Lecture Notes
in Computer Science, Vol.8394, pp.35–55, Springer (2014).

[14] Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren,
S., Treangen, T.J., Schatz, M.C., Delcher, A.L., Roberts, M. et al.:
GAGE: A critical evaluation of genome assemblies and assembly al-
gorithms, Genome Res., Vol.22, No.3, pp.557–567 (2012).

Yuki Endo was born in 1987. He re-
ceived his B.S. and M.S. degrees from
Utsunomiya University in 2010 and 2012,
respectively. He is now a doctoral course
student of Utsunomiya University. His re-
search interest is bioinformatics.

Fubito Toyama is an associate profes-
sor at the Graduate School of Engineer-
ing, Utsunomiya University. He received
his Ph.D. degrees in engineering from
Utsunomiya University in 2000. His cur-
rent research interests are evolutionary
computation, combinatorial optimization
and bioinformatics. He is a member of

IPSJ, IEICE and ITE.

Chikafumi Chiba was born in 1965. He
received his M.Ed. from Nara University
of Education in 1992 and Ph.D. from Uni-
versity of Tsukuba in 1995. He became
an associate professor at University of
Tsukuba in 2006. His current research in-
terest is the mechanism of body-parts re-
generation in the adult newt and humans.

He is a representative of the Japan Newt Research Community
and a member of the Japan Society of Regenerative Medicine.

Hiroshi Mori was born in 1979. He
received his Ph.D. from University of
Tsukuba in 2007. He became a researcher
at University of Tsukuba in 2007 and an
assistant professor at Utsunomiya Univer-
sity in 2011. His current research interest
is computer graphics. He is a member of
the ACM.

Kenji Shoji received the M.S. and Ph.D.
degrees from Keio University in 1978 and
1981, respectively. He has been a profes-
sor at the Graduate School of Engineering,
Utsunomiya University, since 2009. His
research interests include image process-
ing and computer vision. He is a member
of IEEE, IPSJ, IEICE, IEEJ, and ITE.

(Communicated by Tetsuo Shibuya)

c© 2015 Information Processing Society of Japan 8

